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Abstract. Ongoing work in paleoclimate reconstruction pri-
oritizes understanding the origins and magnitudes of errors
that arise when comparing models and data. One class of
such errors arises from assumptions of proxy temporal repre-
sentativeness (TR), i.e., how accurately proxy measurements
represent climate variables at particular times and time inter-
vals. Here we consider effects arising when (1) the time in-
terval over which the data average and the climate interval of
interest have different durations, (2) those intervals are offset
from one another in time (including when those offsets are
unknown due to chronological uncertainty), and (3) the pa-
leoclimate archive has been smoothed in time prior to sam-
pling. Because all proxy measurements are time averages of
one sort or another and it is challenging to tailor proxy mea-
surements to precise time intervals, such errors are expected
to be common in model–data and data–data comparisons, but
how large and prevalent they are is unclear. This work pro-
vides a 1st-order quantification of temporal representativity
errors and studies the interacting effects of sampling proce-
dures, archive smoothing, chronological offsets and errors
(e.g., arising from radiocarbon dating), and the spectral char-
acter of the climate process being sampled.

Experiments with paleoclimate observations and synthetic
time series reveal that TR errors can be large relative to pa-
leoclimate signals of interest, particularly when the time du-
ration sampled by observations is very large or small relative
to the target time duration. Archive smoothing can reduce
sampling errors by acting as an anti-aliasing filter but de-
stroys high-frequency climate information. The contribution
from stochastic chronological errors is qualitatively similar
to that when an observation has a fixed time offset from the
target. An extension of the approach to paleoclimate time se-

ries, which are sequences of time-average values, shows that
measurement intervals shorter than the spacing between sam-
ples lead to errors, absent compensating effects from archive
smoothing. Nonstationarity in time series, sampling proce-
dures, and archive smoothing can lead to changes in TR er-
rors in time. Including these sources of uncertainty will im-
prove accuracy in model–data comparisons and data compar-
isons and syntheses. Moreover, because sampling procedures
emerge as important parameters in uncertainty quantifica-
tion, reporting salient information about how records are pro-
cessed and assessments of archive smoothing and chronolog-
ical uncertainties alongside published data is important to be
able to use records to their maximum potential in paleocli-
mate reconstruction and data assimilation.

1 Introduction

Paleoclimate records provide important information about
the variability, extremes, and sensitivity of Earth’s climate to
greenhouse gases on timescales longer than the instrumental
period. As the number of published paleoclimate records has
grown and the sophistication of numerical model representa-
tions of past climates has improved, it has become increas-
ingly important to understand the uncertainty with which pa-
leoclimate observations represent climate variables so that
they can be compared to one another and to model output.
Additionally, quantifying uncertainty is important for ongo-
ing efforts to assimilate paleoclimate data with numerical cli-
mate models (e.g., Hakim et al., 2016; Amrhein et al., 2018).

Paleoclimate records can have errors arising from many
different sources: biological effects (e.g., Elderfield et al.,
2002; Adkins et al., 2003), aliasing onto seasonal cycles
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(Wunsch, 2000; Fairchild et al., 2006; Dolman and Laepple,
2018), spatial representativeness (Van Sebille et al., 2015),
proxy climate calibrations (e.g., Tierney and Tingley, 2014),
and instrument errors, to name a few. This paper focuses on
errors from temporal representativeness (TR), which we de-
fine as the degree to which a measurement averaging over
one time interval can be used to represent a second target
time interval. For instance, in a data assimilation procedure
that fits a model to observations at every year, it is important
to know the uncertainty associated with relating a decadal-
average proxy observation to an annual-average target inter-
val. Furthermore, computing a mean is often the implicit goal
of binning procedures that combine observations from within
a target time period such as a marine isotope stage, and we
expect those observations to have errors that vary with their
averaging duration and offsets from the target. Importantly,
the term “error” is not meant to connote a procedural error
on behalf of a collector or user of observations: given the
sparsity of data and the nature of geophysical time series,
there is often a good rationale to use one time period to ap-
proximate another that is adjacent or has a different duration.
Our goal is to understand the uncertainty arising in such a
representation in a general framework.

Much of the previous study of errors arising from sam-
pling in time has focused on aliasing, whereby variability at
one frequency in a climate process appears at a different fre-
quency in discrete samples of that process. Pisias and Mix
(1988) described the consequences of aliasing in a study of
deterministic peaks in climate spectra due to Milankovitch
forcing. Wunsch and Gunn (2003) described criteria for
choosing sample spacing so as not to alias low-frequency
variability in sediment cores, and Wunsch (2000) demon-
strated how aliasing can lead to spurious spectral peaks in ice
core records. Beer et al. (2012) and von Albedyll et al. (2017)
describe how running means can reduce aliasing of solar
cycle variability in ice core records. In paleoclimate, mea-
surements are often unevenly spaced in time due to changes
in archive deposition rates; Jones (1972) showed that alias-
ing is present and even exacerbated in unevenly sampled
records relative to regularly sampled ones. Anderson (2001)
and McGee et al. (2013) describe how bioturbation and other
diagenetic processes smooth records in time and may reduce
aliasing errors.

A second area of previous focus stems from chronologi-
cal uncertainties, whereby times assigned to measurements
may be biased or uncertain. In some cases, such as for radio-
carbon dating, estimates of these uncertainties are available
from Bayesian approaches that incorporate sampling proce-
dures (Buck, 2004; Buck and Millard, 2004; Bronk Ram-
sey, 2009); practices for incorporating this information into
model–data or data–data comparisons vary, and developing
tools for analyzing chronological uncertainty is an active area
of research. Huybers and Wunsch (2004) include the effect of
uncertainties in tie points in order to align multiple records of
Pleistocene oxygen isotopes, and Haam and Huybers (2010)

developed tools for estimating the statistics of time-uncertain
series. The effect of time uncertainty on estimates of sig-
nal spectra is modest in some cases (Rhines and Huybers,
2011), in part because time uncertainty acts to smooth high-
frequency variability when computed as an expectation over
a record (Moore and Thomson, 1991).

This paper synthesizes effects contributing to TR errors in
an analytical model and explores their amplitudes and depen-
dence on signal spectra and sampling timescales. Extending
results from time-mean measurements to time series demon-
strates how sampling practices can lead to aliasing errors
when records are not sampled densely, e.g., when an ocean
sediment core is not sampled continuously along its accumu-
lation axis. While we do not claim that TR error is the most
important source of uncertainty in paleoclimate records, it
does appear to be large enough to affect results in some cases.
Moreover, this work is a step towards reducing the number of
“unknown unknowns” in paleoclimate reconstruction.

2 Origins of temporal representativeness error

Our focus is first on errors arising when a mean value com-
puted over one time period is used to represent another time
period – for instance, when a time average over 20–19 ka
(thousand years ago) is used to represent an average over
23–19 ka, the nominal timing of the Last Glacial Maximum
(Clark et al., 2012). We define the TR error θ as the differ-
ence between x and y:

θ = x− y, (1)

where x is the “true” average over the target time interval
and the measurement y is affected by one or more types of
TR error. As illustrated using a synthetic time series in Fig. 1,
our focus is on TR errors arising when the following is true:

– the duration over which an observation averages (τy)
differs in length from that of the target (τx ; Fig. 1a);

– the observation is offset from the target by a time 1
(Fig. 1b; these offsets can either be known or, in the
presence of chronological uncertainty of observations,
stochastic and unknown); and/or

– the paleoclimate archive was smoothed prior to sam-
pling, whether by bioturbation, diagenesis, residence
times in karst systems upstream of speleothems
(Fairchild et al., 2006), or other effects. In order to per-
form a 1st-order exploration of smoothing effects, we
represent archive smoothing as a moving average over a
timescale τa. Figure 1c illustrates how smoothing intro-
duces errors for the case in which τa = 2τx .

Visual inspection of Fig. 1 yields some intuitive expectations.
As the observational duration τy grows small relative to τx ,
one expects TR errors to grow as the observation “feels”
more of the variability at high frequencies. TR errors could
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Figure 1. Several factors can contribute to temporal representative-
ness errors, defined here as the difference θ between a true time-
average paleoclimate quantity x and a measurement y that averages
over a different time interval. These effects are illustrated using a
synthetic autoregressive time series. In each panel, the true quantity
x is the same. Panel (a) shows the difference when y averages over
a time duration τy that is 5 times shorter than the averaging interval
τx of the target value. Panel (b) shows the error when the observed
and target averaging intervals are the same, but the observation is
centered on a different value in time. Additional uncertainties, not
shown here but discussed in the text, arise if the time offset is a
stochastic random variable, as can occur, e.g., with chronological
uncertainties from radiocarbon dating. Panel (c) illustrates effects
when the observation spans the correct time interval but when the
paleoclimate archive being sampled stores a smoothed version of
the true signal; here that smoothing has a timescale of τa = 2τx .
These errors are merely examples and are not meant to argue, e.g.,
that offset errors are always greater than errors from different aver-
aging periods.

also be expected to grow as a measurement is increasingly
offset from the target in time. But interactions between dif-
ferent types of errors complicate the picture: for instance, in
some cases a measurement interval that is short relative to
τx might have smaller error if it is also offset in time or if
it samples an archive that stores a smoothed version of the
climate signal. Subsequent sections examine interactions be-
tween various TR error sources.

This list is not exhaustive and neglects, for instance, ef-
fects from small numbers of foraminifera in sediment core
records and other errors that are inherited from the construc-
tion of r (t) from proxy observations. To isolate TR errors
we assume that observations directly sample the true climate
process, r (t). This approach is intended to be complemen-
tary to proxy system models (PSMs; e.g., Evans et al., 2013)
that relate proxy quantities to climate variables (“forward
operators” in the language of data assimilation). The pro-
cedures described may be used to estimate TR uncertainty
when PSMs do not; when they do, the model can provide a
theoretical grounding for understanding those results. Vari-
ances from multiple error sources can be added together un-
der the approximations that they are independent and Gaus-
sian. When these assumptions fail, more holistic forward
modeling of errors in PSMs may be necessary.

3 Estimating temporal representativeness error

Because in paleoclimatology we do not have complete
knowledge of the underlying climate signal r(t) (it is what
we are trying to sample), it is impossible to infer what the TR
error is for each measurement as done in the synthetic exam-
ple (Fig. 1). Instead, our aim is to determine a typical error
value, which is important for data assimilation and for com-
paring models and observations as well as observations to
one another. We will characterize TR error θ by estimating its
variance,

〈
(θ −〈θ〉)2〉, where angle brackets denote statistical

expectation. To do this, we approximate r (t) as being weakly
statistically stationary, meaning that its mean and variance do
not change in time; caveats surrounding this assumption are
addressed later in the paper. Under the weak stationarity as-
sumption for the error types considered, the mean error 〈θ〉
is zero, and we can take the expectation by evaluating θ2 at
all the times in r (t) to compute the variance,

〈
θ2
〉
=

1
τ0

tf∫
t0

(x(t)− y(t))2dt, (2)

where t0 and tf are the initial and final times in r (t), τ0 =

tf − t0, and x(t) and y(t) are the “target” and “measured”
values that would result from sampling r(t) at various times.
Intuitively, we are estimating the error in representing x by
y (at a single time) as the time-mean squared difference of
running means of r (t) (over all times).

In practice, though we do not know r (t), knowledge of its
statistics is adequate to estimate

〈
θ2〉. Representing TR error

in the frequency domain (Appendix A) emerges as an intu-
itive way to describe errors that also provides closed-form
expressions that can be readily integrated to explore the ef-
fects of different sampling and time series parameters. A ba-
sic result (see Eq. A13) is that in the frequency domain, TR
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Figure 2. The power transfer function H (Eq. 3) illustrates the
dependence of temporal representativeness errors on frequencies
in the climate signal and on sampling timescales. In the case in
which the offset 1 between the measurement and target is 0, H
is a squared difference of sinc functions sinc(τν) as in Eq. (A13),
illustrated in (a) for τ = 100 years and τ = 1000 years. (b) Transfer
functions for three different values of the time offset 1. Grey bars
indicate the 1/200 and 1/1300 yr−1 frequencies, which approxi-
mately bound the frequencies contributing to TR errors in the1= 0
case.

errors are represented as

〈
θ2
〉
=

1
τ0

∞∫
0

H
(
ν,τx,τy,τa,1

) ∣∣r̂ (ν)
∣∣2dν, (3)

where ν denotes frequency, H is a so-called transfer func-
tion, and

∣∣r̂ (ν)
∣∣2 is the power spectral density of the true sig-

nal r(t). In effect, the error variance is a weighted sum of the
power at different frequencies in r(t), whereby the weights in
frequency space (given by H ) depend on how the paleocli-
mate record has been sampled and smoothed. This behavior
is typical of aliasing, where variance in the signal at one fre-
quency appears erroneously in a measurement at a different
frequency (in this case, at the zero frequency, which is the
time mean).

While the details are left to the Appendix, it is notewor-
thy that in many practical cases, TR errors can be straight-
forwardly attributed to signal variability within a particular
frequency band. This frequency band behavior emerges be-
cause H is a squared difference of sinc functions (Fig. 2a),
which has a bump-like shape (Fig. 2b). For instance, if a cen-
tennial mean is used to represent a millennial mean, in the
absence of archive smoothing, the expected error variance is
roughly equal to the variance in r (t) at periods between 200
and 1300 years; the error is the same if a millennial mean is
used to represent a centennial mean. Thus, the difference be-
tween the sample and target averaging intervals (τy and τx)
sets the frequency band that is aliased onto the mean. These

effects are modulated in the presence of archive smoothing,
and when there is a time offset in the measurement relative
to the target, additional variability is aliased onto errors (Ap-
pendix A).

4 Illustrating TR error quantification at the Last
Glacial Maximum by sampling a high-resolution
paleoclimate archive

Here we explore the procedure for estimating TR errors de-
scribed in the previous section in the context of estimating
mean properties at the Last Glacial Maximum (LGM), the
period roughly 20 000 years ago that is associated with the
greatest land ice extent during the last glacial period. Fol-
lowing MARGO Project Members (2009) and others, LGM
target quantities are defined to be estimates of time means
over the 4000-year-long period from 23 000 to 19 000 years
ago (23–19 ka):

xLGM =
1

4000

−19 000∫
−23 000

r (t)dt.

We will consider TR errors arising from representing xLGM
by an observed 1000-year time-mean value that is centered
on 21 ka:

yLGM =
1

1000

−21 500∫
−20 500

r (t)dt. (4)

Qualitatively, errors from this representation have the form
illustrated in Fig. 1a. Such an estimate – dated to within the
LGM but averaging over only a subset – could reasonably
be included in a binned-average compilation of LGM data.
However, because statistically robust averaging procedures
must downweight uncertain observations according to obser-
vational error, including TR errors, is important to avoid bi-
asing any binned averages. Similarly, were we to compare
yLGM to an LGM-mean estimate of r (t) from a model with-
out taking TR errors into account, we might erroneously con-
clude that the model did not fit the data.

How large is the TR error in representing xLGM by yLGM?
We will illustrate the procedure proposed in Sect. 3 by tak-
ing a high-resolution climate record to be a true climate sig-
nal r(t) and sampling it at longer time averages than the
record spacing. Here we will use the North Greenland Ice
Core Project (NGRIP; Andersen et al., 2004) 50-year aver-
age time series of oxygen isotope ratios (δ18O). Smoothing
the NGRIP record with running means of length τx = 4000
and τy = 1000 yields time series of potential target and ob-
servation values x(t) and y(t), as defined in Eq. (2) (black
and red lines, Fig. 3a). Their difference is the error θ (t) (thick
black line, Fig. 3a), and their squared difference is the blue
line in Fig. 3b. The time mean

〈
θ2〉 (red line, Fig. 3b) is 0.7(

‰δ18O
)2 and is the estimate of the error variance.
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Figure 3. Temporal representativeness error in the time and frequency domains. Errors in representing a 4000-year mean by a 1000-year
mean are estimated by computing the difference θ (a, thick black line) between a 4000-year (red line) and 1000-year (thin black line)
running mean of the NGRIP δ18Oice record (grey). The time average (red line, b) of θ2 (blue line) is an estimate (0.7 (‰δ18O)2) of the
temporal representativeness error variance. Large values in θ2 correspond to time periods with increased variability, as diagnosed by a
wavelet analysis (d), particularly in the band between 2257- and 5298-year periods (grey lines). Panel (c) shows the power transfer function
H (dark blue line), the NGRIP spectrum (red line), and the power spectrum ν−β with β = 1.53 derived by a least-squares fit to the NGRIP
spectrum.

A prominent feature in Fig. 3b is the time variability of
TR error: in some time periods (including the LGM) errors
are relatively small, whereas they are markedly larger at, e.g.,
80–70 ka. This time variability in errors arises from nonsta-
tionarities in the NGRIP oxygen isotope record. The transfer
function (blue line, Fig. 3c), shows that for our choices of
τx and τy , variability in the frequency band lying between
roughly 2200- and 5300-year periods is responsible for TR
errors. A wavelet analysis (Fig. 3d) shows that increased vari-
ability in this band is coincident with increases in TR error
variance: note, e.g., the correspondence of high wavelet val-
ues in that band near −75000 years with contemporaneous
large values in the blue line in Fig. 3b. Evidently, in the pres-
ence of nonstationary climate variability, TR errors can vary
in time. They may also vary due to changes in sampling pro-
cedures over the course of constructing a time series, as dis-
cussed in Sect. 6. Observations of intervals with less vari-
ability in the TR error frequency band (e.g., the LGM) will
be less susceptible to TR errors, an additional quantitative
justification for the long-held process of focusing study on
time means of periods with relatively less variability.

Next, we will extend our analysis of NGRIP to cover a
range of different values of τx and τy . To compare the NGRIP
results to synthetic time series in the following sections with
arbitrary units, we will analyze the unitless noise-to-signal

standard deviation ratio,

f =

√〈
θ2
〉

σ
. (5)

Because one motivation of studying the LGM is inferring dif-
ferences from modern climate, we adopt as our “signal” am-
plitude the typical anomaly σ between two mean intervals
of length τx separated by 21000 years. This quantity is esti-
mated from the NGRIP time series for each value of τx .

Figure 4 contours the noise-to-signal ratio f for every
combination of τx and τy between 10 and 4000 years. TR
errors depend jointly on values of τx and τy . Errors are zero
for τx = τy (corresponding to an ideal sampling scheme) and
increase monotonically away from those values. Errors are
greatest (up to 30 % of signal amplitudes) for small values of
τy relative to τx , where TR error dwarfs the relatively small
signal amplitudes that are typical of 21 000-year differences
in long-term time averages1. Subsequent sections extend this
analysis to a broader set of sampling parameters (including
archive smoothing and time offsets) as well as records with
different spectral characteristics.

1Error variances are equal if τx and τy are interchanged, but
asymmetry in f arises because σ depends on τx .
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Figure 4. Error-to-signal variance fractions f (Eq. 5) for estimates
of time-mean values computed from the NGRIP record of Pleis-
tocene oxygen isotopes contoured as a function of target averaging
interval τx and observation averaging interval τy . A value of 0.1
means that TR error amplitudes are 10 % of the “signal,” which is
defined as the typical difference between two time averages over
durations τx separated by 21 000 years.

5 Exploring interactions between sampling
parameters and signal spectra

The succinct expression of TR errors in terms of power spec-
tra in Eq. (3) is a clue that the spectral character of paleo-
climate processes is an important factor for the amplitude of
TR errors. To investigate how errors depend on the spectrum
of r(t), we will shift our focus away from observations and
consider climate processes with power-law spectra, i.e., those
whose power spectral densities

∣∣r̂ (ν)
∣∣2 have the form

∣∣r̂ (ν)
∣∣2 ∝ ν−β , (6)

where β is termed the spectral slope (when plotted in log–
log space, ν−β is a straight line with slope −β). We choose
this idealized form because spectra consistent with a power-
law description are common in climate (Wunsch, 2003).
White noise, which partitions variance equally across fre-
quencies, has a spectral slope of 0; signals with a steeper
slope (larger β) have a larger fraction of their variance orig-
inating from low-frequency variability. Here we consider
spectral slopes β = 0.5 and β = 1.5, motivated by Huybers
and Curry (2006), who fit paleoclimate records to spectral
slopes between β = 0.3 and β = 1.6. Climatological spectral
features that are not described by power laws, such as peaks
due to deterministic astronomical forcing from annual or Mi-
lankovitch variability, also contribute to errors (Pisias and
Mix, 1988; Wunsch, 2000) but are not specifically considered
in these examples. All calculations are performed by numer-
ical integration of Eq. (A13) by global adaptive quadrature.

5.1 Effects from archive smoothing and signal spectra

Similar to Fig. 4, Fig. 5 contours the noise-to-signal ratio
f as a function of τx and τy , but now for four cases span-
ning two values of the archive smoothing timescale τa (0 and
1000 years) and two values of spectral slope β. Signals with
steeper spectral slopes (β = 1.5 rather than β = 0.5), show
smaller f values because TR errors, which originate at rel-
atively high frequencies (Fig. 2), are smaller relative to the
greater amount of low-frequency variability in the signal, as
also discussed by Wunsch (1978) and Wunsch (2003). The
close resemblance between Fig. 5b and the equivalent figure
computed from NGRIP (Fig. 4), which has a spectral slope
of 1.53 (Fig. 3c), is partly coincidental; analysis of synthetic
records with spectral slopes of 1.5 (not shown) reveals vari-
ability in f because of variations about the power-law distri-
bution in finite-length, stochastically generated time series,
of which NGRIP is arguably one realization. Nevertheless,
the agreement shows correspondence between results from
paleoclimate data and our idealized approach.

Dependencies on τx and τy change when we include
archive smoothing (Fig. 5a and c; schematized in Fig. 1c).
These effects are evident primarily for τy < τa. In that
“smoothed” regime, the largest values of f for small τy are
reduced because archive smoothing removes some of the
high-frequency variability that would otherwise be felt by
observations and erroneously aliased onto the mean. Another
effect is that τy = τx no longer minimizes f everywhere; in
the smoothed regime, smaller values of τy lead to reduced TR
error. This is because archive smoothing already provides a
measure of time averaging so that when τx = 1000, the value
of τy that minimizes error is close to zero because anything
longer would be “oversmoothing” the record and effectively
giving a longer time average than τx . Archive smoothing
also reduces the sensitivity of errors to the choice of τy for
τy < τa. Finally, the presence of smoothing means that arbi-
trarily short choices of τx can no longer be resolved without
error, as evidenced by the monotonic growth of error as τx
decreases from τa.

To the extent that these simple experiments reflect actual
paleoclimate sampling procedures, one could attempt to sam-
ple time-mean intervals to avoid TR errors. In the absence
of archive sampling, the (trivial) result is that τy should be
equal to τx . But the danger of oversmoothing means that
this rule is not always appropriate for τa 6= 0. Appendix A
derives Eq. (A20), an approximate expression for the error-
minimizing value, τ̃y =

√
τ 2
x − τ

2
a , that is a function of both

the target interval length and smoothing timescale. These val-
ues (dotted lines, Fig. 5) are in good qualitative agreement
with minimum TR error values.

5.2 Effects from known time offsets

Having explored how choices of τx and τy contribute to TR
errors, we next illustrate effects from chronological offsets
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Figure 5. Error-to-signal fractions f for time-mean estimates plotted as a function of target averaging interval τx and observation averaging
interval τy . Climate signal spectra are power-law functions of frequency (

∣∣r̂ (ν)
∣∣2 ∝ ν−β ) with spectral slopes β equal to 0.5 (a, c) and 1.5

(b, d). Panels (a–b) correspond to a case with no archive smoothing (τa = 0), while panels (c–d) correspond to a case in which the signal
r (t) is smoothed by a running mean over τa = 1000 years. Values to the left of the bold line at τy = τa lie in the “smoothed regime” wherein
archive smoothing qualitatively affects results. Timescales were chosen to be relevant to the problem of time-mean estimation at the Last
Glacial Maximum, ca. 20 ka. Dotted lines show values of τ̃y derived to minimize error estimated according to Eq. (A20).

when1 6= 0 (schematized in Fig. 1b). Motivated by the LGM
timescale, we focus again on the case in which τx is fixed to
4000 years and integrate Eq. (A13) varying τy between 10
and 6000 years and 1 between 10 and 4000 years for values
of β = (0.5,1.5) and τa = (0,1000).

For all values of τa and β, errors grow monotonically away
from the values 1= 0, τy = τx , which corresponds to the
case with no TR error2 (Fig. 6). As in the previous section,
a “smoothed regime” is evident for τy ≤ τa across all val-
ues of 1 shown: because archive smoothing damps variabil-
ity in time, the errors from shifting an observation relative
to the target become less severe. Another qualitative differ-
ence emerges for values of 1 that are greater or less than∣∣τx − τy∣∣/2 (blue line, Fig. 6a and c). This boundary desig-
nates when the observed time period is sufficiently offset that
it begins to fall outside the target interval; at that point, errors
grow rapidly as 1 increases. As before, errors are more pro-

2A small amount of oversmoothing is present at τy = τx in the
τa = 1000 case.

nounced for β = 0.5 than for β = 1.5, with errors larger than
the signal (f > 1) for small values of τy at all values of 1
for β = 0.5.

5.3 Effects from probabilistic time offsets

When the dating of a measurement is uncertain, a range of
1 values may be possible, as specified by a probability dis-
tribution function p (1). To explore effects from chronologi-
cal uncertainty, we assume that p (1) is Gaussian about zero
with a standard deviation equal to the timescale σ1. We in-
clude this uncertainty in TR error variance by taking a second
expectation (denoted by 1, in addition to the time expectation
in Eq. 2) to give

〈〈
θ2
〉〉
1
=

∞∫
−∞

p (1)
〈
θ2
〉
d1. (7)

In practice, p (1) can be multimodal or otherwise non-
Gaussian (e.g., from radiocarbon ages; Telford et al., 2004),
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Figure 6. Same as Fig. 5, but illustrating the effects of offsets 1 between target and observational intervals on noise-to-signal ratios. In all
cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial Maximum. Values along the line τy = τx
strictly reflect the influence of chronological offsets. The blue line in panel (a) denotes values for which 1=

∣∣τx − τy ∣∣/2, indicating the
maximum values of 1 for which the observation interval lies completely within the target interval.

which could qualitatively change results. While not explored
here, such errors can be investigated by integrating Eq. (7)
with different choices of p (1).

Integrating Eq. (7) and varying σ1 and τy shows that TR
errors in the presence of Gaussian chronological uncertainty
p (1) with standard deviation σ1 are qualitatively similar to
those from a fixed offset 1= σ1 (cf. Figs. 6 and 7). The
transition in sensitivity to σ1 across σ1 =

∣∣τx − τy∣∣/2 is less
pronounced than for the equivalent in Fig. 6, consistent with
the range of lags that is possible for any nonzero σ1. Never-
theless, the intuitively sensible conclusion is that chronolog-
ical errors will be gravest when uncertainties tend to place
measurements outside target intervals. Reduced errors in the
smoothed regime τy ≤ τa indicate that archive smoothing can
reduce effects from chronological errors in some cases.

6 Extension to time series

Paleoclimate time series are sequences of time-mean values;
here, we discuss how the TR errors discussed for time-mean
estimation affect transient records of climate variability. We
show that in the absence of archive smoothing, dense sam-
pling (i.e., setting the averaging interval equal to the spacing
between measurements) is a nearly optimal approach to min-
imize TR errors.

The sampling theorem of Shannon (1949) states that sam-
pling r (t) instantaneously at times separated by a fixed time
interval τs unambiguously preserves signal information only
when r (t) does not contain any spectral power at frequen-
cies greater than 1/2τs (called the Nyquist frequency, νNyq).
When this criterion is not met, the discrete signal is corrupted
by aliasing, whereby variability in r (t) at frequencies greater
than νNyq appears artificially at lower frequencies in the dis-
crete signal. To mitigate aliasing, one can either increase the
sampling rate or apply a low-pass “anti-aliasing” filter to r (t)
to attenuate power at frequencies higher than νNyq.

In the process of constructing a paleoclimate time series,
sampling time-mean values serves a moving average and
thereby an anti-aliasing filter. Thus, we expect sample av-
eraging procedures to affect aliasing errors in time series, as
also discussed by von Albedyll et al. (2017). Appendix B
uses Shannon’s theorem to obtain a frequency domain ex-
pression for the TR errors for individual time series measure-
ments. The procedure is to (1) define local (in time) values
of τ is and νiNyq for the ith observation and (2) compute the
expected errors if an entire time series were sampled using
those local properties. To do this, we make the assumption
that the sampling interval τ is is locally constant: that is, for
the ith measurement yi taken at time t i , yi−1 was taken at
time t i−τ is , and yi+1 was taken at time t i+τ is . If the sampling
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Figure 7. Same as Fig. 5, but illustrating the effects of chronological uncertainties in observations on noise-to-signal ratios. Error fractions
f are plotted as a function of the observational averaging interval τy and the standard deviation σ1 of a Gaussian distribution of time offsets
centered on zero. In all cases, the target averaging interval is τx = 4000, reflecting the nominal length of the Last Glacial Maximum. Values
along the line τy = τx strictly reflect the influence of chronological uncertainty, which is zero when the observational offset is exactly known
to be zero (i.e., σ1 = 0).

interval changes rapidly, the conclusions from this approach
might not apply. Again leaving the details to the Appendix,
we note that similar to the time-mean case, the error vari-
ance

〈
θ i2
〉

for the ith observation is a weighted integral over
the power density spectrum of r (t), as in Eq. (B6). Unlike
in the mean estimation case, in which TR errors can be zero,
nonzero error is unavoidable with uniform sampling because
of differences between the shape of the sinc function and the
ideal, abrupt frequency cutoff that minimizes error according
to Shannon’s theorem.3

To demonstrate sensitivities to sampling parameters we
again compute noise-to-signal ratios. In keeping with our lo-
cal measure of TR error, we take the signal strength to be the
standard deviation of the time series that would result if r(t)
were sampled with the same averaging and sampling inter-
val as the ith observation over 21 000 years, the approximate
duration of the last deglaciation. The results are qualitatively
similar to those for the time-mean case, with two main dis-
tinctions (cf. Figs. 8 and 5). First, as discussed above, errors
are always 10 % or more of signal amplitudes because of er-

3Sampling a paleoclimate archive nonuniformly in time could
better approximate the ideal filter and reduce errors, but this may
not be practical given the challenges of recovering and sampling
paleoclimate data.

rors arising from constructing a time series as a sequence of
time-mean values. Second, values of τy that minimize errors
do not obey τy = τs but are larger by a factor of roughly 1.2,
suggesting that, in the absence of considerations from archive
smoothing, the ideal sample would span an interval slightly
longer than the sampling interval to minimize errors. In prac-
tice, sampling densely (that is, without space between obser-
vations) appears to be a good approximation of this error-
minimizing strategy.

As in the time-mean case, the effects of archive smoothing
are large in a regime of sampling parameter space (τy ≤ τa),
implying that knowledge of τa is important for informing
choices of τs and τy . Clearly, sampling at intervals τs < τa
will result in errors because some of the variability of inter-
est will have been destroyed. Choosing a τs that is larger than
both τy and τa will result in aliasing errors. Finally, within
the smoothed regime τy ≤ τa, TR errors are less sensitive to
choices of τy than they are for τy > τa, meaning that sam-
pling discontinuously (i.e., not densely) may not be problem-
atic.
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Figure 8. Same as Fig. 5, but illustrating the dependence of the error-to-signal standard deviation ratio for individual measurements in a time
series as a function of local time series spacing (τ is ) and the observational averaging time interval τ iy .

7 Discussion

This paper presents a framework for quantifying temporal
representativeness (TR) errors in paleoclimatology, broadly
defined as resulting when one time average is represented by
another. A simple model illustrates interacting effects from
record sampling procedures, chronological errors, and the
spectral properties of the climate process being sampled.

We find that TR errors for time-mean estimates can be
large relative to climate signals, with noise-to-signal stan-
dard deviation ratios greater than 1 in some cases, particu-
larly those in which the observational interval τy is smaller
than the target interval τx . These errors result from aliasing
climate variability onto time-mean estimates and can be mit-
igated to some degree by choices of sampling procedures and
by archive smoothing, both of which act as anti-aliasing fil-
ters. However, archive smoothing can also destroy informa-
tion about climate variability, and the combined effects of
sampling and smoothing can oversmooth a record and lead
to increased errors. TR errors due to sampling are not in-
dependent of chronological errors but interact, for instance,

in the way that errors grow more quickly as a function of
chronological uncertainty amplitude when that uncertainty
is likely to place a measurement outside a target interval
(Fig. 7). Given that these error variances were estimated us-
ing parameters representative of the LGM, it seems possible
that TR errors may explain some of the disagreement among
proxy measurements within that time period (e.g., MARGO
Project Members, 2009; Caley et al., 2014), though nonsta-
tionarities may cause TR errors to be overestimated for cli-
mate intervals like the LGM that appear to be quiescent rel-
ative to other time periods. While we do not claim that TR
errors are the largest source of error for any particular proxy
type or reconstruction problem, they may be in some cases.
The tools presented can be used to assess likely error ampli-
tudes.

Though not the principal goal, these analyses provide a
basis for sampling practices that minimize errors, for in-
stance for avoiding oversmoothing that can arise through the
combined effects of sampling and archive smoothing. When
constructing paleoclimate time series, it is important to bear
in mind not just the Nyquist frequency but also the role of
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sampling and smoothing timescales as anti-aliasing filters;
these considerations point to dense sampling (i.e., without
space between contiguous samples) in order to minimize er-
ror in the absence of effects from archive smoothing (Sect. 6).
However, many practical considerations motivate paleocli-
mate sampling strategies and may outweigh the concerns
described here. For instance, records sampled densely can-
not be used as a starting point for subsequently construct-
ing higher-resolution records. Moreover, the preservation of
natural archives for subsequent analyses is important for re-
producibility and sharing resources between laboratories but
may be complicated by continuous sampling.

To some extent, the simple model for TR error can be gen-
eralized to more complex scenarios. If samples are nonuni-
form in time – for instance, due to large changes in chronol-
ogy or because material was sampled using a syringe or drill
bit with a circular projection onto an archive – then the sinc
function in (Eq. 3) can be replaced by Fourier transforms of
the relevant function. Similarly, a more complex pattern of
archive smoothing can be accommodated by substituting a
different smoothing kernel. Non-Gaussian age uncertainties
can be incorporated by substituting a different distribution
in Eq. (7). Changes in sampling properties through time (as
might arise from nonconstant chronologies or sampling pro-
cedures) can readily be accommodated because all computa-
tions are performed on a point-by-point basis. If sampling or
smoothing timescales are unknown, a similar procedure can
be adopted as was used for 1 in Eq. (7), whereby a second
integration is performed to compute the expectation over an
estimated probability distribution of one or more timescales.

Several caveats apply to the uncertainty estimates given.
First, the model neglects some effects that may be impor-
tant, such as inhomogeneities in preserved climate signals
owing to, e.g., diagenesis or scarcity of biological fossils.
Second, nonstationarity in record spectra leads to time varia-
tions in errors, as illustrated in Fig. 3. Third, in the analysis of
time series errors, we ignore the possibility that errors covary
in time, which can result from chronologies constructed by
interpolating ages between tie points; more complete char-
acterizations could be achieved by Monte Carlo sampling
of age model uncertainty (Anchukaitis and Tierney, 2013).
More broadly, there is a clear need for comprehensive ap-
proaches in uncertainty quantification that can reveal inter-
actions among the various sources of uncertainty in paleo-
climate records. Forward proxy system models (e.g., Evans
et al., 2013; Dee et al., 2015; Dolman and Laepple, 2018) are
a promising way forward to assess uncertainties holistically.

Results for time series (Sect. 6) hold when record spac-
ing and chronologies do not change too rapidly and when
the goal is to obtain a discrete representation of a continuous
process. For other objectives, other sampling procedures may
be preferred. For instance, “burst sampling,” whereby rapid
sequences of observations are taken at relatively long inter-
vals, is used in modern oceanographic procedures to esti-
mate spectral nonstationarities in time (Emery and Thomson,

2014), and unevenly spaced paleoclimate observations can
be leveraged to give a range of frequency information using
variogram approaches (Amrhein et al., 2015) or the Lomb–
Scargle periodogram (e.g., Schulz and Stattegger, 1997).

Representativity errors due to aliasing are not limited to
the time domain, and similar procedures may be useful for
quantifying errors due to spatial representativeness by con-
sidering how well proxy records can constrain the regional
and larger scales typically of interest in paleoclimatology.
An analogous problem is addressed in the modern ocean by
Forget and Wunsch (2007), and Zhao et al. (2018) consid-
ered spatial representativeness in choosing how to weight
deglacial radiocarbon time series in spatial bin averages. A
challenge of any such approach is that the spatial averag-
ing functions (analogous to our τy but occupying three spa-
tial dimensions) represented by proxy records are often not
well known; Van Sebille et al. (2015), for instance, explore
how ocean advection determines three-dimensional patterns
represented by sediment core observations. Because spatial
patterns and timescales of ocean and climate variability are
linked, it may ultimately be necessary to consider the full
four-dimensional spatiotemporal aliasing problem.

The hope is that these procedures may prove useful for
1st-order practical uncertainty quantification. A challenge is
estimating the signal spectrum

∣∣r̂∣∣2, which itself can be af-
fected by aliasing (Kirchner, 2005). One approach is to use
spectra from other records that are more highly resolved or
were sampled densely, e.g., from a sediment core at an ad-
jacent site, or a record believed to record similar climate
variability. Alternately, measurements of archive properties
that can be made cheaply and at high resolution – such as
magnetic susceptibility, wet bulk density, and other proxy
properties that are routinely made on sediment cores – could
prove useful for estimating

∣∣r̂∣∣2 if those properties are re-
lated linearly to r (t) (Herbert and Mayer, 1991; Wunsch and
Gunn, 2003). Another challenge is that the sampling parame-
ters that we have shown affect errors are often not published
alongside paleoclimate datasets, thus turning systematic er-
rors (where parameters like τy are known) into stochastic er-
rors because a range of possible values must be explored.
Publishing all available information about sampling prac-
tices, age model construction, and assessments of archive
smoothing will greatly aid uncertainty quantification efforts.
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Appendix A: Expressing time-mean temporal
representativeness errors in the frequency domain

This Appendix describes an analytical approach for estimat-
ing temporal representativity errors in the context of esti-
mating time means. These errors have a compact represen-
tation in the frequency domain that rationalizes interactions
between sampling procedures, time uncertainty, and signal
spectra in contributing to errors. Fore more on the theorems
and properties of Fourier analysis that are referenced, see,
e.g., Bracewell (1986).

A1 Derivation

Define a mean value m (t, τ ) of a climate variable r (t) as
a function of the duration τ and the time t on which that
duration is centered:

m (t, τ )=

∞∫
−∞

5
(
t ′,τ

)
r
(
t + t ′

)
dt ′, (A1)

where5 (t, τ ) is a normalized “boxcar” function centered on
t = 0 with width τ ,

5 (t, τ )=
{

1/τ |t | ≤ τ/2
0 |t |> τ/2. (A2)

The operation in Eq. (A1) defines a moving average m (t, τ )
and is known as a convolution, hereafter denoted as a star:

m (t, τ )=5 (t, τ ) ? r (t) . (A3)

Then let the target quantity x(t) be a mean of r (t) over an
interval of length τx centered on t , and let an observation
y(t) be an average over a different duration τy centered on a
different time t +1:

x(t)=m (t, τx) , (A4)
y(t)=m

(
t +1,τy

)
. (A5)

The Fourier transform will be written using both the oper-
ator F and a hat. Denoting frequency by ν, it is defined as

F (x (t))≡ x̂(ν)=

∞∫
−∞

x (t)e−2πiνtdt.

Parseval’s theorem states that the integral of a squared quan-
tity in the time domain is equal to the integral of the squared
amplitude of the Fourier transform of that quantity, so after

substituting Eq. (A5) we can write Eq. (2) as

〈
θ2
〉
=

1
τ0

∞∫
−∞

(
m(t, τx)−m

(
t +1t,τy

))2dt, (A6)

=
1
τ0

∞∫
0

∣∣F[m(t, τx)−m
(
t +1t,τy

)]∣∣2dν. (A7)

By the Fourier shift theorem,

F
[
m
(
t +1,τy

)]
= e−2πiν1F

[
m
(
t, τy

)]
. (A8)

Then, by the linearity of the Fourier transform,

〈
θ2
〉
=

1
τ0

∞∫
0

∣∣∣m̂(ν,τy)− e−2πiν1m̂ (ν,τx)
∣∣∣2dν. (A9)

By the convolution theorem, convolution in the time domain
is equivalent to multiplication in the frequency domain. Thus,
the Fourier transform of a time mean as defined in Eq. (A3)
is

m̂ (ν,τ )= F [5 (t, τ ) ? r (t)] (A10)

= 5̂ (ν,τ ) · r̂ (ν) . (A11)

Substituting this relation into Eq. (A9) yields

〈
θ2
〉
=

1
τ0

∞∫
0

∣∣∣5̂ (ν,τx)− e−2πiν1
· 5̂

(
ν,τy

)∣∣∣2
·
∣∣r̂ (ν)

∣∣2dν. (A12)

Finally, we represent smoothing prior to sampling by defin-
ing a new climate signal, r ′ (t), that has had a running mean
applied,

r ′ (t)=5 (t, τa) ? r (t) .

Substituting r̂ ′ (ν) into Eq. (A12) and applying the convolu-
tion theorem gives

〈
θ2
〉
=

1
τ0

∞∫
0

∣∣∣5̂ (ν,τx)− e−2πiν1
· 5̂ (ν,τa)

·5̂
(
ν,τy

)∣∣∣2∣∣r̂ (ν)
∣∣2dν. (A13)

Numerical integration of Eq. (A13) is used in the text to il-
lustrate dependencies of TR error on sampling parameters.

A2 Interpretation

The integrand of Eq. (A13) is the product of two components.
The second,

∣∣r̂ (ν)
∣∣2, is the power spectral density of r (t),
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Figure A1. Illustration of the frequency dependence of errors in representing an instantaneous measurement of a process r (t) at a time t by
another measurement r (t +1). Each line represents a different frequency component of r (t): grey vertical lines represent sampling times,
and colored circles represent the values of components at those times. At frequencies ν = n

1 for n= 0,1,2, . . ., (a), the Fourier components of

x (t) will be exactly in phase when sampled at a time lag1, so these components do not contribute to the error variance
〈
(r (t)− r (t +1))2

〉
.

By contrast, at frequencies ν = n
1 +

1
21 (b), the Fourier components are exactly out of phase, so these components tend to contribute most to

the error variance. At intermediate frequencies, contributions lie between the two extremes, leading to a cosine function of error contribution
as a function of frequency (Eq. A22).

which describes the variance contained at frequencies in r (t).
The first component is a power transfer function,

H
(
ν,τx,τy,τa,1

)
=

∣∣∣5̂ (ν,τx)− e−2πiν1
· 5̂ (ν,τa)

·5̂
(
ν,τy

)∣∣∣2, (A14)

which describes how power at different frequencies in r (t)
contributes to

〈
θ2〉. The Fourier transform of the boxcar func-

tion is a sinc function,

5̂ (ν,τ )= sinc(τν)=
sin(πτν)
πτν

, (A15)

which converges towards 1 at frequencies below 1/τ and os-
cillates with decreasing amplitude about 0 at higher frequen-
cies (Fig. 2a).

When τx and τy are adequately separated so that the trans-
fer function has a simple band-pass shape as seen in Fig. 2b,
the “cutoff frequencies” ν†

low and ν†
high are useful to diagnose

how sampling procedures contribute to TR error. These are
the frequencies on either side of the band at which the trans-
fer function is equal to 0.5. In the presence of zero time off-
sets, the cutoff frequencies can be estimated by solving

H
(
ν

†
low

)
≈

∣∣∣sinc
(
τxν

†
low

)
− 1

∣∣∣2 = 1
2
, (A16)

H
(
ν

†
high

)
≈

∣∣∣sinc
(
τyν

†
high

)∣∣∣2 = 1
2
, (A17)

which yields ν†
low = 0.755τ−1

x and ν†
high = 0.443τ−1

y . (In the

case in which τx is less than τy , then ν†
low = 0.755τ−1

y and

ν
†
high = 0.443τ−1

x ).

We can expect that the presence of archive smoothing
might reduce errors originating from high frequencies in r(t),
thereby reducing ν†

high and narrowing the band of aliased fre-
quencies. In the presence of archive smoothing, the expres-
sion for ν†

high becomes

H
(
ν

†
high

)
=

∣∣∣sinc
(
τaν

†
high

)
sinc

(
τyν

†
high

)∣∣∣2 = 1
2
. (A18)

An approximate solution using a Taylor series representation
is

ν
†
high ≈

0.443√
τ 2

a + τ
2
y

, (A19)

which illustrates a combined effect from sampling and
archive smoothing for determining which frequencies con-
tribute to TR errors. Thus, when τy and τa are small relative
to τx , archive smoothing reduces TR errors, consistent with
numerical integrations (comparing Fig. 5a and b with Fig. 5c
and d).

Using Eq. (A19), we can estimate an ideal sampling inter-
val τ̃y in the presence of archive smoothing by minimizing
the width of the frequency band that contributes to TR er-
ror. Setting 0.443τ̃−1

x (i.e., the cutoff frequency in the case
in which the combined averaging effect of sampling and
smoothing gave the desired averaging interval τx) equal to
0.443(τ 2

y + τ
2
a )−

1
2 and solving yields

τ̃y =

√
τ 2
x − τ

2
a for τx > τa. (A20)
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Numerical experiments (see the dotted lines in all panels of
Fig. 5) support the robustness of this approximation for two
different signal spectra.

To study the error contribution from a time offset 1, con-
sider the limit at which τx , τy , and τa approach zero, corre-
sponding to instantaneous observations in time, so that

〈
θ2〉

approaches

〈
θ2
〉
=

1
τ0

∞∫
0

∣∣∣1− e−2πiν1
∣∣∣2∣∣r̂ (ν)

∣∣2dν. (A21)

Expanding
∣∣1− e−2πiν1

∣∣2 and simplifying gives

〈
θ2
〉
=

1
τ0

∞∫
0

(2− 2cos(2πν1))
∣∣r̂ (ν)

∣∣2dν (A22)

so that the power transfer function is H = 2− 2cos(2πν1)
and the expected error due to 1 is a cosinusoidally weighted
function of the signal power spectrum. H takes a minimum
value of 0 at frequencies

νmin = 0,
1
1
,

2
1
,. . .

n

1

for integer values of n; at these frequencies, measurements
spaced by 1 in time are in phase and are therefore exactly
correlated (Fig. A1a). The weights take a maximum value of
4 at frequencies

νmax =
1

21
,

3
21

,
5

21
,. . .

n

1
+

1
21

,

where measurements separated by 1 are always exactly out
of phase (Fig. A1b). At those frequencies, the underlying sig-
nal r (t) is projected twofold onto the error so that its variance
contribution is multiplied fourfold. These variations in fre-
quency contributions modulate effects from smoothing and
sampling timescales (Fig. 2b).

Appendix B: Expressing time series temporal
representativeness errors in the frequency domain

This Appendix extends the analytical approach for estimat-
ing temporal representativity errors from estimating time
means to time series. Define the associated moving average
time series that would result if all of r(t) were sampled as the
ith observation yi to be

yi (t)=5
(
t, τ iy

)
?5

(
t, τ ia

)
? r (t) , (B1)

where we have included a contribution from archive smooth-
ing so that its Fourier transform is

ŷi (ν)= 5̂
(
ν,τ iy

)
· 5̂

(
ν,τ ia

)
· r̂ (ν) . (B2)

By Shannon’s sampling theorem, an accurate discrete rep-
resentation of r (t) results from sampling all frequencies in
r (t) less than or equal to the local Nyquist frequency νiNyq =

1/
(
2τ is
)
. As such, the target value xi for the ith measurement

yi is the value of r (t) sampled at t i after filtering r (t) to re-
move high-frequency variability. The Fourier transform of a
time series of values of xi is

x̂i (ν)=G
(
ν,τ is

)
r̂ (ν) , (B3)

where the “ideal” transfer function G (ν,τs) is the Heaviside
function:

G(ν,τs)=
{

1 ν < 1/(2τ is )
0 ν ≥ 1/(2τ is ),

(B4)

which is ideal in the sense that it eliminates variability at
frequencies greater than νiNyq = 1/

(
2τ is
)
. Then we define TR

error at the ith measurement to be

θ i = xi − yi . (B5)

As in the previous section, we estimate the variance of θ i

by taking the expected value as if the entire record had been
sampled using the local values τ is and τ iy . Then, equivalent to
Eq. (A13),

〈
θ i2
〉
=

1
τ0

∞∫
0

∣∣∣G(ν,τ is)− 5̂(ν,τ ia) · 5̂(ν,τ iy)∣∣∣2
∣∣r̂ (ν)

∣∣2dν. (B6)
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