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Abstract. The research area of climate field reconstructions
has developed strongly during the past 20 years, motivated
by the need to understand the complex dynamics of the earth
system in a changing climate. Climate field reconstructions
aim to build a consistent gridded climate reconstruction of
different variables, often from a range of climate proxies,
using either statistical tools or a climate model to fill the
gaps between the locations of the proxy data. Commonly,
large-scale climate field reconstructions covering more than
500 years are of annual resolution. In this method study,
we investigate the potential of seasonally resolved climate
field reconstructions based on oxygen isotope records from
Greenland ice cores and an isotope-enabled climate model.
Our analogue-type method matches modeled isotope patterns
in Greenland precipitation to the patterns of ice core data
from up to 14 ice core sites. In a second step, the climate vari-
ables of the best-matching model years are extracted, with
the mean of the best-matching years comprising the recon-
struction. We test a range of climate reconstructions, vary-
ing the definition of the seasons and the number of ice cores
used. Our findings show that the optimal definition of the
seasons depends on the variability in the target season. For
winter, the vigorous variability is best captured when defin-
ing the season as December–February due to the dominance

of large-scale patterns. For summer, which has weaker vari-
ability, albeit more persistent in time, the variability is better
captured using a longer season of May–October. Motivated
by the scarcity of seasonal data, we also test the use of an-
nual data where the year is divided during summer, that is,
not following the calendar year. This means that the win-
ter variability is not split and that the annual data then can
be used to reconstruct the winter variability. In particularly
when reconstructing the sea level pressure and the corre-
sponding main modes of variability, it is important to take
seasonality into account, because of changes in the spatial
patterns of the modes throughout the year. Targeting the an-
nual mean sea level pressure for the reconstruction lowers the
skill simply due to the seasonal geographical shift of the cir-
culation modes. Our reconstructions based on ice core data
also show skill for the North Atlantic sea surface tempera-
tures, in particularly during winter for latitudes higher than
50◦ N. In addition, the main modes of the sea surface tem-
perature variability are qualitatively captured by the recon-
structions. When testing the skill of the reconstructions us-
ing 19 ice cores compared to the ones using eight ice cores,
we do not find a clear advantage of using a larger data set.
This could be due to a more even spatial distribution of the
eight ice cores. However, including European tree-ring data
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to further constrain the summer temperature reconstruction
clearly improves the skill for this season, which otherwise is
more difficult to capture than the winter season.

1 Introduction

Knowledge of past climate is essential to understand the
range and processes of natural climate variability and im-
pact of internal and external forcing, as well as it serving as
baseline to assess anthropogenic influences. The widespread
implementation of weather observations dates back to about
1850, with sparse coverage in the early years. In order to in-
vestigate changes in weather and climate, as well as to eval-
uate climate models, so-called reanalysis data sets have been
developed. Reanalysis data are gridded data products based
on assimilation of weather observations using climate mod-
els. The use of reanalysis data sets has seen a wide range of
applications due to the gridded data format and global cov-
erage. However, due to being limited to the instrumental pe-
riod, there is a strong incentive to develop similar products
reaching further back in time.

In extratropical regions water-stable isotopes from
archives of paleo-precipitation are widely used as climate
proxies for temperature; however the variability in water
isotopes in precipitation is also related to atmospheric cir-
culation. As vapor condensates from an air parcel dur-
ing advection or ascent, the water molecules incorporating
heavy isotopes (18O, D) condensate more readily than lighter
molecules. This means that the isotopic composition depends
on the initial vapor content of the air parcel as well as its
condensation history. The covariability in vapor content and
temperature results in the correlation between local temper-
ature and the isotope composition of precipitation, while the
dependency of the isotope content on the pathway results in
the connection to atmospheric circulation. The δ notation is
commonly used for the isotope ratio of a sample, giving the
relative deviation from an isotopic standard (Craig, 1961).

Ice cores are some of the most important archives of the
isotope composition of past precipitation. Some Greenland
ice cores offer seasonal resolution and in some cases even
higher resolution (Furukawa et al., 2017); however the aver-
age annual ice accumulation must be larger than 0.2 m yr−1

in order for the annual cycle of the isotope composition not to
be completely smoothed out by diffusion in the firn (Johnsen,
1977). If the annual cycle is partly preserved, it can be recon-
structed by mathematical back-diffusion of the data. It has
been shown that seasonal ice core data have high correla-
tion with local temperature and circulation patterns and that
the summer and winter data reflect distinctly different spa-
tial and temporal climate variability (Vinther et al., 2010). In
particularly, Vinther et al. (2010) showed that the seasonal
winter δ18O has better coherency with annual mean temper-
ature than annual mean δ18O. This is due to weaker connec-
tion of the summer δ18O with summer temperature and larger

variability in both winter δ18O and temperature, which then
dominates the annual signal Vinther et al. (2010).

When studying climate further back than the earliest
widespread weather observations, we rely on climate proxy
data, such as ice cores. Inherent uncertainties in proxy data
include age model uncertainties, seasonality and if there is
a stationary relationship between proxy and climate. This
means that proxy data sets must be carefully chosen and eval-
uated, and the data must be well studied to understand the
relationship to climate before being incorporated in climate
field reconstructions. Pioneering examples of climate field
reconstructions include Mann et al. (1998), which regressed
climate patterns based on observations on a collection of cli-
mate proxy data to obtain a global gridded data set of tem-
perature, and Luterbacher et al. (2001, 2004), which recon-
structed European sea level pressure and temperature with
a similar regression technique but also using early weather
observations as well as historical documentation of weather
variability.

Inspired by the techniques used for weather forecasts and
reanalysis data, recent climate field reconstructions employ
assimilation of climate proxy data using a climate model. The
Last Millennium Reanalysis Project (LMR) (Hakim et al.,
2016; Tardif et al., 2019) aims to make a global reanalysis us-
ing a wide range of proxy data. Their method includes proxy
system modeling to link the proxies to the variables of the
climate model. The regional studies of Sjolte et al. (2018)
and Klein et al. (2019) are climate field reconstructions us-
ing Greenland and Antarctic ice core records, respectively.
In the case of these two studies, an isotope-enabled climate
model was used for the assimilation of isotope records from
ice cores, which eliminates the step of calibrating the proxy
records to a given environmental variable, such as temper-
ature. These studies all use different statistical approaches
when performing the assimilation procedure, where LMR
employs a Kalman filter, Klein et al. (2019) a particle trajec-
tory approach and Sjolte et al. (2018) a variation in the ana-
logue method, where the matching of model output to proxy
data is done based on empirical orthogonal functions (EOFs).
For a brief review of uses of the analogue method see Bothe
and Zorita (2019). Common to the studies named above is
the use of a static model ensemble. The latter means that
there are no constraints on which model year can be chosen
as analogy for a given year of the proxy data. This is mainly
done for practical reasons since one avoids having to run en-
semble simulations step-by-step as it is done for meteorolog-
ical reanalysis data. One point that sets the study by Sjolte
et al. (2018) apart from the other studies mentioned in this
section is the use of seasonal proxy data in order to focus on
reconstructing the winter season only, as opposed to target-
ing the variability in the annual mean. As mentioned above
in connection with the study by Vinther et al. (2010), the
Greenland ice core data show distinctly different variability
between summer and winter. Such differences in variability
may originate in the relation between climate proxy records
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Table 1. Tree-ring sites used to constrain summer reconstructions of 1241–1970, with correlations with observed mean temperature from
Wilson et al. (2016) for the indicated months. JA: July–August; JAS: July–September; AMJJAS: April–September; MJJA: May–August;
JJA: June–August; MJ: May–June.

Corr. with CRUTS3.2
Location Site name Long. Lat. Time period 1901–present

Scotland SCOT 57.08 −3.44 1200–2010 JA: 0.75
E Alps – Tyrol TYR 47.30 12.30 1053–2003 JAS: 0.72
Jämtland JAEM 63.30 13.25 783–2011 AMJJAS: 0.75
Tjeggelvas, Arjeplog, TAA 65.54–66.36 16.06–18.12 1200–2010 MJJA: 0.81
Ammarnäs composite
North Fenno EFmean 66–69 19–32 750–2010 JJA: 0.76
Forfjorddalen FORF 68.47 15.43 978–2005 JA: 0.71
Tatra TAT 48–49 19–20 1040–2010 MJ: 0.45
Southern Finland SFIN 62.19.30 28.19.30 760–2000 MJJA: 0.71

and climate variability, for example due to different climate
sensitivity through the seasons, or due to climate variabil-
ity itself, for example the change of circulation regimes dur-
ing the year (Hurrell et al., 2003). Due to these questions of
seasonality climate field reconstructions targeting the annual
mean could therefore, by the nature of both the climate prox-
ies and climate variability, have limited skill. This could to
a large extent depend on the definition of the year and may
bias reconstructions towards specific seasons despite the use
of annual data. The issue with seasonality could in partic-
ularly play a role when it comes to atmospheric circulation
regimes, which shall return to later in Sect. 4.1.

In this study we will investigate the methodological impli-
cation of extracting seasonal and annual climate information
from Greenland ice cores using a coupled model–data ap-
proach. We will use the method by Sjolte et al. (2018) with
an extended data set including summer and annual isotope
data from ice cores, as well as tree-ring chronologies from
Europe. In combining model output with these data sets, we
reconstruct sea level pressure (SLP), surface air temperature
(T2m) and sea surface temperature (SST). We will test the
following:

– the influence the number of ice cores assimilated for the
reconstruction

– if the definition of the seasons impact the skill and
recorded climate variability in the reconstructions

– if annual data can be used to reconstruct winter variabil-
ity

– to which extent the governing atmospheric circulation
modes can be reconstructed using summer, winter and
annual data

– if including tree-ring data can improve the reconstruc-
tion for the summer season

– if the reconstructions capture variations in the North At-
lantic SSTs, hereunder the main modes of the SST vari-
ability.

2 Data

In this study we use the seasonal δ18O ice core data of
Vinther et al. (2010). We use the data for summer (May–
October), winter (November–April) and winter-centered an-
nual mean (August–July) as defined by Vinther et al. (2010).
To achieve the longest possible data set with the best regional
coverage we chose eight cores covering 1241–1970, and for
the largest data set possible we chose all 19 cores covering
1777–1970 (Fig. S1 in the Supplement).

In addition to using the ice core data, we produce recon-
structions for summer where tree-ring data are used to further
constrain temperature. Tree-ring chronologies using primar-
ily maximum latewood density as climate proxy can have a
strong sensitivity to summer temperature. Such records are
compiled in Wilson et al. (2016). From this compilation we
select tree-ring records that cover the entire study period
(1241–1970) and correlate well with local temperature. This
leaves us with eight tree-ring records from Europe (Table 1).

We use the isotope-enabled version of ECHAM5/MPI-
OM (Werner et al., 2016) in T31L19 configuration, which
corresponds to 3.75◦× 3.75◦ horizontal resolution using 19
vertical hybrid levels. The model includes isotope tracers in
a fully coupled hydrological cycle, with fractionation taken
into account for all phase transitions. The simulation covers
the years 800–2005 with natural and anthropogenic forcings,
including greenhouse gases, volcanic aerosols, total solar ir-
radiance, land use and orbital forcing. See Sjolte et al. (2018)
for full details on the model run.

To evaluate the skill of the reconstructions we use the
20th Century Reanalysis Version 2c (20CR) (Compo et al.,
2011) for the period 1851–1970, as well as the accompa-
nying COBE SST data (Ishii et al., 2005). We mainly use
20CR to assess the skill in spatial correlation patterns and
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Figure 1. (a–c) Loadings of the first three PCs of ice core δ18O for winter using 19 cores. Panels (d)–(f) are the same as (a)–(c) but for
modeled precipitation weighted δ18O for November–April at the sites of the 19 ice cores. Results for summer and annual data are very
similar (not shown). In (d)–(f) the crosses mark the model grid showing the horizontal model resolution of 3.75◦× 3.75◦.

Table 2. Reconstructions featured in this study. A total of 12 reconstructions are done using six data sets – e.g., both the reconstructions
for JJA (summer) and sum50 use the same ice core data representing the summer season May–October but targeting the differently defined
summer seasons by extracting either JJA or May–October from the model output. The number of ensemble members (no. ens.) are given
in parenthesis for each set of seasons. The winter reconstruction for DJF (winter) using eight ice cores covering 1241–1970 is published in
Sjolte et al. (2018).

Data set and time span 19 cores, 1777–1970 Eight cores, 1241–1970

Seasons (no. ens.) JJA/sum50 (31) JJA/sum50 (39)

Seasons (no. ens.) DJF/win50 (34) DJF/win50 (39)

Seasons (no. ens.) DJF/win100 (33) DJF/win100 (39)

assessing modes of variability. 20CR has well-known biases
(Reeves Eyre and Zeng, 2017), and care should be taken
when performing detailed analysis using this data set. In
addition to the evaluation using 20CR, we compare the re-
constructions to the southwest Greenland temperature data
compiled by Vinther et al. (2006), which is continuous for
1874–1970, as well as data from Stykkishólmur, Iceland,
which covers 1830–1970 (Jónsson, 1989). These data are
the longest-running instrumental temperature data available
relatively close to the ice core sites used here. Finally, the
station-based record of the North Atlantic Oscillation (NAO)
by Jones et al. (1997) is used for evaluating the reconstructed
NAO for the period 1824–1970.

We follow the convention of using the term principal com-
ponents (PCs) for the time series of the main modes of vari-
ability, while using the term EOFs for the spatial patterns of
the modes. The method of Ebisuzaki (1997) is used to calcu-

late the significance when correlating filtered time series in
order to take autocorrelation into account.

3 Methods

3.1 Selection of model analogues based on ice core
data

We use the reconstruction method of Sjolte et al. (2018)
to produce a number of reconstructions of different length,
different definitions of the seasons as well as varying the
number of proxy records in the data set. The reconstruction
method can be classified as assimilation of proxy data us-
ing the analogue method with a fixed model ensemble. This
method identifies analogues, i.e., years, in a climate model
simulation most closely matching the annual or season spa-
tial pattern in a set of proxy data. In order to capture the
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Figure 2. Autocorrelation analysis for PC1 of monthly 20CR SLP (1851–2010). Panel (a) shows results for February–July, and (b) shows
August–January. The symbol ”+” indicates significant correlations (p < 0.01).

characteristic regional variability in Greenland δ18O – and
to smooth out the noisy signal of individual ice cores – the
matching of the model output is done using EOFs. Conven-
tionally, proxy data need to be calibrated to a given climate
variable, e.g., temperature, in order to be compared to a cli-
mate model. The use of an isotope-enabled climate model
makes it possible match the proxy data with modeled patterns
without calibration, since the proxy itself is included in the
model output. This important feature of the method means
that we include the governing processes of the variability in
the proxy data, capturing the integrative nature of isotope
proxies and the information that lies therein (see Introduc-
tion). The work flow of the reconstruction is to (i) calculate
the PCs from the respective covariance matrix of the ice core
δ18O (PCicecore) and modeled δ18O (PCmodel), retaining the
first three PCs, and evaluate the modeled patterns for a given
model year (t ′) against the ice core patterns (Fig. 1) for each
proxy year (t) using Eq. (1); (ii) sort the model simulation by
comparing the isotope patterns each year of the model sim-
ulation to the isotope patterns each year of the ice core data,
using the normalized PCs to achieve equal weighting for the
regional variability; and (iii) define the best-matching model
years as ensemble member one, the second-best-matching
years as ensemble member two, and so on, and test how
many ensemble members to retain (p < 0.01) by calculat-
ing the chi-squared statistic between the modeled and the ice
core PCs; and (iv) extract the climate field variables from the
selected model ensemble and calculate the ensemble mean,
which comprises the climate reconstruction.

χ2
Match−IC(t)=

1
3

3∑
k=1

(PC(k, t ′)model−PC(k, t)icecore)2 (1)

The number of ensemble members (see Table 2) depends on
the degrees of freedom, i.e., the length of the reconstruction,
and how many closely matched model analogues are found.
In order to assess the quality of the matching exercise, we

extract the ensemble mean reconstructed δ18O at the ice core
sites and correlate it against the ice core δ18O. This tests if
matching the modeled PCs to the ice core PCs captures the
variability in the original ice core data. The performance is
similar for summer, winter and annual data, and the signal of
the ice core data is well captured, with correlations ranging
from 0.4 to 0.8 (Fig. S2). The highest correlations are seen
for sites with multiple ice cores and high accumulation rate,
both of which reduce noise. In summary, the reconstructed
δ18O captures the regional variability in the ice core data well
based on matching the normalized PCmodel and PCicecore.

As outlined in the Introduction, the definition of the sea-
sons or year is an important parameter for the reconstruction.
This applies both in terms of the seasonality of the proxy
data and the target season of the reconstruction. Following
the study of Vinther et al. (2010), we will use the definitions
of summer as May–October (sum50), winter as November–
April (win50) and winter-centered annual mean August–July
(win100) for the ice core data. These definitions will also be
applied to the target seasons of the reconstructions, as well
as the widely used definitions of summer (JJA) and winter
(DJF). We investigate the seasonal and annual variability us-
ing these different definitions with two data sets for short
(1777–1970; 19 ice cores) and long (1241–1970; eight ice
cores) reconstructions, resulting in a total of 12 reconstruc-
tions, where one for DJF covering 1241–1970 was published
by Sjolte et al. (2018) (see Table 2).

3.2 Constraining summer reconstructions using
tree-ring data

For the summer season we test incorporating tree-ring data
to further constrain the reconstruction. We choose a simple
approach of incorporating the data, which can serve as a pi-
lot study for further tests of adding more data to the recon-
struction. For the test we sort the preselected 39 ensemble
members (t ′IC−ENS) based on the ice core data (Table 2) us-
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Figure 3. (a–c) Correlation between reconstructed (eight ice cores) and reanalysis SLP, T2m and COBE SST for JJA. The reanalysis data
have been interpolated to the model grid (3.75◦× 3.75◦). Black markers indicate p < 0.05, and white markers indicate p<0.025. Also
indicated is the maximum correlation (Max. corr.) and the number of significantly correlated grid points (n sig.) (p < 0.05). Panels (d)–
(f) are the same as (a)–(c) but for DJF. Panels (g)–(i) are the same as (a)–(c) but for DJF reconstructed from the winter-centered annual mean
ice core data. Figure S7 shows corresponding figures for the reconstructions using 19 ice cores.

ing a chi-squared fit of normalized modeled temperature at
the eight tree-ring sites (Tmodel) against the normalized tree-
ring data (Ttrees) (see Eq. 2).

χ2
Match−TR(t)=

1
8

8∑
k=1

(T (k, t ′IC−ENS)model− T (k, t)trees)2 (2)

The fit is done using the JJA temperature from the model,
which are the best months to use with respect to seasonal
sensitivity for these eight tree-ring records (Wilson et al.,
2016). In a next step we test the ensemble mean temperature
reconstruction against the time series of the tree-ring data
at each site, by calculating the correlation with the tree-ring
data while increasing the number of ensemble members from
1 to 39 (Fig. S3). Although a chi-squared test of the fit of the
reconstructed temperature shows that including 24 ensemble
members provides a good fit (p < 0.01), the correlation de-
creases quite rapidly when including more ensemble mem-

bers, and we choose to include only 20. With this ensemble
we capture the variability in the tree-ring data relatively well
for the whole period of the reconstruction (Fig. S4). The cor-
relation goes to zero when including all of the 39 ensemble
members, indicating that without the tree-ring data the recon-
struction using only the eight ice cores and the model has no
predictive skill of the summer temperature in Europe.

4 Results

4.1 The seasonal variability in observations and when
combining proxy data and model output

In the Introduction we mentioned seasonality, definition of
seasons and shifts in circulation patterns as potential limit-
ing factors for the skill of climate field reconstructions. In
general, seasonal dependency on climate variables, tempo-
ral resolution and the precision of the chronology of proxy
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Figure 4. (a–c) Correlation between reconstructed (eight ice cores) and reanalysis SLP, T2m and COBE SST for sum50 (May–October).
The reanalysis data have been interpolated to the model grid (3.75◦× 3.75◦). Black markers indicate p < 0.05, and white markers indicate
p < 0.025. Also indicated is the maximum correlation (Max. corr.) and the number of significantly correlated grid points (n sig.) (p < 0.05).
Panels (d)–(f) are the same as (a)–(c) but for win50 (November–April). Panels (g)–(i) are the same as (a)–(c) but for the winter-centered
annual mean (win100, August–July). Figure S8 shows corresponding figures for the reconstructions using 19 ice cores.

records sets a limit on the temporal resolution of climate
field reconstructions. Seasonal resolution is likely the high-
est possible resolution which can be attained due to these
different factors. The subseasonal autocorrelation structure
of atmospheric variability is a key factor in how well sea-
sonal proxy data can represent climate variability. This can
be illustrated by investigating the monthly autocorrelation
during the year of the first leading mode of sea level pres-
sure in the North Atlantic region, the NAO. We found that,
for example, the second and third leading modes are too dis-
similar between summer, autumn, winter and spring to al-
low a meaningful study of the monthly autocorrelation of
these modes, as they simply represent different teleconnec-
tion patterns during each season. Figure 2 shows the monthly
autocorrelation of each month of the PC-based NAO cal-
culated from the 20CR. These figures show that during the
cold season the NAO has the weakest autocorrelation with

other months, as well as weaker year-to-year autocorrelation
compared to summer. While the lower autocorrelation dur-
ing winter shows stochastic nature of the variability, it is also
during winter that the NAO variability is the most vigorous.
Thus, the portion of a given climate signal that can be recon-
structed is a balance of what is recorded in the proxy at a
certain resolution, as well as the strength and autocorrelation
of the signal sampled at this resolution. It is noteworthy that
Fig. 2 also illustrates that targeting the calendar year in a re-
construction (or any sort of analysis) splits up the variability
midwinter and mixes the variability in two consecutive win-
ters that have little variability in common. This is the motiva-
tion for using the definition of winter-centered annual mean
for the annual data in this study.

Vinther et al. (2010) tested the ice core data used in this
study using correlation with observed temperature, leading
to the division of the in seasons using the definition of
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Figure 5. Time series of November–April (sum50) temperature for observed (yellow) and reconstructed ensemble mean (sum50, eight ice
cores) (dark blue) from (a) Nuuk, (b) Ilulissat and (c) Qaqortoq. Light-blue shading is the 1σ spread of the reconstructed temperature, and
the green lines indicate the RMSE between the observed and reconstructed temperature.

sum50, win50 and win100 as outlined in Sect. 3. Due to
the changes in the patterns and variability in the circulation
modes from summer to winter we furthermore test the sea-
sonality in terms of circulation modes. We do this by per-
forming monthly reconstructions for pressure and correlat-
ing the time series of the corresponding main modes of cir-
culation against that of the modes of the 20CR. This is done
using the same method as for the seasonal reconstructions
but only picking individual months from the matching year
of the model simulation. We do not suggest that it is feasi-
ble to reconstruct climate on monthly timescales using sea-
sonal ice core data. This exercise is purely for testing pur-
poses. The monthly reconstructions are done for each data
set (sum50, win50, win100; for eight ice cores and 19 ice
cores) for the months that each data set is assumed to cover,
e.g., May–October for sum50. The overall results show that
the different reconstructed surface pressure modes, as repre-
sented by the first three PCs, do not peak in skill during the
same months (Figs. S5 and S6). For example, for win50 PC1
has highest skill for February–April, while the skill for PC2
peaks January–February. This type of behavior is repeated
for the sum50 and win100 data sets. The differentiated sea-
sonality in the skill of the reconstructed modes can originate
from (i) the sensitivity of the Greenland δ18O to different
modes; (ii) the changes in circulation modes during the sea-
son; (iii) the autocorrelation structure of circulation, as dis-
cussed above; and (iv) model biases in circulation modes –
and combinations of these influences. The difference in the
reconstructions using eight ice cores and 19 ice cores, re-
spectively, is mainly seen for win100, where more monthly

reconstructions show significant skill across the year when
using more ice cores in the reconstruction. Furthermore, the
monthly skill for the win100 data set indicates that it is feasi-
ble to reconstruct the winter circulation (e.g., DJF). This test
suggests that in order to get the highest average skill pos-
sible for all modes during winter the reconstruction should
target DJF, while for summer the full span of the season
(May–October) is likely better, also taking into account the
higher monthly autocorrelation during the warm season. The
EOF patterns of surface pressure will be discussed further
in Sect. 4.2.2.

4.2 Evaluation of reconstructions

In the following sections we evaluate and compare the re-
constructions using different methods. We start with point-
by-point correlation maps for the North Atlantic sector of the
reconstructions to 20CR SLP and T2m, as well as the COBE
SSTs. This is a general evaluation in terms of spatial cover-
age and skill of the reconstructions. We also include a com-
parison to the longest instrumental records of temperature
from Greenland and Iceland. Next we evaluate the skill of the
reconstructions in terms of atmospheric circulation modes.
In the final part of the evaluation we investigate to which ex-
tent the main patterns of North Atlantic SSTs and their vari-
ability can be reconstructed using the method of this study.
We would like to emphasize that none of these reconstruc-
tions have been calibrated to observations. Instead, the model
provides us directly with the physical variables of SLP, T2m
and SST from the model years where modeled and measured
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δ18O patterns match. The evaluation of these reconstructions
are thus done using completely independent data sets.

4.2.1 Reconstructed temperature and sea level
pressure

Investigating the results for correlations and the spatial pat-
terns of skill for SLP, T2m and SSTs reveals a complex in-
terplay of factors influencing the reconstructions for differ-
ent seasons, as well as how the different definition of seasons
influence the skill. Reconstructions for the summer season
show the least skill but perform better using the extended
definition of the target season (May–October) (Fig. 4) rather
than JJA (Fig. 3). The summer reconstruction also appears
to benefit the most from including 19 ice cores rather than
eight. This can be seen also be seen from Table 3, which
summarizes the maximum correlation and number of signif-
icantly correlated grid points compared to 20CR for all re-
constructions in this study. Including more cores and using
the extended season likely reduces noise in the reconstruc-
tion. Using the extended season also smooths out the vari-
ability in the 20CR data, which can partly account for the
higher skill of the short sum50 reconstruction for summer.
The summer reconstructions using eight ice cores show no
significant skill for Europe, which is in line with the corre-
lation analysis with European tree-ring data (see Sect. 3.2).
However, the evaluation of the summer reconstructions using
19 ice cores shows patches of significant correlation in Eu-
rope. The reconstructions for winter show the highest skill
of the reconstructions, in line with the findings of Vinther
et al. (2010) that δ18O is found to be a more efficient cli-
mate proxy during winter (Sjolte et al., 2011, 2014). This can
partly be due to the climate variability in extratropical North
Atlantic region being most vigorous during winter causing
a large signal-to-noise ratio in δ18O records with respect to
their ability to record circulation changes. All of the these
factors contribute to better reconstructions for winter com-
pared to summer, both in terms of spatial skill and strength
of correlation with 20CR. This includes significant temper-
ature skill in northern Europe, which is probably due to the
reconstruction capturing the main modes of SLP. We will re-
turn to this topic in Sect. 4.2.2. As opposed to summer, the
winter reconstructions for DJF performs better, rather than
the extended season November–April. This is probably due
to the migration of circulation patterns and low autocorre-
lation of atmospheric circulation during winter as discussed
in Sect. 4.1.

One of the questions of this study is about the use of annual
data for reconstructions of climate and atmospheric circula-
tion. For the reconstructions targeting the winter-centered an-
nual mean (win100) the skill and patterns of correlation are
reminiscent of that of the winter reconstructions, although
clearly with less areal coverage of significant correlation for
SLP. We interpret this as being due the migration of the cir-
culation patterns with the seasons, as discussed above. How-
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Table 4. Correlation between reconstructed and observed temperature for Greenland coastal stations (1874–1970) and the Icelandic sta-
tion, Stykkishólmur (1831–1970). Bold marks p < 0.05; the symbol ∗ marks p < 0.10. The low-pass filter is a decadal FFT (fast Fourier
transform) filter.

19 ice cores Sum50 Low pass Win50 Low pass Win100 Low pass

Stykkishólmur 0.32 0.48 0.33 0.44 0.25 0.17
Nuuk 0.19 0.33 0.58 0.35 0.52 0.47
Ilulissat 0.18∗ 0.35 0.53 0.48 0.45 0.40
Qaqortoq 0.24 0.34 0.56 0.40∗ 0.53 0.44∗

SWG index 0.22 0.38∗ 0.59 0.42∗ 0.52 0.44

Eight ice cores Sum50 Low pass Win50 Low pass Win100 Low pass

Stykkishólmur 0.33 0.38∗ 0.33 0.53 0.28 0.37∗

Nuuk 0.24 0.36∗ 0.60 0.53 0.58 0.56
Ilulissat 0.19 0.39∗ 0.56 0.60 0.50 0.52
Qaqortoq 0.27 0.45 0.60 0.65 0.59 0.59
SWG index 0.26 0.44 0.63 0.63 0.58 0.56

19 ice cores JJA Low pass DJF Low pass DJFwin100 Low pass

Stykkishólmur 0.27 0.58 0.35 0.41 0.27 0.20
Nuuk 0.10 −0.03 0.56 0.49 0.45 0.45
Ilulissat 0.09 0.27 0.56 0.67 0.41 0.42
Qaqortoq 0.22 0.43∗ 0.52 0.49 0.48 0.41∗

SWG index 0.15 0.29 0.58 0.57 0.47 0.45

Eight ice cores JJA Low pass DJF Low pass DJFwin100 Low pass

Stykkishólmur 0.29 0.50 0.27 0.41 0.29 0.34
Nuuk 0.18* 0.14 0.57 0.53 0.49 0.47
Ilulissat 0.07 0.29 0.58 0.70 0.47 0.55
Qaqortoq 0.25 0.43∗ 0.57 0.62 0.52 0.50
SWG index 0.21 0.35 0.61 0.67 0.52 0.52

ever, for SSTs the win100 reconstruction shows the highest
spatial skill of all the reconstructions, including better captur-
ing low-latitude variability, with the correlation pattern being
reminiscent of the spatial pattern of Atlantic Multidecadal
Oscillation (AMO)-type variability. As with the extended
summer season, part of the increase in skill for the win100
SST reconstruction could also originate from a smoother sig-
nal for annual data – in both observations and reconstruction,
where some of the noise is reduced compared to seasonal
data, but some of the signal is also lost. Targeting the win-
ter season (DJF) using the winter-centered annual data re-
sults in a clear gain in skill for SLP, while the skill for SST
is somewhat reduced, although retaining the overall correla-
tion pattern of the winter-centered annual mean reconstruc-
tion. This indicates that it is feasible to reconstruct winter
variability from annual data, if the definition of the winter-
centered annual mean is used for the proxy data. Seasonal
δ18O data are increasingly sparse going back in time, and
using winter-centered annual mean data could be an alterna-
tive for reconstructing winter variability beyond the reach of
seasonal δ18O data when seasonality in the ice can still be
defined from e.g., aerosol records.

To further assess the skill of the reconstructed tempera-
ture we compare to data from three stations on the Greenland
coast and one Icelandic station. Vinther et al. (2010) showed
that the first principal component (PC1) of Greenland iso-
tope data (20 cores) has strong correlation (r = 0.71) with
the stacked Greenland coastal data (southwest Greenland
temperature, SWG, index) during winter (November–April),
while PC1 of the isotope data for summer is most strongly
correlated with data from Iceland (r = 0.55) (May–October).
Here we compare the reconstructed site temperature both to
data from each of the stations and to the SWG index. The
highest correlations are found for the eight-core win50 re-
construction at Nuuk and Qaqortoq with a correlation of 0.6
at both sites (Fig. 5 and Table 4). It is also for this reconstruc-
tion we find the highest correlation of 0.63 with the SWG in-
dex. While the correlation for Ilulissat is similar to the corre-
lation for Nuuk and Qaqortoq, the observed higher amplitude
is not captured by the reconstruction, which is probably due
to subgrid variability resolved neither by reconstruction nor
the model. The 19-core reconstructions have slightly lower
correlations with the Greenland temperature data. This could
be due to a weighting of the variability more to the east, as
most of the additional cores in the shorter reconstructions are
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Figure 6. (a–c) Regression of the first three reconstructed PCs of SLP on reconstructed (eight ice cores) JJA SLP, which corresponds to
the reconstructed EOF patterns. Panels (d)–(f) are the same as (a)–(c) but for DJF. These plots, with the addition of the plots for DJF
reconstructed (eight ice cores) from the winter-centered annual mean ice core data, are shown in Fig. S10, as well as corresponding plots for
sum50, win50 and win100 shown in Fig. S11. (g)–(i) Regression of the first three 20CR PCs of SLP on 20CR JJA SLP, which corresponds
to the EOF patterns. Panels (j)–(l) are the same as (g)–(i) but for DJF. These plots for 20CR data are also shown in Fig. S12, as well as
corresponding plots for sum50, win50 and win100 shown in Fig. S13. The time period for all plots is 1851–1970. Data only shown for
p < 0.05.

to the east of the ice divide. For the summer reconstructions,
the correlations with the Greenland station data are below
0.3. However, the eight-core sum50 reconstruction captures
a substantial part of the longer-term variability with a cor-
relation of 0.44 to the decadally filtered SWG index. With
respect to the definition of the winter season, the DJF recon-
structions appear to better capture the long-term variability,
with slightly higher correlation for the filtered data compared
to the win50 reconstructions. The win100 and the win100
DJF reconstructions both show only slightly lower correla-
tions than the win50 and DJF reconstructions, indicating that
for temperature alone the seasonal data are less crucial than
for reconstruction SLP, at least when comparing locally to
the Greenland coastal data.

The correlations with the Icelandic temperature data show
correlations around 0.3 for all reconstructions, with most of
the summer reconstructions showing higher correlations for
long-term variability compared to the winter reconstructions.
This indicates a similar behavior as for the ice core PC1 cor-
relation with respect to the winter data responding more to
the western Greenland temperature and the summer data hav-
ing better coherency with Icelandic data. The predominance
of the summer signal east of Greenland also results in the re-
constructions based on the winter-centered annual mean not
having very high skill for Icelandic temperatures, at least for
the long-term variability.

Comparing the summer reconstructions including tree-
ring data with the 20CR, we find that the skill for SLP, T2m
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Figure 7. Time series of reconstructed PC1, PC2 and PC3 of SLP using eight ice cores (dark blue) and 19 ice cores (light blue) compared
to PC1, PC2 and PC3 of 20CR SLP (yellow). Smoothed curves are using a decadal FFT filter. Top six plots are for JJA, and bottom six plots
are for DJF.

and SST has increased considerably compared to the sum-
mer reconstructions only using eight ice cores (Table 3 and
Fig. S9). The skill is particularly improved for temperature
in the eastern sector of the domain, while the skill for SLP
is still low near Greenland, although the skill has clearly in-
creased over northern Europe for JJA.

4.2.2 Main modes of atmospheric variability

Sjolte et al. (2018) showed that the winter variability in the
first two PCs of the SLP in the North Atlantic region could
be reconstructed with good skill using the analogue method
based on eight ice cores. Here we evaluate all the different
reconstructions of this study for the first three PCs, includ-
ing the spatial patterns of the loading of the PCs (EOFs).
For the DJF and win50 reconstructions, EOF1, 2 and 3 all
qualitatively match that of the 20CR (Fig. 6). The recon-
structed EOF patterns for SLP are very similar for the re-
constructions using eight and 19 ice cores, respectively, and
we only show the patterns for the reconstructions using eight
ice cores. There are some indications that EOF2 of the re-
constructions summarizes some of the variability assigned to

EOF3 of the 20CR as also discussed by Sjolte et al. (2018).
For summer the reconstructed EOFs capture many of the
same features of the 20CR but less clearly than for the win-
ter reconstructions. For example, the reconstructed JJA pat-
tern for EOF1 shows differences in 20CR south of Greenland
(Fig. 6), which probably partly explains the low skill for sum-
mer SLP in this region shown in Sect. 4.2.1. The origin of this
problem is probably a bias for large-scale summer variabil-
ity in the ECHAM5/MPIOM model (Jungclaus et al., 2006).
This means that the main modes of the original model sim-
ulation (not shown) do not correspond to the main observed
modes, except for winter NAO, which the model captures. It
is only after matching the model output to the proxy data that
the main modes align with the observed patterns.

The maps of the EOF patterns illustrate the point made
earlier about the differences in the modes of SLP variability
from season to season. The patterns change not only from
summer to winter but also depending of the definition of the
season, e.g., JJA versus May–October (Fig. S11). Further-
more, the EOFs of the winter-centered annual mean appear
as mixtures of summer and winter variability, carrying most
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Figure 8. (a, b, e, f) Correlation analysis for reconstructed PC1, PC2 and PC3 of SLP using eight ice cores (triangles) and 19 ice cores
(squares) correlated with PC1, PC2 and PC3 of 20CR SLP covering 1851–1970; (c, d) correlation analysis for reconstructed PC1 SLP using
eight ice cores (triangles) and 19 ice cores (squares) correlated with station-based NAO covering 1824–1970. The station-based NAO is only
valid for winter and annual data due to the seasonal shift in the centers of action. Open markers indicate significance of p < 0.1, and full
markers indicate p < 0.05, while crossed-out markers indicate p > 0.1.

likeness to the winter patterns, again showing the problem of
using the annual mean SLP as target for reconstructions.

Common for all the different reconstructions is that they
all assign more variability to EOF1 and less to EOF3 com-
pared to 20CR, while EOF2 is fairly similar to 20CR in terms
of the explained variance. This could be due to sole use of
Greenland ice core data, which could skew variability to be
dominated more by NAO-type variability. For DJF the model
simulation itself does not have a high bias in the explained
variance in NAO-type variability.

From the time series of EOFs (PCs) it is evident that the
reconstructions have realistic amplitudes of the year-to-year
variability (Fig. 7). In other words, the spectrum of the re-
constructions are similar to actual weather variability as also
found for the DJF reconstruction by Sjolte et al. (2018). Cor-
relating the reconstructed PCs to that of the 20CR (see Fig. 8)
shows that (i) the variability in PC1 is well captured by the
winter and annual data; (ii) only the win50 DJF reconstruc-
tion has skill for PC2; (iii) the summer reconstructions have
some skill for PC3; and (iv) in some instances the decadally
filtered data capture a significant part of the 20CR variabil-
ity, even with no correlation for annual data – e.g., PC2 and

PC3 of DJF win100 (eight cores). The very low values 1851–
1860 in the 20CR PC1 is possibly a bias in the reanalysis and
is not seen in the Jones et al. (1997) NAO time series (not
shown). Comparing the reconstructions for winter and annual
data to the Jones et al. (1997) NAO results in higher corre-
lations than for 20CR, also for the filtered data. For summer
it is not meaningful to use the station-based NAO due to the
shifted centers of action during summer compared to winter.
As discussed in Sect. 4.2.1 the skill for SLP improves locally
when including tree-ring data to constrain the summer re-
constructions. However, the skill for the circulation patterns
is not improved by including the tree-ring data.

4.2.3 North Atlantic sea surface temperature

The correlation maps with the COBE SSTs (Figs. 3 and 4)
indicate that the reconstructions are particularly well suited
to investigate the SST variations in the region 50–70◦ N,
70–0◦W. For this purpose we define a North Atlantic SST
index as the mean SST for the aforementioned area. Al-
though the year-to-year variations in the reconstructions are
somewhat noisy compared to the variations in the COBE
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Figure 9. Time series of the North Atlantic SST index (50–70◦ N, 70–0◦W) for reconstructions using eight ice cores (dark blue) and 19 ice
cores (light blue) compared to COBE SSTs (yellow). Smoothed curves are using a decadal FFT filter. The top six plots are for JJA, DJF and
DJF reconstructed using the winter-centered annual mean, while the bottom six plots are for sum50 (May–October), win50 (November–April)
and the winter-centered annual mean win100 (August–July).

SSTs, the reconstructions have significant skill for all in-
vestigated seasons, most notably for winter and annual data
(Fig. 9). For decadally filtered data, the win50 DJF and
win50 reconstructions (eight cores) explain more than 50 %
of the COBE North Atlantic SST variability (r = 0.72 and
r = 0.74, respectively) (Fig. 10). While the long-term SST
changes for summer are underestimated, the reconstructions
of winter SST match the COBE amplitudes of the decadal–
multidecadal SST variability very well. As mentioned in
Sect. 4.2.1 the skill for temperature and SST is markedly
improved when including the tree-ring data in the summer
reconstructions. This is also seen in the higher correlations
and stronger significance for the North Atlantic SST index
for these reconstructions (Fig. 10).

To further investigate how much information of the North
Atlantic SST variability is obtainable using this type of re-
construction, we also compared the patterns and variabil-
ity in the main modes of reconstructed SSTs to that of the
COBE SSTs (Fig. 11). As the skill of the reconstructions
decreases with the distance from the proxy sites, we calcu-
lated the modes using data from 30–70◦ N for the reconstruc-
tions, while we used 0–70◦ N for the COBE data. Generally

the reconstructions qualitatively capture the spatial charac-
teristics of the EOF1, 2 and 3 patterns of the COBE data,
as well as the variability in the PCs (Fig. 12). Again, the
match appears to be better for the winter season. The PCs of
the reconstructed SSTs are correlated with the reconstructed
PCs of SLP, indicating that the SST variability captured by
the reconstruction is related to atmosphere–ocean interac-
tion of the main circulation modes (not shown). EOF1 of
the SSTs is also correlated with the North Atlantic SST in-
dex discussed above, and the pattern is akin to AMO-type
variability associated with long-term variation in the NAO
(McCarthy et al., 2015). EOF2 of the SSTs can be related to
subpolar gyre-type variability connected with the frequency
of the weather patterns Atlantic Ridge and Blocking (Moffa-
Sanchez et al., 2014; Moreno-Chamarro et al., 2017). Only
the reconstructed PC1 for winter and annual SSTs shows
consistent skill compared to the COBE SSTs, although the
win50 PC3 (19 cores) also has significant correlation for both
annual and decadally filtered data (Fig. 13).
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Figure 10. Correlation analysis of the North Atlantic SST index (50–70◦ N, 70–0◦W) for reconstructions using eight ice cores (triangles)
and 19 ice cores (squares) correlated with COBE SSTs covering 1851–1970. The green markers are for the reconstructions including tree-ring
data. Open markers indicate significance of p < 0.1, and full markers indicate p < 0.05, while crossed-out markers indicate p > 0.1.

4.3 Comparison to other millennium-length
reconstructions

While an exhaustive comparison to other reconstructions is
beyond the scope of the this study, we briefly compare our
reconstructions to two other data sets. We limit ourselves to
reconstructions that are based on data entirely independent
from this study and also cover the span of our longest re-
constructions (1241–1970). We first compare to the tempera-
ture index for central Europe by Glaser and Riemann (2009),
which is based entirely on historical documentation and early
instrumental data. Due to less available data in the early part
of the millennium, the reconstruction by Glaser and Riemann
(2009) is only in seasonal resolution prior to 1500 CE, while
monthly data are available after this. Due to this change in
resolution and variability, we only show the comparison to
Glaser and Riemann (2009) for the period after 1500 CE. In
the comparison we use our reconstructions including tree-
ring data for summer (JJA, sum50), as the reconstructions
relying solely on ice core data (eight ice cores) do not have
skill in Europe for summer. Judging from the moving corre-
lation, there is fairly good correspondence between our re-
constructions and the temperature index of Glaser and Rie-
mann (2009) for the period after 1600 CE, apart from a dis-
tinct spell of out-of-phase variability around 1650 CE for the
summer season (Fig. 14). The correlation is most consistent
for DJF, although the decadal to multidecadal variability also
appears coherent for the summer season. For the period prior

to 1500 CE (no shown) little coherency is seen between our
reconstructions and the temperature index of Glaser and Rie-
mann (2009). As the temperature index of Glaser and Rie-
mann (2009) relies on a relatively few data for the early part
of their reconstruction, it is tempting to conclude that the loss
of correlation is due to this, as our reconstructions are pro-
duced with the same number of records and same method
throughout the reconstructions. Despite this, the comparison
provides support for the validity of our seasonal temperature
reconstructions extending further back than the comparison
to reanalysis data.

In a second comparison we include the recent DJF NAO
reconstruction by Cook et al. (2019), which is based on
drought data from tree rings. For reference we also include
the comparison to the model-constrained NAO reconstruc-
tion by Ortega et al. (2015) also shown in Sjolte et al. (2018),
although this reconstruction is also partly based on Green-
land ice core data. From the moving correlation, there is little
correspondence between our NAO reconstruction and that of
Cook et al. (2019) prior to the instrumental record (Fig. 15).
Unlike our method, the method of Cook et al. (2019) in-
volves calibration to observed the NAO. Also, for the decadal
to multidecadal timescales, the variability in the reconstruc-
tions diverge prior to the instrumental record, including the
reconstruction by Ortega et al. (2015). This indicates that
the long standing problem of incoherence between different
NAO reconstructions prior to the instrumental record is still
valid (Pinto and Raible, 2012). The reconstructions shown
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Figure 11. (a–c) Regression of the first three reconstructed PCs of SSTs on reconstructed sum50 JJA SSTs, which corresponds to the
reconstructed EOF patterns. Panels (d)–(f) are the same as (a)–(c) but for DJF. Corresponding plots for reconstructions of sum50 (May–
October), win50 (November–April) and the winter-centered annual mean (win100, August–July) are shown in Fig. S14. (g–i) Regression
of the first three COBE SST PCs on COBE JJA SSTs, which corresponds to the reconstructed EOF patterns. Panels (j)–(l) are the same as
(g)–(i) but for DJF. A corresponding figure for 20CR sum50 (May–October), win50 (November–April) and the winter-centered annual mean
win100 (August–July) can be found in the Fig. S15. The time period for all plots is 1851–1970. Data only shown for p < 0.05.

in Fig. 15b–c are scaled to the decadal variability in the ob-
served NAO to facilitate comparing the interannual variabil-
ity. It is clear that the interannual amplitude of the recon-
struction by Ortega et al. (2015) is underestimated, while our
reconstruction appears to be only slightly underestimated in
amplitude, and the reconstruction by Cook et al. (2019) could
have a somewhat overestimated interannual variability. Fac-
tors which could contribute to the lack of correlation between
our and the reconstruction by Cook et al. (2019) are that the
relationship between drought and winter NAO is not station-
ary in time (López-Moreno and Vicente-Serrano, 2008) and
that the number of records in the reconstruction by Cook
et al. (2019) decrease strongly back in time prior to 1700 CE.

5 Discussion and conclusions

In this study we tested climate reconstructions of summer,
winter and annual climate variability, based on a data set of
eight ice cores covering 1241–1970 and an extended data set
of 19 cores covering 1777–1970. While the increased num-
ber of ice cores can reduce noise in the reconstructions, the
more geographically uneven distribution of the additional
cores appears to have some negative effects on the skill of
the reconstructions. This means that the overall added value
of more ice core data seems less than the drawbacks of the
much shorter time span being covered. Unfortunately it is not
possible to test the reconstructions of eight versus 19 cores
on truly equal terms, as the EOFs of the eight ice cores for
shorter time periods are dependent on the exact choice of the
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Figure 12. Time series of reconstructed PC1, PC2 and PC3 of SSTs using eight ice cores (dark blue) and 19 ice cores (light blue) compared
to PC1, PC2 and PC3 of COBE SSTs (yellow). Smoothed curves are using a decadal FFT filter. Top six plots are for JJA, and bottom six
plots are for DJF.

investigated time period. This is due to poor statistics in de-
termining the EOFs when the number of ice cores is low and
the data sample is short.

The inherent properties of climate variability with respect
to autocorrelation and changes in governing weather patterns
as illustrated in Sect. 4.1 are probably the reasons for the dif-
ferences in skill seen for the reconstructions using different
definitions of the target season. One consequence is that the
skill for secondary circulation modes is better for the recon-
structions targeting DJF rather than November–April; sec-
ondly, using the wider definition of summer (May–October)
may reduce some noise in the temperature reconstruction, an
effect which likely also can be seen for the temperature re-
constructions of the winter-centered annual mean. Addition-
ally, reconstruction of the DJF atmospheric circulation us-
ing winter-centered annual mean ice core data is attainable,
which opens up the possibility of extending the winter recon-
structions further back than with seasonal data. This could
be done by using high-resolution chemistry data (e.g., Ras-
mussen et al., 2006) to define the seasons in the ice core data,
even though the annual cycle in the ice core isotope data can-
not be recovered.

The evaluation of correlation with the North Atlantic SSTs
shows a particularly strong sensitivity to SST variability
north of 50◦ N. This is in principle true for all seasons but
in particular in winter, where the amplitude of the decadal
changes in SSTs are captured by the reconstruction. This is
achieved without tuning the reconstruction to observations.
This indicates a clear potential for reconstructing AMO-like
variability. Furthermore, the reconstructions yield qualita-
tively similar main patterns of variability as those based on
observations (EOF1, 2 and 3). These SST patterns are con-
nected to the main atmospheric modes of variability.

The reconstructions in this study only based on ice core
data are using what one might call a minimal proxy data set.
The thought behind it is to select few – but high-quality, well-
dated and well-studied – proxy data rather than a large collec-
tion of data where the links between climate parameters and
all proxy data have not been tested in detail. Furthermore, the
use of isotope records has the property discussed in the In-
troduction of recording not only local information, while the
assimilation using an isotope-enabled climate model allows
coupling the model and proxy data without calibration. How-
ever, it is clear that the skill of the summer reconstructions
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Figure 13. Correlation analysis for reconstructed PC1, PC2 and
PC3 of SSTs using eight ice cores (triangles) and 19 ice cores
(squares) correlated with PC1, PC2 and PC3 of COBE SSTs cover-
ing 1851–1970. Open markers indicate significance of p < 0.1 and
full markers indicate p < 0.05, while crossed-out markers indicate
p > 0.1.

is generally lower than the winter reconstructions. For this
reason we also perform a test including European tree-ring
data for two additional reconstructions for summer (JJA and
May–October) covering 1241–1970. For these reconstruc-
tions the skill for temperature is clearly improved, although
for SLP the skill only improves locally with no improvement
of the skill for the main modes of circulation.

For model assimilation-type climate reconstructions the
performance of the climate model is an important parameter.
All climate models have biases that can influence the patterns
of the reconstructed climate variability. Here we have mainly
discussed the model bias in SLP during summer as this is
the most prominent model-related problem found for our re-
constructions. Given the relatively coarse model resolution
(3.75◦× 3.75◦), using a model with finer resolution and bet-
ter representation of orography, atmospheric circulation and
physics would probably yield a better climate reconstruction.
However, the model used in this study fundamentally per-
forms well when it comes to mimicking the variability in
the isotopic composition of Greenland precipitation, which
is what allows us to use the method of matching the ice core
EOF patterns.

Different strategies can be chosen for attaining an uncer-
tainty estimate of the reconstructions based on the analogue
method. Bothe and Zorita (2019) presents different options:
(i) uncertainty based on the fit of the analogues to the proxy
data, (ii) a fixed distance allowed for the fit of the analogues
but variable number of analogues and (iii) uncertainty esti-
mated from the ensemble spread of model analogues. Our
method employs a fixed number of model analogues (e.g.,
39 for DJF 1241–1970), and the ensemble spread is therefore
the most natural choice of uncertainty estimate. When com-
paring to other data sets, the RMSE can also be used along
with the correlation coefficient as a measure of how well re-
construction matches the variability. This can for example
reveal cases where the correlation is good but the amplitude
of the variability does not match (see Fig. S16). In Fig. 5,
where we plot time series of Greenland coastal temperature,
we both show the ensemble spread and the RMSE with re-
spect to the observations. Except for Ilulissat, which has very
high observed variability, the ensemble spread and RMSE
are very similar. This indicates that the ensemble spread is
a good measure of the uncertainty at a grid point scale. In
the comparison to other NAO reconstructions, we also show
the ensemble spread and the RMSE with respect to the ob-
servations (Fig. 15). In this case the RMSE is well within the
envelope of the ensemble spread of our reconstructed NAO,
indicating that the spread is a relatively conservative measure
of uncertainty. In addition we have investigated the quality
of the fit over time (chi-squared distance for each time step)
to see if there are trends or periods of very poorly fitting
model analogues. Although there are years where we have
trouble finding a good model analogue, the fit is on average
throughout the records as good as for 1851–1970 where the
reconstructions are evaluated. For example, there are no large
decadal trends in the fit. From a statistical point of view, the
reconstructions are therefore equally valid any time during
the reconstruction as there is no calibration involved in the
method.

The approach of using an ensemble of analogues not only
improves the reconstruction in terms of correlation with ob-
servations but also reduces the variability when producing
the ensemble mean due to averaging out some of the variabil-
ity (Gómez-Navarro et al., 2017). Using the example of the
Greenland coastal temperature again (Fig. 5), the amplitude
of the year-to-year variability is somewhat underestimated in
the reconstruction, while the decadal-scale variability is well
captured. This smoothing of the high-frequency variability in
the reconstruction can to a certain extent be attributed to the
ensemble approach but also to the relatively course resolu-
tion of the model, which also smooths out variability. On the
other hand, the SST reconstruction (Fig. 9) shows an overes-
timated variability in winter, which could be due to using an
atmospheric signal to reconstruct ocean variability, while the
amplitude is underestimated for summer. This contrast can
probably be explained by the lower skill for summer, which
causes loss of variability due to lack of coherency in the
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Figure 14. (a) Moving 31-year correlation between the Glaser and Riemann (2009) central Europe temperature index (JJA, DJF) and
reconstructed temperature from this study (JJA, sum50, DJF). Correlations beyond the gray shaded area are significant (p < 0.05). (b) Time
series of the Glaser and Riemann (2009) central Europe temperature index (JJA) and reconstructed temperature from this study for summer
(JJA, sum50). (c) Time series of the Glaser and Riemann (2009) central Europe temperature index (DJF) and reconstructed temperature from
this study (DJF). For the reconstructed temperature from this study we extract the area mean temperature (T2m) for the box 50–60◦ N and
0–20◦ E using only values for land.

ensemble. For the reconstruction of atmospheric circulation
(SLP), the amplitude of year-to-year variability is well pre-
served, and the ensemble averaging appears to have a minor
effect on the high-frequency variability (Figs. 8 and 15). One
factor in preserving the year-to-year atmospheric variability
is that we are sampling from a model simulation where, for
example, the NAO has a nearly white power spectrum (not
shown), and given that the ensemble spread is relatively large
(Fig. 15), this spectrum will be preserved in the reconstruc-
tion.

To attain the best possible reconstruction of climate vari-
ability, taking into account the nature of the target for the
reconstruction is important. This is illustrated by the depen-
dency of the skill of the climate reconstructions on the defi-
nition of seasonality, due to the seasonal changes of the pat-
terns or variability. For winter a narrow definition of the sea-
son (DJF) yields better performance for circulation patterns.
Furthermore, in some cases a wider definition of the season,
e.g., for summer and annual data, can provide better perfor-
mance for temperature due to better capturing the signal dur-
ing months of higher autocorrelation and less variability.

Further development of seasonal climate field reconstruc-
tions requires a larger data set of well-study proxy records.
Isotope records of tree-ring cellulose from regions with
sustained winter snow are potential sources for expanding
the spatial coverage for winter (Seftigen et al., 2011; Ed-

wards et al., 2017). In more temperate climates such records
could be used for reconstructing summer variability (Labuhn
et al., 2016). Speleothem data could potentially also be used;
however it is a challenge to find high-resolution continu-
ous data sets due to growth hiatuses (e.g., de Jong et al.,
2013). Newly updated isotope-enabled climate models (e.g.,
Cauquoin et al., 2019) show the continual development of
this field. This makes running new millennium-length model
simulations attractive for the purpose of providing better
sampling pools for finding model analogues to match the
proxy data. Although not shown in this study, reconstruction
of precipitation is also possible using the analogue method.
However, in particular for precipitation, better model resolu-
tion is important to capture storm tracks and orographic ef-
fects. Finally, the indication found in this study that it is pos-
sible to capture the main SST patterns of the North Atlantic
makes this approach a good supplement to marine records
due to better precision of the dating of terrestrial records.

Code and data availability. The code for the reconstruction
method as well as the reconstructions shown in this paper
are available upon request to the corresponding author. The
time series for PC1 and PC2 of reconstructed DJF SLP in
the North Atlantic region previously published by Sjolte et al.
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Figure 15. (a) Moving 31-point correlation between reconstructed DJF NAO from this study and Cook et al. (2019) (magenta), Ortega
et al. (2015) (green) and observed NAO (yellow) (Jones et al., 1997). Correlations beyond the gray shaded area are significant (p < 0.05).
(b) Ensemble mean reconstructed NAO (PC1 of reconstructed SLP, Hurrell et al., 2003) with error estimated by ensemble spread and RMSE,
compared to observed NAO (Jones et al., 1997) and NAO reconstructions by Cook et al. (2019) and Ortega et al. (2015). The amplitude of
all time series are scaled to fit the decadal variability in the observed NAO. (c) Same as (b), except filtered with a 30 point “loess” filter.

(2018) are available from the PANGAEA open-access data library
(https://doi.org/10.1594/PANGAEA.892841).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-16-1737-2020-supplement.
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