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Abstract. Our understanding of the natural variability of hy-
droclimate before the instrumental period (ca. 1900 CE in the
United States) is largely dependent on tree-ring-based recon-
structions. Large-scale soil moisture reconstructions from a
network of tree-ring chronologies have greatly improved our
understanding of the spatial and temporal variability in hy-
droclimate conditions, particularly extremes of both drought
and pluvial (wet) events. However, certain regions within
these large-scale network reconstructions in the US are mod-
eled by few tree-ring chronologies. Further, many of the
chronologies currently publicly available on the International
Tree-Ring Data Bank (ITRDB) were collected in the 1980s
and 1990s, and thus our understanding of the sensitivity of
radial growth to soil moisture in the US is based on a pe-
riod that experienced multiple extremely severe droughts and
neglects the impacts of recent, rapid global change. In this
study, we expanded the tree-ring network of the Ohio River
valley in the US, a region with sparse coverage. We used a
total of 72 chronologies across 15 species to examine how
increasing the density of the tree-ring network influences the
representation of reconstructing the Palmer Meteorological
Drought Index (PMDI). Further, we tested how the sampling
date and therefore the calibration period influenced the re-
construction models by creating reconstructions that ended
in the year 1980 and compared them to reconstructions end-
ing in 2010 from the same chronologies. We found that in-

creasing the density of the tree-ring network resulted in re-
constructed values that better matched the spatial variability
of instrumentally recorded droughts and, to a lesser extent,
pluvials. By extending the calibration period to 2010 com-
pared to 1980, the sensitivity of tree rings to PMDI decreased
in the southern portion of our region where severe drought
conditions have been absent over recent decades. We empha-
size the need of building a high-density tree-ring network to
better represent the spatial variability of past droughts and
pluvials. Further, chronologies on the ITRDB need updating
regularly to better understand how the sensitivity of tree rings
to climate may vary through time.

1 Introduction

Understanding the mechanisms that drive climate vari-
ability, particularly before the modern instrumental record
(ca. 1900 CE in the United States), depends on proxy-
based reconstructions of climate. Precisely dated tree-ring
chronologies are one of the primary proxies that can
reconstruct interannual climate variability over recent
centuries to millennia (Fritts, 1976). Tree rings provide
robust historical and prehistorical context for droughts and
pluvials (wet periods) captured in the instrumental record
throughout the midlatitudes (e.g., Stahle and Cleaveland,
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1994; Woodhouse and Overpeck, 1998; Cook et al., 2010;
Fang et al., 2010; Chen et al., 2013; Pederson et al., 2013;
Güner et al., 2017; Oliver et al., 2019; Morales et al.,
2020). Most of our understanding of past drought severity
and variability in North America is the result of the North
American Drought Atlas (NADA; Cook et al., 1999). The
NADA comprises a network of tree-ring chronologies
across North America from the International Tree-Ring Data
Bank (ITRDB; https://www.ncdc.noaa.gov/data-access/
paleoclimatology-data/datasets/tree-ring) (last access: 6
September 2020) creating a 2◦× 3◦ reconstruction of sum-
mer (average of June, July, and August; JJA) Palmer Drought
Severity Index values (Palmer, 1965). The NADA produced
multiple centuries of spatial drought variability, providing
essential context for extreme soil moisture conditions
witnessed in the most recent centuries. More recently, the
Living Blended Drought Atlas (LBDA; Cook et al., 2010)
updated the NADA using additional tree-ring chronologies
from the ITRDB and higher spatial resolution climate data
to calibrate models, creating a 0.5◦× 0.5◦ reconstruction of
the Palmer Meteorological Drought Index (PMDI; Palmer,
1965).

While the NADA and LBDA have provided invaluable
information of past droughts and pluvials in North Amer-
ica, they were generated to compare large, sub-continental
events. The reconstruction at each grid cell uses tree-ring
data that are within a 450 km radius of that grid point. By
pulling from such a wide range of predictors, the NADA
and LBDA models excel at representing large-scale hydro-
climate variability as they tend to average out smaller-scale
features. However, these drought atlases may not represent
local conditions in areas with sparse coverage of tree-ring
chronologies, such as certain regions of the midwestern US
(Maxwell and Harley, 2017; Strange et al., 2019). The tree-
ring chronologies from the ITRDB can have biases related
to tree species used and the spatial density of the tree-ring
network (Zhao et al., 2019; Coulthard et al., 2020). When
collecting tree-ring data for the purpose of reconstructing
climate, the general goal is to target long-lived species that
are sensitive to the climate variable to be reconstructed while
also maximizing the length of the reconstruction. However,
inclusion of multiple species in a reconstruction can im-
prove model performance and skill (Pederson et al., 2001,
2013; Frank and Esper, 2005; Cook and Pederson, 2011;
Maxwell et al., 2011, 2015). In the US, the ITRDB has excel-
lent spatial replication in certain regions, such as the Ameri-
can Southwest, but other regions are poorly represented, such
as the Ohio River valley (ORV; Zhao et al., 2019). Due to
changes in the density of the tree-ring network of the ITRDB
and the use of a large radius (450 km) to reconstruct drought
for the LBDA, soil moisture variability at local scales is
potentially absent in areas that are underrepresented in the
tree-ring network. Further, many of the chronologies that are
available on the ITRDB were collected in the 1980s and have
not been updated, limiting the range of climatic conditions to

calibrate reconstruction models (Larson et al., 2013; Zhao et
al., 2019).

The wealth of climate information derived from tree rings
is based on the key assertion that their physiological develop-
ment is related to specific climatic conditions. An explicit re-
lationship between climate and tree growth can be estimated
during the instrumental period. Yet, developing a reconstruc-
tion assumes that this climate–tree growth relationship is sta-
tionary over time. This assumption was generally true in the
early development of the field of dendrochronology (Fritts,
1976). However, as human activities drive the Earth’s cli-
mate system into historically unprecedented and potentially
non-stationary and non-analogous conditions (Milly et al.,
2008), exceptions to this assumption have emerged. Changes
in the drought signal recorded by tree rings have been estab-
lished only recently in the eastern US (Larson et al., 2013;
Maxwell et al., 2015, 2016, 2019; Helcoski et al., 2019),
making an investigation of its causes essential to ensuring the
interpretability of tree-ring-based hydroclimate reconstruc-
tions. Of these recent studies, Maxwell et al. (2016) provided
the first documentation of an apparent deteriorating relation-
ship between radial tree growth and summer soil moisture
that is not accompanied by an increase in signal strength dur-
ing another season. The declining relationship – referred to as
the “Fading Drought Signal” – was consistent across multiple
species and sites within the Central Hardwoods Forest region
of the midwestern US. However, Maxwell et al. (2019) found
that Acer (maple) species had a stable relationship, imply-
ing that including species from this genus in reconstructions
could improve model performance. In this paper, we test the
hypothesis that increasing the spatial density of the tree-ring
network results in reconstructions that better replicate the lo-
cal variation of the instrumental data despite a fading drought
signal. We also examine if the period in which the tree-ring
data are calibrated with climate data influences the climate
reconstruction. Using the new, dense tree-ring network of
the ORV, we calibrate the reconstruction with recent (post-
1980) radial growth and climate data and compare it to re-
constructions generated using data only from pre-1980. We
test the hypothesis that including recent data could reduce
the amount of variance explained in tree-ring reconstruction
of soil moisture in the ORV.

2 Methods

2.1 Living blended drought atlas

For the LBDA, Cook et al. (2010) created a gridded instru-
mental dataset of PMDI to calibrate tree-ring reconstruction
models. The instrumental data were created using observa-
tions for temperature and precipitation from over 5000 and
7000 weather stations, respectively, which were spatially in-
terpolated with a trivariate thin-plate spline in the ANUS-
PLIN program (Hutchinson, 1995). Cook et al. (2010) de-
rived the reconstructions by gathering standardized tree-ring
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chronologies within 450 km of each instrumental grid point
center. However, because the LBDA was developed across
North America, Cook et al. (2010) used a dynamic search
radius, with the requirement of having a minimum of five
chronologies as possible predictors; so in certain regions, the
radius was larger than 450 km. Therefore, in sparsely covered
areas such as the ORV, the actual search radius for the LBDA
could be larger than 450 km. Chronologies that were signif-
icantly (p < 0.05) correlated with PMDI were retained and
used in a principal component analysis (PCA). The result-
ing principal components (PCs) that had eigenvalues greater
than one were then used as predictors in the reconstruction
model. For the LBDA, we gathered both the instrumental and
reconstructed 0.5◦× 0.5◦ gridded PMDI data for the ORV
region (Fig. 1) from the National Oceanic and Atmospheric
Administration, National Center for Environmental Informa-
tion (https://www.ncdc.noaa.gov/paleo-search/study/19119;
Cook et al., 2010) (last access: 6 September 2020).

2.2 Ohio River valley tree-ring network

To examine how the density of the tree-ring network could
impact the reconstruction, we gathered recently published
chronologies and collected new chronologies across the ORV
to fill the spatial gaps of the ITRDB (Fig. 1; Table S1 in the
Supplement). For the new chronologies, we either (1) up-
dated existing chronologies from the ITRDB, (2) sampled
new co-occurring species at an ITRDB site, or (3) created
new chronologies from previously unsampled sites. For this
study, we used a total of 72 chronologies across 15 species.
Of these chronologies, 37 were published, 3 were newly up-
dated ITRDB records, and 32 were new collections (Fig. 1;
Table S1 in the Supplement). For the new (n= 32) and up-
dated (n= 3) chronologies, we used standard field methods
to target at least 10 old growth trees for each species us-
ing morphological characteristics (Pederson, 2010). We used
a handheld 4.3 mm diameter increment borer to extract two
samples from each tree at breast height from opposite sides
of the tree (Stokes and Smiley, 1968) All newly collected
samples were mounted and sanded with progressively finer
sandpaper to reveal ring structure. We used the list method
to visually cross-date all samples (Yamaguchi, 1991), and
then the program COFECHA (Holmes, 1983) to statistically
verify the cross-dating. For the three updated chronologies,
we cross-dated the new sampled series with those previously
sampled and available through the ITRDB.

2.3 Detrending tree-ring series

For all chronologies, we removed both age-related growth
trends and non-climatic influences of tree growth (e.g., forest
dynamics or insect outbreaks) by using signal-free standard-
ization (Melvin and Briffa, 2008) with a two-thirds smooth-
ing spline applied to each measured series (Cook and Pe-
ters, 1981). To ensure we achieved the desired spline flexi-

bility of the two-thirds spline in the standardization, we used
the approximation suggested by Bussberg et al. (2020) and
used an 83 % spline to account for endpoint adjustments. We
stabilized the variance of the standardized chronologies us-
ing the data-adaptive power transformation (Cook and Pe-
ters, 1997). Signal-free standardization can reduce “trend
distortion” problems near the ends of the record (Melvin and
Briffa, 2008). We trimmed each chronology to remove the
portion of the record where low sample depth inflated the
variance in standardized growth using an expressed popula-
tion signal (EPS) value of 0.80 (Wigley et al., 1984).

2.4 Point-by-point regression

We replicated the point-by-point regression procedure for
the LBDA in Cook et al. (2010) and described in Cook et
al. (1999) for the ORV tree-ring network. We developed a
network of 0.5◦× 0.5◦ grid points reconstructions (n= 181)
across the ORV region, defined as 37.75–42.25◦ N, 82.25–
90.75◦W (Fig. 1). Similar to the LBDA, we produced PMDI
reconstructions at each grid point by first screening standard-
ized tree-ring chronologies through correlation analysis with
PMDI from 1895 to 2010, where only the chronologies with
significant (p < 0.05) correlations were retained. Both the
tree-ring chronologies and the climate data were prewhitened
during this screening procedure to remove the influence of
short-term autocorrelation.

To examine how increasing the density of the tree-ring
network influences the reconstruction, we gathered tree-ring
chronologies within a 250 km radius from the center of each
grid point instead of the 450 km minimum radius used for
LBDA. For the ORV gridded reconstructions, the use of
a 250 km radius ensured that each gridded reconstruction
could have at least five chronologies as possible predictors
(Fig. S1 in the Supplement). For each grid point, we built
a reconstruction model by taking the screened standardized
chronologies and using both the current year (t) and the fol-
lowing year (t + 1) as possible predictors due to current year
climate conditions impacting growth both during the current
and the proceeding year, which doubled the number of pre-
dictors. We then took all the t and the t+1 chronologies that
passed the screening and conducted a PCA. Per the Kaiser–
Guttman rule (Guttman, 1954; Kaiser, 1960), we then used
the PCs with eigenvalues greater than 1 as predictors in a re-
gression model to predict mean JJA PMDI. To ensure that
our ORV reconstruction was comparable to the LBDA, we
added the autocorrelation of the instrumental data back into
the final tree-ring reconstructions of PMDI as was done for
the NADA and LBDA.

We used Pearson’s correlation to compare the recon-
structed PMDI values from the LBDA to the ORV recon-
struction at each grid point. We further chose well-known
drought and pluvial years in the instrumental period to ex-
amine how the ORV and LBDA compared spatially. Specifi-
cally, we examined the droughts of 1988, 1954, 1936, 1816,
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Figure 1. Map of 0.5◦× 0.5◦ PMDI grid points (n= 181) across the Ohio River valley (ORV) region, Midwest US, defined as 37.75–
42.25◦ N, 90.75–82.25◦W, plotted with tree-ring chronology sites included from the (a) ITRDB and (b) ORV networks. Sites with single-
species and multiple-species data are denoted by symbol shape and color (see Table S1 in the Supplement). Note that most ITRDB sites
consist of single-species data in the LBDA but multiple species are represented in the ORV.
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and 1774 and the pluvials of 1945–1951, 1882–1883, and
1811 (Trenberth et al., 1988; Stambaugh et al., 2011; Heim,
2017). To compare the reconstructions with the instrumental
data, we calculated the mean absolute error for each extreme
event. We also correlated the instrumental PMDI at each grid
point to every other grid point and then examined those corre-
lations as a function of distance. Similarly, the reconstructed
PMDI values were correlated for each grid point for the ORV
and LBDA and compared across distance. To examine the
species contribution to the overall ORV reconstruction, we
gathered the correlation of each species chronology to the
PMDI for each grid reconstruction that the given species
were included.

2.5 Droughts and pluvials

To determine if the ORV and LBDA reconstructions had dif-
ferences in the amount of extreme hydroclimatic conditions,
we calculated the number of years in each gridded recon-
struction that had a JJA PMDI value of ≥ 2.0 or ≤−2.0 to
represent at least moderately wet and dry conditions, respec-
tively. We further examined how the volatility in extreme
conditions compared between the two reconstructions by cal-
culating “flips” from one extreme to the other in consecutive
years (Loecke et al., 2017; Oliver et al., 2019; Harley et al.,
2020). We specifically used an index developed by Loecke et
al. (2017) to quantify large “whiplashes” (termed flips here)
interannually. The flip index is defined as follows:

i = PMDI(t + 1)− t/PMDI(t + (t + 1)), (1)

where the index (i) equals the PMDI value of a given year (t)
subtracted from the PMDI value of the following year (t+1),
divided by the sum of the PMDI values over the 2-year pe-
riod (t + (t + 1)). Positive index values indicate that condi-
tions shifted from dry to wet over the 2-year period. Simi-
larly, negative values represent a shift from wet to dry condi-
tions. We used an index value > 75th percentile to define an
abnormally wet period and < 25th percentile an extremely
dry period. We then calculated wet flip events as years that
were abnormally dry followed directly by extreme wet years.
Dry flips were calculated as abnormally wet years followed
by extreme drought years. Lastly, we summed the wet and
dry flips to calculate the total flips. These flips were calcu-
lated for each grid point in the ORV reconstruction where
sample depth was determined by an EPS value of 0.80 to re-
produce the variance in the instrumental data (Wigley et al.,
1984). We limited the calculation of flips to the period 1658–
2005, which was the common period of overlap between the
longest gridded ORV reconstruction and the LBDA.

2.6 Model validation comparisons

To examine the temporal stability of the relationship between
tree growth and PMDI, we followed the same validation pro-
cedures used for the LBDA (Cook et al., 2010). We used the

early half of the common period (1901–1955) to calibrate a
model between tree growth and PMDI to validate the late half
(1956–2010). We used two tests of fit, the reduction of er-
ror statistic (RE) and the coefficient of efficiency (CE; Fritts,
1976; Cook et al., 1999), to validate our calibration models.
RE and CE both range from −∞ to +1, with positive values
indicating robust predictive skill. However, RE is compared
to the mean of the instrumental data, while CE relies on the
verification period mean and therefore is a more conservative
verification metric. We then compared the variance explained
(R2), RE, and CE values between the LBDA and the ORV
PMDI reconstructions for each grid point. We also mapped
the gridded reconstructed PMDI values from extreme years
in the observation period and well-known years in the histor-
ical record for both the LBDA and the ORV reconstructions
to provide examples of the spatial differences between the
two reconstructions.

To examine how validation statistics may change based on
when the trees were sampled, we created a second ORV re-
construction where the most recent year was 1980. This year
was chosen because several chronologies available on the
ITRDB were sampled in the 1980s, and this marked the be-
ginning of a weakening relationship between radial growth
and soil moisture in this region (Maxwell et al., 2016). We
used the same validation process described above except the
early period was from 1901 to 1940 and the late period was
from 1941 to 1980. We then calculated the difference be-
tween the 1980 and the 2010 reconstruction for R2, RE, and
CE values for each grid point.

3 Results

3.1 ORV vs. LBDA

Our first comparisons of chronologies distributed for the
LBDA and ORV networks revealed broad spatial discrep-
ancies. PMDI point-by-point regressions for the LBDA in-
cluded 20 chronologies from 6 species over the study region,
whereas the ORV network included 72 chronologies from 15
tree species. Not only is the spatial density of sites sparser
for the LBDA network, but it mostly only included single-
chronology sites, whereas 18 of the sites included in the ORV
are multiple-species sites (two to six co-occurring species)
(Figs. 1a and b). Although site coverage is sparse for both
networks along the west-central, northwest, and southeast
sectors, the ORV network included major spatial coverage
improvements in other sectors (Fig. 1). The ORV particularly
increased spatial coverage in south-central Indiana, where
many of the sites included four to six co-occurring species
chronologies (n= 27 total chronologies). The PMDI recon-
structions from the ORV network and the LBDA demon-
strated strong and positive correlations, with r values ranging
from 0.50 to 0.90 (Fig. 2). These correlations were calculated
for the period of overlap between the two gridded reconstruc-
tions, 1830–2005 CE. The highest correlations were found
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Figure 2. Map of correlation values between the LBDA and ORV
reconstruction during the period of 1830–2005 CE. The correlations
of each grid shown in the map are all significant at the 0.05 level.
The black cells represent locations over the Great Lakes, and there-
fore no data are available for correlation analysis.

along the western portion of the gridded region, while the
lowest agreement was found in the southeast (Fig. 2).

The ORV reconstructions were shorter in length (maxi-
mum of 343 years) compared to the LBDA reconstructions
(maximum of 1645 years) due to needing numerous old
chronologies to load into each grid reconstruction. While
this is true for the LBDA, having a larger search radius al-
lows a longer chronology to be included in many gridded
reconstructions. A smaller search radius for chronology in-
clusion requires a denser network of longer chronologies to
reach a similar length as the LBDA. Secondly, we focused
on increasing the spatial density of the network, which re-
sulted in sampling younger sites (e.g., the earliest years are
in the early to late 19th century). While the ORV reconstruc-
tions were shorter, comparing certain well-known extreme
climatic years during the period of the overlap between the
LBDA shows some important differences.

3.2 ORV and LBDA extreme year comparisons

We chose a series of well-known drought and pluvial years
(events) to compare the reconstructions between ORV and
LBDA. In general, the increased spatial density of tree-
ring chronologies used in the ORV reconstruction displayed
more local variation in the reconstructions of extreme cli-
matic events (Fig. 3). However, in a few examples, such as
those of 1774 and 1816, the spatial pattern of where extreme
drought was located changed between the two reconstruc-
tions (Fig. 3). Using extreme events in the observed record
(three droughts and one pluvial), both the ORV and LBDA
underestimated wet and dry extremes. However, the ORV
reconstruction better matched the distribution of soil mois-
ture values and the spatial patterns of the instrumental data,
particularly for the extreme values, compared to the LBDA

reconstruction (Fig. 4; Figs. S2–4 in the Supplement). For
droughts, the ORV consistently had lower mean absolute er-
rors (differences ranging from 0.21 to 0.41) compared to the
LBDA (Fig. 4; Figs. S2–S4 in the Supplement). However, for
the pluvial event, the two reconstructions had similar mean
absolute errors (difference of 0.03) with the LBDA being
slightly smaller (Fig. S4 in the Supplement). When examin-
ing the correlation in PMDI (instrumental or reconstructed)
between all grid points as a function of distance, the ORV
better matched the instrumental PMDI with a steeper de-
cline in correlation across distance compared to the LBDA
(Fig. 5). The LBDA showed the most spatial autocorrelation
with a gradual decrease in correlation across distance, while
the instrumental had the least spatial autocorrelation with a
lower correlation between close grid points and more vari-
ability (Fig. 5). The ORV better matched the overall pattern
and variability of the instrumental PMDI across distance but
had more spatial autocorrelation (Fig. 5).

In general, the probability distribution function (PDF) of
the ORV reconstruction had a lower occurrence (densities of
0.17 compared to 0.23) of near-average years but higher den-
sities (differences ranging from 0.01 to 0.05) for extremes,
particularly drought, compared to the LBDA (Fig. 6). The
ORV distribution was nearly identical to the instrumental,
while the LBDA had lower densities of extremes (Fig. 6).
Similarly, the ORV had a larger number of reconstructed
drought (median difference of 9 years) conditions that bet-
ter matched the instrumental record. The pluvial conditions
were closer between the three datasets, with the LBDA hav-
ing the highest median and the instrumental the lowest me-
dian (Fig. 6). Due to the larger number of extreme drought
years, the ORV reconstructions had more frequent flips ac-
cording to the flip index values compared to the LBDA
(Fig. 7). The central and southeastern portions of the region,
in particular, showed a greater number of wet, dry, and total
flips, resulting in∼ 30 more wet and dry flips and∼ 60 more
total flips (Fig. 7).

3.3 Species Contributions

With the highest average correlation values, Quercus spp.
chronologies were consistently the strongest contributors to
reconstruction models (Fig. 8). The white oak (Q. alba)
chronology from Lincoln’s New Salem in Illinois had the
highest JJA correlation value of 0.749, and as a species Q.
alba was the strongest species contributor (Fig. 8). In ad-
dition to Quercus spp., black walnut (Juglans nigra) had
an exceptionally high average correlation value, ranking the
third highest. White ash (Fraxinus nigra), tulip tree (Lirio-
dendron tulipifera), and sugar maple (Acer saccharum) were
also strong contributors to drought models, with median cor-
relation values > 0.38 (Fig. 8).
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Figure 3. Spatial comparison of the ORV (left column) and the LBDA (right column) of reconstructed PMDI during years that experienced
hydroclimatic extremes. Red cells represent below-average PMDI and blue cells represent above-average PMDI. Black cells represent no
data, either due to being over water or from not having at least five chronologies to create a reconstruction.
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Figure 4. Maps showing PMDI values for the instrumental data, ORV, and LBDA reconstructions for the year 1954. The histogram represents
the frequency of PMDI values for the instrumental, ORV, and LBDA PMDI values. The mean absolute error values show that the ORV
reconstruction more accurately matches the instrumental data compared to the LBDA reconstruction. Black grids represent areas over water
and therefore, no data.

Figure 5. Average correlation coefficients between PMDI values
across all grid points as a function of distance. LBDA and ORV are
reconstructed PMDI values.

3.4 ORV and LBDA validation statistics

Comparing how well each reconstruction model represented
the instrumental data, we find that the variance explained
(R2 values) in the calibration and verification periods match
well for the northern portion of the network, with values
ranging from 40 to 60 % variance explained (Fig. 8). How-
ever, the ORV models for the southern half of the region gen-
erally explain less variance compared to the LBDA (Fig. 9).
Interestingly, the RE and CE values between the two recon-
structions are generally more similar, with the ORV having
poorer validation statistics in the southernmost portion of the
region and the LBDA having weaker statistics in the central
portion of the region (Fig. 9).

Previous work has shown that radial growth from trees
in the south-central portion of the region are becoming less
sensitive to soil moisture compared to earlier time periods
(Maxwell et al., 2016). The comparison between a point-
by-point reconstruction that ended in 1980 to a reconstruc-
tion that ended in 2010 demonstrates that while the calibra-
tion R2 values are similar, the 2010 verification models ex-
plain much less variance in the southern portion of the ORV
(Fig. 10). These are the same regions in the ORV recon-
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Figure 6. (a) Probability distribution functions for all gridded re-
constructed PMDI values for the ORV and LBDA networks. (b)
Boxplot of the number of drought (PMDI≤−2.0) years between
LBDA and ORV. (c) Boxplot of the number of pluvial (PMDI≥ 2.0)
years between LBDA and ORV.

struction that explain less variance than the same gridded re-
constructions of the LBDA. Importantly, the ORV 1980 and
2010 reconstructions used the same tree-ring chronologies
(Fig. 10). Therefore, our results indicate that tree rings in the
southern portion of our study region have become less re-
sponsive to soil moisture.

4 Discussion

4.1 ORV and LBDA extreme year comparisons

Tree rings have long been used to provide an historical con-
text to hydroclimatic extremes (Stahle and Cleaveland, 1994;
Woodhouse and Overpeck, 1998; Cook et al., 1999, 2010;
Pederson et al., 2013). However, in some regions of the US,
the tree-ring sites are sparsely distributed, and it is unknown
what kind of impact that has on the representation of past cli-
mate. Due to the higher density of tree-ring chronologies and

the smaller search radius (250 km for the ORV compared to
450+ km for LBDA) of the PC regression models when de-
termining the pool of predictors, the ORV better replicates
the spatial variability of the instrumental data compared the
LBDA (Figs. 4 and 5; Figs. S2 and 3 in the Supplement).
By using a ≥ 450 km radius for potential tree-ring chronolo-
gies, the LBDA was successful at reconstructing soil mois-
ture even in areas that have a limited number of tree-ring
chronologies. However, this approach results in the use of
the same tree-ring chronologies in multiple grid points, spa-
tially smoothing the variability of the reconstructed PMDI
compared to the instrumental data (Fig. 5). The same is true
of the ORV; however, the increase in the spatial density of
the chronologies allows a smaller search radius and therefore
can increase the spatial variability in the ORV (Fig. 5). The
increase in spatial variability in PMDI values of the ORV bet-
ter matches the instrumental data while still providing a sta-
tistically valid reconstruction model (Figs. 4 and 5; Figs. S2–
S4 in the Supplement). These findings have important im-
plications, particularly in regions with a sparse tree-ring net-
work where the LBDA or other drought atlases likely under-
estimate localized droughts and pluvials. Increasing the spa-
tial density of the tree-ring network will allow a more accu-
rate spatial representation of extreme events nearly anywhere
where trees are sensitive to climate.

In addition to the increase in spatial variability of ex-
tremes that we find, previous work suggests that increas-
ing the density of the tree-ring network can uncover previ-
ously unknown droughts and pluvials at more local scales
(Maxwell and Harley, 2017; Strange et al., 2019; Pearl et al.,
2020). Here, we find the support of better-localized represen-
tations of extremes by increasing the density of the tree-ring
network, with the ORV having a larger number of droughts
and pluvials compared to the LBDA (Fig. 6). The increase in
extremes has important implications on the long-term vari-
ability of past hydroclimate and to the interannual volatil-
ity of PMDI. Recent work has shown increases in interan-
nual volatility has important impacts on agriculture (Locke et
al., 2017) and social and ecological systems (Casson et al.,
2019). Our finding suggests that in areas with a sparse tree-
ring network, such as in the ORV, tree-ring reconstructions
underestimate extremes, and therefore volatility in extremes
is also underestimated. By increasing the density of the net-
work and better representing localized extremes, we find a
higher number of flips (Fig. 7). The better representation of
localized extremes results in a more accurate representation
of past climatic volatility and can be used to better place cur-
rent and future projected changes into context. With grid-
ded reconstructions of both soil moisture and temperature
becoming more common with the increase in available tree-
chronologies (e.g., Anchukaitis et al., 2017; Morales et al.,
2020; Pearl et al., 2020), we show the importance of valu-
ing higher density from a larger range of species within the
network in addition to the length of the chronologies.
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Figure 7. Maps of the number of wet flips (a, b), dry flips (c, d), and total flips (e, f), for the ORV (a, c, e) and the LBDA (b, d, f). Black
cells represent values over water and therefore no data.

4.2 Species contributions

Historically, soil moisture reconstructions from tree rings in
the eastern US have been dominated by a few species, such
as Q. alba, bald cypress (Taxodium distichum), and eastern
hemlock (Tsuga canadensis) (Zhao et al., 2019). In addition
to increasing the spatial density of the network, the ORV re-
construction has increased the number of species used, many
of which are co-occurring. The use of multiple species has
been shown to increase model performance (Pederson et al.,
2001, 2012; Frank and Esper, 2005; Cook and Pederson,

2011; Maxwell et al., 2011, 2015). Examining the correla-
tion values of the species used in the reconstructions mod-
els, Quercus (oak) species in general, contribute more to
the models (Fig. 8), which is part of the reason why they
have been traditionally used so frequently. However, we find
that several species, including J. nigra, L. tulipifera, and A.
saccharum, make strong contributions to the model as well
(Fig. 8), further supporting that these species are sensitive
to hydroclimate variability (LeBlanc et al., 2020; Au et al.,
2020). These findings agree with recent studies that suggest
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Figure 8. Correlation values between species chronologies and
PMDI for the gridded reconstruction models. The “x” represents the
mean beta weight for the species: QUAL is Q. alba, QUMO is Quer-
cus montana, JUNI is Juglans nigra, QUVE is Q. velutina, QURU
is Q. rubra, FRNI is Fraxinus nigra, LITU is Liriodendron tulip-
ifera, ACSA is Acer saccharum, QUMA is Q. macrocarpa, TSCA
is Tsuga canadensis, FAGR is Fagus grandifolia, CAOV is Carya
ovata, and PIST is Pinus strobus. The species are ranked by their
mean correlation values from highest to lowest.

less commonly used species can increase the representative-
ness of tree-ring reconstructions of climate (Pederson et al.,
2012; Maxwell, 2016; Maxwell and Harley, 2017; Alexan-
der et al., 2019).

4.3 ORV and LBDA validation statistics

While increasing the spatial density of the tree-ring network
allowed the reconstructions to more accurately capture the
spatial variability of extreme conditions, the reconstruction
models of the ORV have less predictive skill compared to
those of the LBDA, especially during the verification period
(Fig. 9). The two networks have some overlap in chronolo-
gies, but while the ORV has a higher density of chronologies
within the Ohio River valley region, the LBDA can draw
from more chronologies across a larger region. While the
larger radius increases the number of samples in the model
and could lead to more explained variance for the LBDA, the
ORV reconstruction better spatially replicates extremes in the
instrumental period (Fig. 4; Figs. S2–S4 in the Supplement).

Interestingly, the decrease in variance explained in the
southern portion of the region may not be attributable to dif-
ferences in sample depth in the tree-ring network. When us-
ing the same chronologies while ending the calibration pe-
riod at 1980 instead of 2010 for the ORV reconstruction,
the validation statistics compare very well with the LBDA.
However, by updating the chronologies to 2010, the R2 and
the validation statistics drop dramatically for the grid recon-
structions in the southern portion of the region (Fig. 10).
These findings support Maxwell et al. (2016), where they
found trees in this region to have a weakening signal to soil

moisture, termed the “Fading Drought Signal.” The recent
decrease in sensitivity of tree growth to soil moisture has also
been documented outside of the ORV, in the mid-Atlantic
US (Helcoski et al., 2019), indicating the impact of a chang-
ing climate could influence the representation of tree rings
to climate in mid-latitude locations. Drought in the Midwest
during the instrumental period (1901–2010) was temporally
clustered in the 1930s and 1950s. The only recent droughts
in the study period were in 1988 and 2002. In both cases, the
northern portions of the region experienced severe drought
(in excess of −4.0 PMDI values for 1988), but the south-
ern portion of the region only experienced moderate dry-
ness (PMDI values of ∼−2.0). Maxwell et al. (2016) at-
tributed the weakening signal to a recent period without se-
vere drought; however, Helcoski et al. (2019) discussed the
possibility of increases in carbon dioxide concentrations in
addition to a long period of wetness interacting to weaken
tree growth responses to soil moisture. However, recent work
examining the simultaneous influence of water availability,
carbon dioxide concentrations, and acidic deposition found
that water availability was the leading influence on tree
growth (Levesque et al., 2017; Maxwell et al., 2019), sug-
gesting a wet period is likely driving the weakening signal.
The decreasing performance of the southern reconstructions
support these findings as this region has been generally wet
and absent of severe drought. While Maxwell et al. (2019)
found that Acer species had a more stable relationship with
soil moisture and that A. saccharum was a strong performing
species in the reconstructions models, the inclusion of multi-
ple co-occurring A. saccharum records did not dramatically
influence the validation statistics of the reconstruction mod-
els in the southern portion of the region. Our findings demon-
strate the complexity of tree species responses to rapidly
changing climate regimes and stress the need to better under-
stand species responses to changing climate and determine
what impact those responses could have on reconstructions
of soil moisture.

5 Conclusions

By increasing the density of the tree-ring network in a region
that is poorly represented in the LBDA, we created a grid-
ded PMDI reconstruction for the ORV region. We compared
our gridded reconstruction with the LBDA and found that in-
creasing the density of the tree-ring network resulted in an in-
crease in localized hydroclimatic extremes that better match
the spatial and temporal patterns of the instrumental data.
However, calibrating our models with more recent data (up
to the year 2010) resulted in a decrease in variance explained
and validation statistics for the southern portion of the region.
This region has not experienced extreme droughts recently,
which is likely driving the decrease in model performance.
Increasing spatial density of the tree-ring network is impor-
tant to better represent localized extremes in the past, indicat-
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Figure 9. Comparison of the calibration (1901–1955) and validation (1956–2010) statistics between the ORV (left column) and LBDA (right
column) reconstructions. Difference represents LBDA values subtracted from ORV. Black cells represent values over water and therefore no
data.
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Figure 10. Maps of the difference between the ORV reconstruction when ending the calibration period in 2010 compared to 1980 (i.e.,
ORV2010–ORV1980) for calibration R2, verification R2, RE, and CE. Black cells represent values over water and therefore no data.

ing that researchers should continue to target previously un-
sampled old-growth forests. Similarly, the time in which the
trees are sampled is also important to model performance.
Long periods without extreme hydroclimate variability can
result in reconstruction models that are less representative of
climatic conditions. We stress the need to update previously
sampled chronologies to the current period so that longer cal-
ibration models can have the chance to better represent the
range of sensitivity of trees rings to climate. Further, more
work is needed to extend more of the ORV chronologies to
better represent climate further in the past. Targeting wood
from historical structures and combining with surrounding
living chronologies of the same species could be one way of
achieving longer chronologies in this region (Harley et al.,
2011; Matheus et al., 2017). Overall, we find that a higher
spatial density of the tree-ring network will improve the lo-
cal representation of reconstructed climate. However, more
work is needed to better quantify how the strength of the re-
lationship between tree growth and climate varies through
time.
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NOAA paleoclimate page. All tree-ring chronologies used in this
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