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Abstract. In this paper we introduce a Bayesian frame-
work, which is explicit about prior assumptions, for using
model ensembles and observations together to constrain fu-
ture climate change. The emergent constraint approach has
seen broad application in recent years, including studies con-
straining the equilibrium climate sensitivity (ECS) using the
Last Glacial Maximum (LGM) and the mid-Pliocene Warm
Period (mPWP). Most of these studies were based on ordi-
nary least squares (OLS) fits between a variable of the cli-
mate state, such as tropical temperature, and climate sensi-
tivity. Using our Bayesian method, and considering the LGM
and mPWP separately, we obtain values of ECS of 2.7 K
(0.6–5.2, 5th–95th percentiles) using the PMIP2, PMIP3, and
PMIP4 datasets for the LGM and 2.3 K (0.5–4.4) with the
PlioMIP1 and PlioMIP2 datasets for the mPWP. Restricting
the ensembles to include only the most recent version of each
model, we obtain 2.7 K (0.7–5.2) using the LGM and 2.3 K
(0.4–4.5) using the mPWP. An advantage of the Bayesian
framework is that it is possible to combine the two periods
assuming they are independent, whereby we obtain a tighter
constraint of 2.5 K (0.8–4.0) using the restricted ensemble.
We have explored the sensitivity to our assumptions in the
method, including considering structural uncertainty, and in
the choice of models, and this leads to 95 % probability of
climate sensitivity mostly below 5 K and only exceeding 6 K
in a single and most uncertain case assuming a large struc-

tural uncertainty. The approach is compared with other ap-
proaches based on OLS, a Kalman filter method, and an al-
ternative Bayesian method. An interesting implication of this
work is that OLS-based emergent constraints on ECS gener-
ate tighter uncertainty estimates, in particular at the lower
end, an artefact due to a flatter regression line in the case of
lack of correlation. Although some fundamental challenges
related to the use of emergent constraints remain, this paper
provides a step towards a better foundation for their potential
use in future probabilistic estimations of climate sensitivity.

1 Introduction

In recent years, researchers have identified a number of rela-
tionships between observational properties and a future cli-
mate change, which was not immediately obvious a priori but
which exists across the ensemble of global climate models
(GCMs) (Allen and Ingram, 2002; Hall and Qu, 2006; Boé
et al., 2009; Cox et al., 2018) participating in the Climate
Model Intercomparison Project (CMIP). These relationships
are generally referred to as “emergent constraints” as they
emerge from the ensemble behaviour as a whole rather than
from explicit physical analysis.

Such emergent constraints have been broadly used to con-
strain properties of the Earth’s climate system which are not
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easily or directly observable. These are usually presented in
probabilistic terms, mostly based on ordinary least squares
(OLS) methods. For example, studies have explored the con-
straint on equilibrium climate sensitivity (ECS), which is the
global mean equilibrium temperature after a sustained dou-
bling of CO2 over pre-industrial levels, using model out-
puts from the Paleoclimate Model Intercomparison Project
(PMIP) (Hargreaves et al., 2012; Schmidt et al., 2014;
Hopcroft and Valdes, 2015; Hargreaves and Annan, 2016).
Because of their relatively strong temperature signal, pale-
oclimate states like the Last Glacial Maximum (LGM) and
the mid-Pliocene Warm Period (mPWP) are often considered
to be promising constraints for the ECS (Hargreaves et al.,
2012; Hargreaves and Annan, 2016), in particular at the high
end.

Almost all emergent constraint studies have used OLS-
based methods to establish the link between variables in the
model ensembles. However, whether ECS or another climate
parameter was investigated, the theoretical foundations for
the calculations have not previously been clearly presented.
An additional problem arising from this is the resulting dif-
ficulty in synthesising estimates of climate system properties
generated by different statistical methods with different, and
often not explicitly introduced, assumptions. These methods
include OLS but also alternative Bayesian approaches such
as estimates of the climate sensitivity using energy balance
models (Annan et al., 2011; Aldrin et al., 2012; Bodman and
Jones, 2016).

Two recent papers have also addressed the question of
emergent constraints in different ways. Bowman et al. (2018)
presented a hierarchical statistical framework which went a
long way to closing the gap in theoretical understanding of
emergent constraints. Conceptually, it is very similar to a
single-step Kalman filter, with which the iteration process
is avoided to only keep a single updating of a prior into a
posterior. Specifically, it uses the model distribution approx-
imated as a Gaussian as a prior, which is then updated using
the observation to a posterior. However, such a prior and the
underlying assumptions attached to it could be seen as a re-
strictive choice to impose on the climate sensitivity area of
research. In particular, most of the posterior values would
lie in the range covered by the ensemble of models if the
observed value is either uncertain and/or close to the prior
mean. This is a direct consequence of the joint probability
distribution produced by the Kalman filter, which in the case
of joint Gaussian distributions will produce a tighter poste-
rior Gaussian distribution. Because of that, it does not appear
to correspond to the choice which is usually made, albeit im-
plicitly.

Another Bayesian statistical interpretation of emergent
constraints has recently been presented by Williamson and
Sansom (2019), who extended the standard approach to ac-
count for more general sources of uncertainty including
model inadequacy. A key aspect of their approach is that
they set a prior on the observational constraint rather than

the climate system parameter(s) that we are primarily inter-
ested in for this study, i.e. the climate sensitivity. Thus, their
prior predictive distribution for the climate system parameter
is not immediately clear and may not be so easily specified
as in the approach we explore here.

We present an alternative Bayesian linear regression ap-
proach in which the regression relationship is used as a like-
lihood model for the problem. This allows the prior over the
predictand to be defined separately from and entirely inde-
pendently of the model ensemble and emergent constraint
analysis. Thus, the likelihood arising from the emergent con-
straint could be used to update a prior estimate of the predic-
tand that arose from a different source.

In Sect. 2 we provide an overview of the concept of emer-
gent constraints, the previous methods used for these analy-
ses, the Bayesian framework, and the models and data em-
ployed in the paper. Section 3 describes the results, starting
with analysis of models and data from the Paleoclimate Inter-
comparison Project (PMIP) phases 2 and 3 for the LGM and
mPWP, which have previously been analysed for an emer-
gent constraint on climate sensitivity (Schmidt et al., 2014;
Hargreaves and Annan, 2016). We then incorporate some
CMIP6 and PMIP4 model outputs that have been made avail-
able to us for these periods to illustrate how these outputs fit
into the same analysis. We also use the LGM and mPWP
outputs to demonstrate how the method allows independent
emergent constraints to be combined. Finally, we discuss the
influences of the prior and model inadequacy on climate sen-
sitivity in Sect. 3.5 and 3.6, respectively.

2 Methods

The general method of emergent constraints seeks a phys-
ically plausible relationship in the climate system between
two model variables in an ensemble of results from different
climate models. Consequently, an observation of one mea-
surable variable (such as past tropical temperatures) could
be used to better constrain the other investigated variable,
usually unobserved and difficult to measure (such as cli-
mate sensitivity). This idea has been used in climate science
to estimate quantities of interest such as snow albedo feed-
back (Hall and Qu, 2006), future sea ice extent (Boé et al.,
2009; Notz, 2015), low-level cloud feedback (Brient et al.,
2016), and the equilibrium climate sensitivity (Hargreaves
et al., 2012; Schmidt et al., 2014; Cox et al., 2018). Although
the unobserved variable is usually taken as a future variable,
the emergent constraints theory can be used with two vari-
ables within the same timeframe, as long as the relationship
is plausible. A summary of several different emergent con-
straints on climate sensitivity was made by Caldwell et al.
(2018). This approach using emergent constraints is mean-
ingful only if we believe that reality satisfies the same re-
lationship and it was not observed purely by chance in the
model ensemble. There is a risk in searching for such re-
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lationships in a small ensemble that we may find examples
which are coincidental, with no real predictive value (Cald-
well et al., 2014). Spurious relationships could also be found
because of model limitations (Fasullo and Trenberth, 2012;
Grise et al., 2015; Notz, 2015).

In this study, we focus on the relationship between equi-
librium climate sensitivity, defined here as S, and the tem-
perature change in the tropics which is observed at the Last
Glacial Maximum (LGM) and the mid-Pliocene Warm Pe-
riod (mPWP), defined as Ttropical. We posit that a relationship
between climate sensitivity and temperature change is physi-
cally plausible, as we expect the long-term quasi-equilibrium
temperature to be mainly influenced by radiative forcing, and
in many model ensembles, variations in climate sensitivity
have been dominated by tropical feedbacks, mostly arising
from low-level clouds (Bony et al., 2006; Vial et al., 2013).

2.1 Ordinary least squares

The most widely used approach to emergent constraint anal-
ysis is to find an observable phenomenon that exhibits some
relationship to the parameter of interest and use this as a pre-
dictor in a linear regression framework. The ordinary least
squares (OLS) method has been widely used because of its
simplicity, so we also use it here as a starting point for com-
parison with alternative statistical methods. In the context of
constraining climate sensitivity, the parameter of interest (i.e.
the ECS) is considered to be a predicted variable (Hargreaves
et al., 2012; Schmidt et al., 2014; Hargreaves and Annan,
2016). This may be written as

S = γ × Ttropical+ δ+ ζ, (1)

where S is the climate sensitivity, γ and δ two unknown pa-
rameters, Ttropical the temperature anomaly averaged over the
tropical region for the given paleo-time interval, and ζ the
residual term which is drawn from a Gaussian distribution
N (0,σ 2) and which accounts for deviations from the linear
fit. When we use this approach, the unknown constants of the
linear fit are estimated via ordinary least squares (OLS) us-
ing the (T itropical,S

i) pairs representing the model ensemble
(here i indexes the models), and then the equation is used to
predict the true value of S for the climate system based on
the observed value T o

tropical. A confidence interval for the pre-
dictor variable can be generated by accounting for uncertain-
ties in the fit and in the observed value through a simulation
of an ensemble of prediction as demonstrated by Hargreaves
et al. (2012). This procedure makes the assumption that re-
ality satisfies the same regression relationship as the models,
i.e. is likely to be at a similar distance from the line as the
model points are.

Integrating the intrinsically frequentist confidence inter-
vals obtained from regression methods used for OLS esti-
mates into a Bayesian framework is challenging. One issue
is the misinterpretation of frequentist confidence intervals
as Bayesian posterior credible intervals. The former is the

representation of the number of random intervals contain-
ing the true interval bounds (at 90 % confidence, this would
lead to 90 out of 100 random intervals containing the true
bounds), while the Bayesian credible interval is an interval
which we believe (with the given probability) to contain the
truth. For instance, if there is an observed Ttropical = 1 K, with
an assumed Gaussian observational uncertainty of σ = 0.25
at 1 standard deviation, then stating that there is a close-to-
95 % probability of having the true value of the parameter
within the interval 0.5–1.5 K is a Bayesian credible interval
interpretation. However, the latter is a common interpreta-
tion of frequentist-based studies. This confusion has inherent
drawbacks for the analysis of posterior outputs, as shown in
various fields of science (Hoekstra et al., 2014) and more re-
cently for climate sensitivity computations (Annan and Har-
greaves, 2020). Williamson and Sansom (2019) have pre-
sented a Bayesian interpretation of this approach using refer-
ence priors on ψ , as defined by Cox et al. (2018), as a met-
ric of global mean temperature variability and the regression
coefficients. However, this approach does not appear to read-
ily allow for the use of any arbitrary prior distribution for S,
which may either be desired for comparison with other re-
search or have arisen through a previous unrelated analysis.
The Bayesian linear regression approach that we introduce in
the next section avoids these problems.

2.2 Bayesian framework

The (subjective) Bayesian paradigm is based on the premise
that we use probability distributions to describe our uncer-
tain beliefs concerning unknown parameters. We use Bayes’
theorem to update a prior probability distribution function
(PDF) for the equilibrium climate sensitivity via

P
(
S|T o

tropical

)
=

P
(
T o

tropical|S
)
P (S)

P
(
T o

tropical

) , (2)

where P
(
S|T o

tropical

)
is the posterior estimate of S after con-

ditioning on the geological proxy data T o
tropical, P (S) is the

prior, and P
(
T o

tropical

)
is a normalisation constant. The like-

lihood P
(
T o

tropical|S
)

is a function that takes any value of S
and generates a probabilistic prediction of what we would ex-
pect to observe as T o

tropical if that value was correct. The use
of the Bayesian paradigm requires us to create such a func-
tion. Using the principles of emergent constraint analyses in
which a linear relationship between these two parameters,
which was seen in the GCM ensemble, is believed to also
apply to reality, it is natural to use the regression relationship

Ttropical = α× S+β + ε, (3)

where α, β, and σ , the standard deviation of ε as ε ∼
N (0,σ 2), are three a priori unknown parameters. Note that
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this reverses the roles of predictor and predictand compared
to the OLS-based approach (Eq. 1). It implies that S is able to
give a prediction of Ttropical with a given uncertainty. This is
physically plausible, as S is considered one of the best met-
rics to represent temperature change. In particular, S is often
diagnosed in climate models from an abrupt and sustained
quadrupling of CO2 from pre-industrial conditions (4xCO2),
which usually leads to weak non-linearity similar to what is
observed from LGM or mPWP climate dynamics. Therefore,
it is possible to use the 4xCO2-computed S of climate mod-
els to predict Ttropical, assuming ε as a representation of all
processes not related to S.

Choosing S as the predictor (Eq. 3) will cause some dif-
ferences to the inference of the posterior S compared to the
OLS-based approach introduced in Eq. (1). The plausibil-
ity of the existence of an emergent constraint between S

and Ttropical is independent of the method chosen. Whether
Ttropical is a predicted or predictor variable, or whether the
applied method uses OLS or Bayesian statistics, the meth-
ods estimate different unknown parameters to investigate a
similar assumed relationship within the model ensemble, so
it is expected that these different methods will yield similar
but not identical results. This was previously argued in the
context of a hierarchical statistical model for emergent con-
straints by Tingley et al. (2012). The Bayesian approach with
S as the predictor is appropriate for emergent constraint anal-
yses thanks to its transparency and handling of uncertainties.
This has been explored by Sherwood et al. (2020) and is also
investigated in this study. Thus, here we explore the imple-
mentation of the Bayesian method for emergent constraint
analyses for models and data that have already been investi-
gated with alternative methods (Hargreaves et al., 2012; Har-
greaves and Annan, 2016).

The three parameters α, β, and σ in Eq. (3) are con-
ditioned on the model ensemble defined by its pairs of
(T itropical,S

i) (with i indexing the models). We estimate them
via a Bayesian linear regression (BLR) procedure, which re-
quires priors to be defined over these parameters. Conse-
quently, the likelihood P (Ttropical|S) for a given S (as re-
quired by Eq. 2) is an integration over the posterior distri-
bution of Ttropical predicted by the regression relation (con-
volved with observational uncertainty where appropriate)
and conditioned on the model ensemble through α, β, and
σ .

In this way, we create a statistical model that can gener-
ate a predictive PDF for the tropical temperature change at
the LGM or at the mPWP P (Ttropical|S) for any given sensi-
tivity. There is a structural difference between this approach
and that of Eq. (1) in that here the residual uncertainties
ε ∼N (0,σ 2) represent our inability to perfectly predict the
tropical temperature anomaly arising from a given sensitiv-
ity and are probabilistically independent of the latter rather
than the former variable. The issue here is not a matter of
which regression line is “correct”, but rather how, given the

model ensemble, we can create a plausible likelihood model
for P (Ttropical|S).

It is important to note that Eq. (3) and the conditioning of
parameters on the model ensemble only relate to the gener-
ation of the likelihood. The emergent constraint calculation
itself is then a second step that uses this likelihood to calcu-
late the posterior of interest P

(
S|T o

tropical

)
(Eq. 2). To apply

the emergent constraints theory, it is required to insert a geo-
logical observation T o

tropical estimated through proxy data and

obtain the likelihood P
(
T o

tropical|S
)

, which leads to the pos-

terior P
(
S|T o

tropical

)
by Bayesian updating. We perform this

step through a simple importance sampling algorithm by ap-
proximating P

(
Ttropical = T

o
tropical|S

)
. That is, for any given

sensitivity S, we can calculate the probability of the obser-
vation of tropical temperature that we have as the compo-
sition of the predictive PDF for actual tropical temperature,
together with the uncertainty associated with the observation
itself. The emergent constraint theory is thus applied with a
two-stage Bayesian process, including in first stage the BLR
and in the second stage a Bayesian updating.

A prior belief on climate sensitivity (P (S)) in the Bayesian
updating process, and on the parameters of the regression
model in the BLR process, has to be assumed. There is no
clearly uncontested choice for prior distribution for climate
sensitivity. However, Annan and Hargreaves (2011) argued
that a Cauchy distribution has a reasonable behaviour with a
long tail to high values but, unlike the uniform prior, does not
assign high probability to these values. Thus, we adopt this
prior for our main analyses. In Sect. 3.5 we test the sensitivity
of the results to this choice and compare the results obtained
using gamma and uniform prior distributions. Priors for the
parameters of the regression model are chosen with reference
to the specific experiment and are intended to represent our
reasonable expectation that models do indeed generate a re-
gression relationship as described.

An additional issue that was briefly mentioned above is
that we may like to consider the probability that reality is
qualitatively and quantitatively distinguishable from all mod-
els. This issue, which was explicitly argued in the context
of emergent constraint analysis by Williamson and Sansom
(2019), seems reasonable since all models do share a the-
oretical heritage and certain limitations. However, this issue
remains challenging to quantify. It has not been considered in
most previous studies, which also makes it difficult to com-
pare. We investigate this issue in Sect. 3.6. Whilst the pro-
posed resolution remains preliminary and although the con-
cept is promising for understanding emergent constraints, we
decide to omit it for the bulk of our analysis to enable more
direct comparisons with previous studies.

The Bayesian method is more explicit than the standard
OLS approach, as the prior assumptions have to be given by
the user. This transparency leads to more freedom and control
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of the statistical model. Moreover, it has a reduced sensitivity
to outliers as the prior on the regression coefficients provides
a form of regularisation. This should lead to lower variance
in the results compared to results with wider priors on the
parameters, particularly with small model ensembles.

Additionally, the Bayesian method allows the user to add
multiple lines of evidence by updating the chosen prior for
S. The method for combining independent constraints is rea-
sonably simple, as it only requires us to calculate and store
the posterior of the first emergent constraint analysed and use
this distribution as the prior for the second emergent con-
straint. Thus, it is a direct form of sequential Bayesian up-
dating. This process results in a posterior distribution which
will generally be narrower than either of the two posteriors
that would have been generated from either of the emergent
constraints separately. Although it may be tempting to simply
combine all emergent constraints in this way, it is necessary
to also consider possible dependencies between the uncer-
tainties in the different emergent constraints before this can
be done with confidence (Annan and Hargreaves, 2017).

It is not clear if observational errors have always been ad-
equately accounted for in previous emergent constraints re-
search. Our approach provides a natural framework for this,
as the likelihood can include the uncertainty of the observa-
tional process as we have done. Recent studies have inves-
tigated Bayesian ways of integrating uncertainties on proxy
reconstructions into the global temperature field (e.g. Tier-
ney et al., 2019). For the sake of comparison with Hargreaves
et al. (2012), Schmidt et al. (2014), and Hargreaves and An-
nan (2016), we use the reconstructions and observational er-
rors adopted in these studies, which are based on multiple lin-
ear regressions and model–proxy cross-validation. However,
we have ignored uncertainties in the calculation of the model
values of S and Ttropical as, while they are poorly quantified,
we believe them to be too small to materially affect our re-
sult. In fact, it has been argued for the case of the mPWP that
observational errors on S and Ttropical are small compared to
the structural differences responsible of the dispersion of the
points around the regression line and can thus be neglected
(Hargreaves and Annan, 2016).

2.3 Kalman filter

Bowman et al. (2018) recently presented a new interpretation
of emergent constraint analysis. Their framework is essen-
tially a two-dimensional ensemble Kalman filtering approach
in which the prior, represented by the model ensemble, is up-
dated according to the observation using the Kalman equa-
tions, which approximate all distributions by a multivariate
Gaussian (Kalman, 1960). The Kalman equations are given
by

K= PfHT
(

HPfHT
+R

)−1
, (4)

xa
= xf
+K

(
z−Hxf

)
, (5)

Pa
= (I−KH)Pf, (6)

where x is the mean, P its covariance, z the observations with
an associated observational uncertainty covariance matrix R,
and H the operator that maps the model state onto observa-
tions. The superscripts f and a by convention refer to the fore-
cast (i.e. the prior in this work) and analysis (the posterior),
respectively. While in many applications, such as numerical
weather prediction, this method is applied in an iterative fash-
ion with the analysis being used as the starting point of the
next forecast, here it is only applied once as a way of imple-
menting Bayesian updating to our prior in order to generate
the posterior.

Here we only have two dimensions for the Gaussian, these
being the scalar predictor (e.g. sensitivity) and predictand
(e.g. tropical temperature change). While this approach is a
natural and attractive option in many respects, it has the spe-
cific drawback (in the context of this work) of using the dis-
tribution of model samples as a prior (for both the mean and
covariance). Existing literature on emergent constraints does
not make this assumption, and this could be seen as a limiting
aspect of the method, as it implies that the model ensemble
is already a credible predictor even before consideration of
the observational constraint. An implication of this approach
is that the posterior estimate will be equal to the model dis-
tribution in the case that no observational constraint exists,
either because there is in fact no relationship between the
observation and predictand or when the observational un-
certainty is excessively large. The use of a Gaussian prior
based on the ensemble range also means that it is difficult for
the method to generate posterior estimates that include val-
ues significantly outside the model range, even in the case
in which the observed value is outside the model spread. We
present results generated with a Kalman filter in Sect. 3.1 for
comparison with our main analysis.

2.4 Climate models and data

The Bayesian method may be applied to any emergent con-
straint. In this study, we use the model outputs and data syn-
theses that have arisen from phases 2 and 3 of PMIP (Bra-
connot et al., 2007; Haywood et al., 2011; Harrison et al.,
2014), as well as the few available models of phase 4 (Hay-
wood et al., 2016; Kageyama et al., 2017), summarised in
Table 1. The Last Glacial Maximum (19–23 ka) corresponds
to the period of the last ice age when ice sheets and sea ice
had their maximum extent. Due to its temporal proximity,
relative abundance of proxy data, and substantial radiative
forcing anomaly, the LGM is widely considered one of the
best paleoclimate intervals for testing global climate models
and has been featured in all of the PMIP consortium exper-
iments. A representation of several model LGM simulations
compared to the surface air temperature (SAT) reconstruction
of Annan and Hargreaves (2013) is shown in Fig. 1a.
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Table 1. Models, tropical temperature (Ttropical) outputs, and climate sensitivity (S) used in this study.

Experiment Figure Model T a
tropical S S reference

reference

PMIP2 LGM 1 MIROC −2.75 4.0 K-1 Model Developers (2004)
PMIP2 LGM 2 IPSL −2.83 4.4 Randall et al. (2007)
PMIP2 LGM 3 CCSM −2.12 2.7 Randall et al. (2007)
PMIP2 LGM 4 ECHAM −3.16 3.4 Randall et al. (2007)
PMIP2 LGM 5 FGOALS −2.36 2.3 Randall et al. (2007)
PMIP2 LGM 6 HadCM3b

−2.77 3.3 Randall et al. (2007)
PMIP2 LGM 7 ECBILTb

−1.34 1.8 Goosse et al. (2005)

PMIP3/CMIP5 LGM 8 CCSM4b
−2.6 3.2 Andrews et al. (2012)

PMIP3/CMIP5 LGM 9 IPSL-CM5A-LRb
−3.38 4.13 Andrews et al. (2012)

PMIP3/CMIP5 LGM 10 MIROC-ESM −2.52 4.67 Sueyoshi et al. (2013)
PMIP3/CMIP5 LGM 11 MPI-ESM-P −2.56 3.45 Andrews et al. (2012)
PMIP3/CMIP5 LGM 12 CNRM-CM5b

−1.67 3.25 Andrews et al. (2012)
PMIP3/CMIP5 LGM 13 MRI-CGCM3b

−2.82 2.6 Andrews et al. (2012)
PMIP3/CMIP5 LGM 14 FGOALS-g2b

−3.15 3.37 Masa Yoshimori, personal communication, 2013c

PMIP4/CMIP6 LGM 24 MPI-ESM1.2-LRb
−2.06 3.01 Mauritsen et al. (2019)

PMIP4/CMIP6 LGM 25 MIROC-ES2Lb
−2.23 2.66 Hajima et al. (2020), Ohgaito et al. (2020)

PMIP4/CMIP6 LGM 26 INM-CM4-8b
−2.43 1.81 This study

PMIP4/CMIP6 LGM 27 AWI-ESM-1-1-LRb
−1.75 3.61 This study

PMIP3/CMIP5 PlioMIP1 15 CCSM4b 1.03 3.2 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 16 IPSLCM5A 1.33 3.4 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 17 MIROC4mb 1.99 4.05 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 18 GISS ModelE2-R 1.16 2.8 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 19 COSMOSb 2.18 4.1 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 20 MRI-CGCM2.3b 1.15 3.2 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 21 HadCM3b 1.93 3.3 Randall et al. (2007)
PMIP3/CMIP5 PlioMIP1 22 NorESM-L 1.45 2.1 Haywood et al. (2013)
PMIP3/CMIP5 PlioMIP1 23 FGOALS-g2b 2.14 3.37 Masa Yoshimori, personal communication, 2013c

PMIP4/CMIP6 PlioMIP2 28 GISS-E2-1-Gb 0.92 2.6 This study
PMIP4/CMIP6 PlioMIP2 29 IPSL-CM6A-LRb 2.12 4.5 This study
PMIP4/CMIP6 PlioMIP2 30 NorESM1-Fb 1.37 2.29 Guo et al. (2019)
PMIP4/CMIP6 PlioMIP2 31 CESM2b 3.5 5.3 Gettelman et al. (2019)
PMIP4/CMIP6 PlioMIP2 32 EC-EARTH3.3b 2.94 4.3 Wyser et al. (2020)

a For the LGM simulations (generations PMIP2, PMIP3, and PMIP4), the tropical average was defined between 20◦ S and 30◦ N (Hargreaves et al., 2012). For the mPWP
simulations (generations PlioMIP1 and PlioMIP2), the tropical average was defined between 30◦ S and 30◦ N (Hargreaves and Annan, 2016). All temperature values are defined
as changes compared to pre-industrial values. b Latest version of a model that was kept for the approach described in Sect. 3.3. c Calculated using the Gregory method on
150 years of output, making it consistent with the values of Andrews et al. (2012).

Previous results from PMIP2 showed a significant corre-
lation between LGM tropical temperatures and climate sen-
sitivity in the models (Hargreaves et al., 2012), although the
equivalent calculation for the PMIP3 models found no signif-
icant correlation (Schmidt et al., 2014; Hopcroft and Valdes,
2015). These two similar-sized ensembles with contrasting
characteristics are a good test bed for exploring the prop-
erties of the different methods. For the tropical temperature
anomaly relative to the pre-industrial value we use a value
from Annan and Hargreaves (2013): for 20◦ S to 30◦ N a
T o

tropical of −2.2 K with a Gaussian observational uncertainty
of±0.7 K (5 %–95 % confidence interval). Several data com-

pilations are presently in development as part of PMIP4, but
these have yet to be integrated into a global temperature field,
so revising the temperature estimate from Annan and Harg-
reaves (2013) is a topic for future work.

Interest in the mPWP (2.97–3.29 million years ago) as
a more direct analogy for future climate change has grown
during the past years. This is the most recent period with
a sustained high level of greenhouse gases and concomi-
tant warmth relative to the pre-industrial period; however,
the data are more sparse and uncertain. In Fig. 1b, the sea-
surface temperature (SST) anomaly of different climate mod-
els which performed a mPWP simulation is displayed, as is
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Figure 1. Latitudinal distribution of temperature changes relative to pre-industrial values for both simulated climates for various climate
models and a proxy reconstruction. Dashed lines are models of the CMIP5 generation, while solid lines are models from the CMIP6 gener-
ation. All model distributions correspond to 100-year zonal averages when possible; certain CMIP5 PlioMIP1 models were averaged over
30 years. (a) SAT change of the LGM. The solid black line is a multi-proxy ensemble reconstruction taken from Annan and Hargreaves
(2013). (b) SST change of the mPWP. The solid black line is the multi-proxy ensemble reconstruction PRISM3 described by Dowsett et al.
(2009).

the PRISM3 SST reconstruction (Dowsett et al., 2009). Pre-
vious results for this period from the Pliocene Model Inter-
comparison Project (PlioMIP) experiment, which was part
of PMIP3, indicated a fairly strong correlation between trop-
ical temperature and climate sensitivity in the models, but the
confidence with which this can be used to constrain climate
sensitivity was low due to high uncertainty in various obser-
vationally derived components and various compromises in
the way the protocol was formulated (Hargreaves and An-
nan, 2016). For the mPWP, a tropical temperature anomaly
of 0.8± 1.6 K (5 %–95 % interval) is taken from Hargreaves
and Annan (2016) for 30◦ S to 30◦ N, assuming the largest
5 %–95 % uncertainty shown in that work. The reconstruc-
tion used here is the PRISM3 (Pliocene Research, Interpreta-

tion and Synoptic Mapping) SST anomaly field as described
in Dowsett et al. (2009).

The Last Interglacial (127 ka, referred to as lig127k in
CMIP6) and the mid-Holocene (6 ka) are part of the PMIP
simulations and also relatively warm climates. The forcings
are, however, seasonal and regional in nature, mostly influ-
encing the patterns of climate change. The global change
in temperature and the global climate forcing are both very
small, and this coupled with the large uncertainty in paleo-
climate data makes these intervals poor candidates for con-
straining climate sensitivity. We do not explore these inter-
vals further here.

Climate sensitivity has various definitions and there are
also a number of different ways of approximating the value
in climate models that have not been run to equilibrium. For
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PMIP3 LGM the model values are mostly based on the re-
gression method of Gregory et al. (2004), but for the mod-
els which contributed to PMIP2 LGM and PlioMIP the exact
definition and derivation used in each case are not always
clear in the literature. In order to make comparisons with
previous work, here we use the same values as those used
in Hargreaves et al. (2012), Schmidt et al. (2014), and Harg-
reaves and Annan (2016) with two exceptions to ensure that
only one value of sensitivity is used for identical versions
of the same model across different experiments. Specifically,
for FGOALS-g2 we use the value of 3.37 K (Masa Yoshi-
mori, personal communication, 2013) for both PMIP3 LGM
and PMIP3 PlioMIP, and for HadCM3 we use 3.3 K (Ran-
dall et al., 2007) for both PMIP2 LGM and PMIP3 PlioMIP.
Previous values used by Hargreaves and Annan (2016) for
PMIP3 PlioMIP were 3.7 K for FGOALS-g2 (Zheng et al.,
2013) and 3.1 K for HadCM3 (Haywood et al., 2013). These
changes are minor compared to the ensemble range of cli-
mate sensitivity, and thus they have no significant effect on
the posterior outputs.

In addition to the already published results from PMIP2
and PMIP3 we add to our ensembles the results that are cur-
rently available from PMIP4 in Sect. 3.3. While the LGM
protocol (Kageyama et al., 2017) remains very similar to that
in previous iterations of PMIP, the mPWP protocol (Hay-
wood et al., 2016) has more significant differences which ad-
dress several of the limitations of the previous version. Most
importantly, PlioMIP2 seeks to represent a specific quasi-
equilibrium climate state in the past rather than represent-
ing an amalgamation of different warm peak climates as had
been the case for PlioMIP1. A priori we are therefore less
confident about combining the results from PlioMIP1 and
PlioMIP2 and do so mostly to indicate where the new models
lie in the ensemble and to highlight the potential for future
research in this area once more model results based on the
PlioMIP2 protocol become available.

3 Applications and results

In order to apply the Bayesian linear regression and com-
pute the likelihood P (Ttropical|S), several priors have to be
established as initial conditions. Specifically, for both the
LGM and the mPWP we use Eq. (3) as the basis for our
likelihood function. The prior expectations of the three un-
known parameters α, β, and the standard deviation of the
residual ε, referred to as σ , need to be defined. The relative
complexity of the likelihood function with three a priori un-
known parameters requires the use of a sampling method for
computational efficiency. In this study, we use the Markov
chain Monte Carlo (MCMC) method NUTS as described
by Hoffman and Gelman (2014). The NUTS method is also
included in the MCMC Python package PyMC3 (Salvatier
et al., 2016), which is applied here. The approach is alter-
natively described as a conjugate prior problem using the R

package spBayes (Finley et al., 2013, 2014), described in Ap-
pendix A, and leads to similar results.

Depending on the strength of the correlation among the
dataset, one could expect a sensitivity of the regression to the
choice of prior parameters. In the following sections, we first
describe the physical arguments behind the choice of priors
over α, β, and σ and then present the outputs of the BLR
for both the PMIP2 and PMIP3 dataset of the LGM and the
PlioMIP1 dataset of the mPWP. Then, we include the CMIP6
data in the Bayesian framework for both paleo-intervals and
present an approach of combining the two emergent con-
straints. Finally, we explore the sensitivity of the Bayesian
approach to the choice of priors over the climate parameter
of choice (i.e. the climate sensitivity) and to the hypothetical
inadequacy of climate models.

3.1 The Last Glacial Maximum

From consideration of energy balance arguments and funda-
mental physical properties, such as the response of the Earth
to an increase in CO2, we have a prior expectation of a rela-
tionship between sensitivity and the global LGM temperature
anomaly (e.g. Lorius et al., 1990), and the model experiments
of Hargreaves et al. (2007) and simple physical arguments
about the spatial distribution of forcing suggest that this re-
lationship may be most clearly visible when we focus on the
tropical region. While the total negative forcing at the LGM
is roughly twice as large as the positive forcing that would
be caused by a doubling of CO2, the temperature response at
low latitudes is generally expected to be lower than the global
mean due to polar amplification and the related presence of
high-latitude ice sheets. Thus, we might reasonably expect
the tropical temperature change at the LGM to be roughly
equal to the global temperature rise under a doubling of CO2.
It would also be unexpected if the correlation had the oppo-
site sign to that based on simple energy balance arguments
such that a more sensitive model had a lower temperature
change at the LGM. However, we cannot justify imposing a
precise constraint on the slope and therefore our choice of
prior for α is N (−1,12). As for β, we expect the regression
line to pass close to the origin, as a model with no sensitiv-
ity to CO2 would probably have little response to any other
forcing changes, especially in the tropical region where the
influence of ice sheets is remote. However, we do not expect
a precise fit to the origin, and therefore the prior chosen for
β is N (0,12). Finally, we chose a wide prior for σ , a half-
Cauchy with a scale parameter of 5. The Cauchy is fairly
close to uniform for values smaller than the scale parameter,
decaying gradually for higher values.

Deviations from the regression line may be due to dif-
ferent efficacies of other forcing components, especially ice
sheets or dust. To take into account the uncertainty on the
strength of the response, we performed two additional anal-
yses wherein the prior response was smaller (α defined as
N (−0.5,12)) and larger (α defined as N (−2,12)). We do not
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Table 2. Summary of the methods and computed posterior sensitivities; n/a indicates “not applicable”.

Experiment Method∗ 5 %–95 % 5 %–95 % Median 5 %–95 %
prior (K) T o

tropical (K) (K) posterior (K)

LGM PMIP2 BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.7 1.0–4.5
LGM PMIP2 BF gamma prior 0.7–9.5 −2.9 to −1.5 2.6 1.0–4.5
LGM PMIP2 BF uniform prior 0.5–9.5 −2.9 to −1.5 2.7 0.8–5.0
LGM PMIP2 OLS predicted CS n/a −2.9 to −1.5 2.8 1.0–4.5
LGM PMIP2 Kalman filter 1.7–4.5 −2.9 to −1.5 2.9 1.8–4.1
LGM PMIP2 BF α prior mean=−2 0.5–28.7 −2.9 to −1.5 2.7 1.0–4.4
LGM PMIP2 BF α prior mean=−0.5 0.5–28.7 −2.9 to −1.5 2.7 0.9–4.6

LGM PMIP2+PMIP3 BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.6 0.7–4.8
LGM PMIP2+PMIP3 BF gamma prior 0.7–9.5 −2.9 to −1.5 2.6 0.9–4.8
LGM PMIP2+PMIP3 BF uniform prior 0.5–9.5 −2.9 to −1.5 2.7 0.6–5.4
LGM PMIP2+PMIP3 OLS predicted CS n/a −2.9 to −1.5 3.0 1.4–4.6
LGM PMIP2+PMIP3 Kalman filter 2.0–4.5 −2.9 to −1.5 3.2 2.2–4.2
LGM PMIP2+PMIP3 BF α prior mean=−2 0.5–28.7 −2.9 to −1.5 2.6 0.8–4.7
LGM PMIP2+PMIP3 BF α prior mean=−0.5 0.5–28.7 −2.9 to −1.5 2.6 0.7–4.8
LGM PMIP2+PMIP3 BF model inadequacy 0.5–28.7 −2.9 to −1.5 2.8 0.5–5.8

LGM PMIP3 BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.8 0.7–5.5
LGM PMIP3 OLS predicted CS n/a −2.9 to −1.5 3.4 1.3–5.6

LGM PMIP2+PMIP3+PMIP4 BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.7 0.6–5.2
LGM “latest” models BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.7 0.7–5.2
LGM “latest” models BF model inadequacy 0.5–28.7 −2.9 to −1.5 2.8 0.5–6.3

mPWP PlioMIP1 BF Cauchy prior 0.5–28.7 −0.8 to 2.4 2.4 0.5–5.0
mPWP PlioMIP1 BF α prior mean= 2 0.5–28.7 −0.8 to 2.4 2.4 0.5–4.8
mPWP PlioMIP1 BF α prior mean= 0.5 0.5–28.7 −0.8 to 2.4 2.4 0.5–5.1
mPWP PlioMIP1 BF model inadequacy 0.5–28.7 −0.8 to 2.4 2.5 0.5–5.4

mPWP PlioMIP1+PlioMIP2 BF Cauchy prior 0.5–28.7 −0.8 to 2.4 2.3 0.5–4.4

mPWP “latest” models BF Cauchy prior 0.5–28.7 −0.8 to 2.4 2.3 0.4–4.5
mPWP “latest” models BF model inadequacy 0.5–28.7 −0.8 to 2.4 2.4 0.4–5.0

mPWP and LGM, “latest” models BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.5 0.8–4.0
mPWP and LGM, with CMIP6 BF Cauchy prior 0.5–28.7 −2.9 to −1.5 2.4 0.7–4.1

∗ BF: Bayesian framework. OLS: predictive range via ordinary least squares. Truncated-at-zero Cauchy prior: peak: 2.5, scale: 3. Gamma prior: peak: 2,
scale: 2. Uniform prior: bounded 0–10. The “latest” model ensembles are those created from the most recent versions of each model (see Sect. 3.3).

see much difference in the results using the three priors over
α: the difference is approximately 0.2 K of climate sensitiv-
ity for both the upper and lower percentiles quoted, giving us
confidence in our choice of N (−1,12). The computed 5 %–
95 % posterior climate sensitivity ranges for different values
of α are summarised in Table 2.

The MCMC algorithm samples the posterior distribution
of regression parameters, which is represented by the ensem-
ble of predictive regression lines in Fig. 2. This ensemble
is used to infer the climate sensitivity following the Bayesian
inference approach using the geological reconstruction of the
LGM tropical temperature. The posterior distributions of S
are computed using a truncated-at-zero Cauchy prior with a
peak of 2.5 and a scale of 3, which corresponds to a wide
5 %–95 % prior interval of 0.5–28.7 K. Such a prior was used
previously by Annan et al. (2011) because it has a long tail,

allowing for a substantial probability of having high climate
sensitivity while still maintaining some preference for more
moderate values. However, the sensitivity of Bayesian statis-
tics to the choice of prior has often been noted. Thus, two al-
ternative priors, including the widely used uniform prior, and
their corresponding posterior distributions are investigated in
Sect. 3.5.

To test the robustness of the method and also to compare
it with the statistical methods used in previous studies, three
cases are investigated in which we use different combinations
of the available model ensembles. The results are shown in
Fig. 2 and Table 2.

For the PMIP2 ensemble, the correlation between tropi-
cal temperature and climate sensitivity was found to be rea-
sonably strong, and in this study the resulting 5 %–95 %
range for inferred climate sensitivity is 1.0–4.5 K (Fig. 2b).
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Figure 2. LGM northern tropical (20◦ S–30◦ N) temperature versus climate sensitivity for the PMIP2 and PMIP3 models. (a, c, e) Predictive
regression lines sampled with the MCMC method. (b, d, f) Corresponding posterior climate sensitivity computed with a Cauchy prior and
inferred from a geological reconstruction taken from Hargreaves et al. (2012). (a, b) Analysis done on the PMIP2 dataset; (c, d) analysis
done on the PMIP2 and PMIP3 combined dataset; (e, f) analysis done on the PMIP3 dataset. The numbers on each point refer to the models
used as listed in Table 1.
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The range is slightly better constrained at the lower end
than the 0.5–4 K from Hargreaves et al. (2012); however, we
have used the revised value for the LGM tropical anomaly
of −2.2± 0.7 K rather than the value of −1.8± 0.7 K that
was used by Hargreaves et al. (2012). The Bayesian-inferred
value is similar to the OLS-inferred method with the revised
version (Table 2), giving confidence in the proximity of both
methods in the case of high correlation.

When all the models of PMIP2 and PMIP3 (see Ta-
ble 1) were considered jointly the correlation became weaker
and the corresponding 5 %–95 % range generated by the
Bayesian method is 0.7–4.8 K (Fig. 2d). Schmidt et al. (2014)
obtained 1.6–4.5 K using a similar ensemble although in that
case multiple results obtained from the same modelling cen-
tre were combined by averaging. Using the OLS method on
our ensemble and generating predicted values, we obtain a
5 %–95 % range of 1.4–4.6 K. The Bayesian method gener-
ates a wider range here, particularly at the lower end, as the
correlation is weaker and the prior starts to influence the pos-
terior.

Finally, we consider the PMIP3 models in isolation. For
this ensemble no correlation is found, so for the Bayesian
method the result is heavily dependent on our prior as-
sumptions. We obtain a 5 %–95 % range here of 0.7–5.5 K
(Fig. 2f). Applying the OLS-based prediction method to the
PMIP3 dataset gives a 5 %–95 % range of 1.3–5.6 K. As pre-
viously argued for the combination of PMIP2 and PMIP3, the
latter method produces a tighter posterior range at the lower
end. In the absence of a correlation, the Bayesian method
relaxes to the prior, whereas the predictions obtained via
the OLS method are heavily influenced by the range of the
ensemble. Additionally, as previously argued in Sect. 2.2,
the differences in the posterior 5 %–95 % range between the
Bayesian and OLS-based approaches are partly connected to
choosing S as a predictor or predicted, respectively. The im-
pact of such choice will be even bigger as the correlation
gets weaker, since the difference between the respective er-
ror parameters ε and ζ will increase. However, we emphasise
that this does not suggest that either range is closer to reality.
Although the comparison between methods with a predictor
or predicted S should get more complex from a philosophi-
cal point of view as ε differs from ζ , we stipulate that both
ranges can be considered valuable information regarding S
within a climate and emergent constraint framework.

The Kalman filtering approach presented by Bowman
et al. (2018) has not previously been used for emergent con-
straint analyses in paleoclimate research. Thus, we also use
this method to explore both PMIP2 and the combination of
PMIP2 and PMIP3 (Fig. 3). With the same geological re-
construction value and a prior 5 %–95 % range (based on the
PMIP2 GCM ensemble) of 1.7–4.5 K, a posterior range of
S of 1.8–4.1 K is inferred. By combining the PMIP2 and
PMIP3 models, the prior 5 %–95 % range becomes 2.0–4.5 K
and the posterior range is 2.2–4.2 K. The increase in the
lower bound in these calculations is the largest change com-

Figure 3. LGM northern tropical (20◦ S–30◦ N) temperature versus
climate sensitivity of the PMIP2 and PMIP3 models. The Kalman
filtering is applied to the ensemble of both PMIP2 and PMIP3. The
numbers on each point refer to the models used as listed in Table 1.

pared to our Bayesian linear regression method. However,
this is strongly forced by the underlying assumptions of a
Kalman filter (Sect. 2.3), which uses the model ensemble as
a prior, making it difficult to compute a posterior range out-
side the model range, in particular when the observed value is
considered excessively uncertain. Thus, although the Kalman
filtering method could be interesting, we do not consider it
further, as we stipulate that its assumptions are too restric-
tive for the question of emergent constraints, and it therefore
cannot be a relevant method in its current form to efficiently
assess S and, in particular, its uncertainty.

3.2 The mid-Pliocene Warm Period

As for the LGM, prior parameters have to be defined to per-
form the BLR with the mPWP data. In principle these may
be different to those used for the LGM experiment, since the
total positive forcing of the mPWP is not as large as the neg-
ative forcing of the LGM, but in practice we have adopted
the same priors for our base case, apart from the obvious sign
change for α. We performed the same sensitivity experiments
as for the LGM, with three different priors over α: N (1,12),
N (0.5,12), and N (2,12). There was only a small difference
between the results using the three priors: the differences at
the 5th percentile were less than 0.1 K, and the differences at
the 95th percentile were approximately 0.3 K (see Table 2).
Regarding β and σ , there is no physical reason for their pri-
ors to be substantially different than the ones chosen for the
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Figure 4. The mPWP tropical (30◦ S–30◦ N) temperature versus climate sensitivity of the PlioMIP1 models. (a) Predictive regression
lines sampled with an MCMC method. (b) Corresponding posterior climate sensitivity computed with a Cauchy prior and inferred from a
geological reconstruction taken from Dowsett et al. (2009). The numbers on each point refer to the models used as listed in Table 1.

LGM. Thus, a N (0,12) prior for β is selected, and the same
prior for σ as for the LGM analysis is chosen.

The Bayesian inference method applied above for the
LGM model outputs is now applied to the mPWP model
outputs (Fig. 4). With less abundant models and less well-
constrained temperature data, we prefer to assume large un-
certainties in the mPWP SST reconstruction (0.8± 1.6 K,
5 %–95 % confidence). We adopt the Cauchy prior on climate
sensitivity as for the LGM analysis (5 %–95 % interval of
0.5–28.7 K) and compute a 5 %–95 % interval for the ECS of
0.5–5.0 K for the PlioMIP1 dataset. Similar to the results for
the LGM, the predictions via the OLS method (Hargreaves
and Annan, 2016) resulted in a slightly narrower 5 %–95 %
range than the Bayesian method (1.3–4.2 K, assuming 1.6 K
of uncertainty on the data).

3.3 Inclusion of CMIP6 and PMIP4 data

The ongoing PMIP4 experiments have produced LGM and
mPWP (PlioMIP2) simulations. Here we add those results to
our ensembles. There are four model runs available for the
LGM and five for the mPWP (see Table 2) on 1 May 2020.

For the LGM we have previously combined the PMIP2
and PMIP3 results, and the protocol for PMIP4 is not very
different. If we combine all three ensembles we obtain a
5 %–95 % range for the ECS of 0.6–5.2 K using the Bayesian
method (Fig. 5b). The ensemble size is now 18, but we note
that this includes several models coming from the same mod-
elling centres. Past studies have investigated the proximity
of models with hierarchical trees (Masson and Knutti, 2011;
Knutti et al., 2013) and the influence of their dependency
on statistical methods (Annan and Hargreaves, 2017). Thus,

although we believe such dependencies exist in the ensem-
ble, it is in reality difficult to quantify and correct for this.
How to deal with this possible duplication of information is
therefore a subjective decision. In Schmidt et al. (2014) it
was taken into account by averaging the results from mod-
els from the same modelling centre. Here we take an alter-
native approach of including only the latest version of each
model. This gives an ensemble size of 11 models (Table 2)
and a 5 %–95 % climate sensitivity range of 0.7–5.2 K with
the Bayesian method. The range here is relatively wide and
close to the range computed with the ensemble of PMIP2,
PMIP3, and PMIP4. This is due to the removal of almost
all PMIP2 models in this restricted ensemble, which leaves
mainly the poorly correlated PMIP3 ensemble and the en-
semble of PMIP4 together.

For PlioMIP1 and PlioMIP2 the situation is a little more
complex as the protocol has been redesigned to represent a
specific interglacial state rather than a generic warm climate,
referred to as a “time slab” in the PlioMIP protocol. Thus,
there could be a different regression relationship for these
two ensembles. However, when we plot the PlioMIP1 ensem-
ble members (Fig. 5d) we see that they do not look different
to the PlioMIP2 ensemble members. The straight combina-
tion of PlioMIP1 and PlioMIP2 gives an ensemble range of
14 models and we computed a 5 %–95 % range of 0.5–4.4 K.
Including only the most recent versions of models results in
an ensemble size of 11 models (Table 2) and generates a
nearly identical 5 %–95 % climate sensitivity range of 0.4–
4.5 K with the mPWP simulation. Thus, for this period the
inclusion of the PlioMIP2 models allows for a tighter con-
straint at the upper bound, much aided by the larger spread
of S in these new models.
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Figure 5. Inclusion of the CMIP6 models into the Bayesian method for the LGM and the mPWP. (a) LGM northern tropical (20◦ S–30◦ N)
temperature versus climate sensitivity of the PMIP2, PMIP3, and PMIP4 models and (b) inferred climate sensitivity. (c) The mPWP tropical
(30◦ S–30◦ N) temperature versus climate sensitivity of the PlioMIP1 and PlioMIP2 models and (d) inferred climate sensitivity. For both
inferences, the prior used is a Cauchy distribution defined with a peak of 2.5 and a scale of 3. The numbers on each point refer to the models
used as listed in Table 1.

3.4 Combining multiple constraints

As described in Sect. 2.4, the mPWP and the LGM are very
different climates. If the observational data are generated
by unrelated analyses, we may be able to consider the two
lines of evidence to be independent and combine them using
Bayes’ theorem to create a new posterior which is likely to
be narrower than that arising from either analysis alone. As-
suming that the uncertainties arising from the mPWP and the
LGM analyses are independent of each other may be plau-
sible as the proxy reconstructions use different observations
and analyses to estimate both the tropical temperatures and
the other variables that act as boundary conditions for the

model experiments. Moreover, modelling uncertainties that
influence the regression analysis are expected to arise from
rather different sources, such as the response to ice sheets and
a cold climate in one case versus the influence of a warmer
climate in the other. Having said that, model biases influ-
encing the simulation of one climate change may also in-
fluence the other, which means that if similar models occur
in both ensembles, this could lead to dependencies. Using
Bayes’ theorem to combine the constraints means that it is
not necessary for the same set of models to be used for each
ensemble, but, as we can see from Table 1, a few models do
occur in both ensembles.
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Figure 6. Posterior distribution of climate sensitivity computed
with a Cauchy prior by combining two assumed independent emer-
gent constraints. The method does not explicitly use both posteriors
of the LGM and the mPWP, but it uses the LGM posterior as the
mPWP prior. However, the resulting combined posterior will usu-
ally be narrower than the two independent posteriors. For the LGM,
the posterior is computed by using the latest model versions of
PMIP, including PMIP4. For the mPWP, the posterior is computed
by using the latest model versions of PlioMIP, including PlioMIP2.

It is straightforward to first compute the posterior estimate
of S from the LGM analysis as previously described and then
use this as a prior for the mPWP analysis. Priors over the re-
gression coefficients are considered independent between the
two analyses. Because of the issues discussed above, we per-
form an analysis using both ensembles of latest model ver-
sions in the LGM and the mPWP as described in Sect. 3.3.
The posterior of the LGM is used as the prior for the mPWP
analysis, and the resulting posterior from this process has a
narrower 5 %–95 % interval for S of 0.8–4.0 K (Fig. 6).

A logical extension of the approach would be to apply it to
the ensemble of models in CMIP, wherein multiple emergent
constraints exist for the same models. In theory, this should
be possible as long as the investigated relationships are phys-
ically plausible. This goes beyond the scope of our study,
which uses the paleoclimates as an example for the method,
and is left for future research.

3.5 Alternative priors on sensitivity

A major strength of the Bayesian analysis developed here
is the way that the prior on the parameter of interest, here
climate sensitivity, can easily be specified independently of
all other aspects of the analysis. A uniform prior for S has
been widely used (e.g. Tomassini et al., 2007; Aldrin et al.,
2012). However, it has also been argued that such a prior

could give an unrealistically high weight to high climate
sensitivity (Annan and Hargreaves, 2011). Here we test our
method with the commonly used uniform prior U [0;10],
which has a 5 %–95 % range of 0.5–9.5 K. The resulting pos-
terior 5 %–95 % range for climate sensitivity is 0.8–5.0 K
when analysing the LGM PMIP2 models only and 0.6–5.4 K
with the LGM PMIP2 and PMIP3 models together. These
posteriors are wider than the ranges previously computed
with a Cauchy prior, particularly for the case of combining
PMIP2 and PMIP3 wherein the correlation is rather weak,
in which case the prior has a higher influence. These results
are shown in Fig. 7. Due to the questions which have arisen
over the use of a uniform prior and the fact that it has an
infinite integral, unless bounded arbitrarily as done here, we
also perform a comparison with an alternative prior which
features a decaying tail and a finite integral. For this purpose,
a gamma prior is chosen with a shape parameter of 2 and a
scale of 2, which corresponds to a similar 5 %–95 % prior
range of 0.7–9.5 K. The posterior computed 5 %–95 % range
is 1.0–4.5 K for LGM PMIP2 models and 0.9–4.8 K for the
combination of PMIP2 and PMIP3, which is very close to the
one computed with the Cauchy prior. Although the Bayesian
paradigm will inevitably involve such subjective choices, the
sensitivity of the results to a sensible choice of prior appears
to be low as long as a reasonable correlation exists in the
ensemble.

3.6 Model inadequacy

As previously explored and described by Williamson and
Sansom (2019), we investigate the probability that all models
deviate in a systematic way from reality to a certain extent,
mainly because of computational limitations and their shared
technical heritage. Statistically, this issue is best described
by the terminology that while the models are considered “ex-
changeable” with each other, they are not exchangeable with
reality. Williamson and Sansom (2019) provide a further dis-
cussion on this point. In our methodology, this can simply be
accounted for by considering that the regression prediction
of S for reality has a larger residual than that arising for the
models themselves:

T t
tropical = α× S

t
+β + ε∗, (7)

where the superscript t indicates here that we are referring
to the truth (i.e. the real climate system) and ε∗ has the dis-
tribution N (0,σ ∗2) for some σ ∗2 > σ 2. There can be various
reasons why such an inadequacy, represented as ε∗ in Eq. (7),
may be thought to exist. Models all share a common heritage
and theoretical basis, which is certainly incomplete even if
not substantially wrong, and computational constraints limit
their performance. Particularly in the paleoclimate context,
there may be biases in the experimental protocol and dif-
ferences in the number of feedbacks included in the differ-
ent model systems, e.g. interactive vegetation and prognostic
dust. Such errors would lead to reality being some distance
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Figure 7. Posterior distributions computed with different priors and datasets. (a) Posteriors computed with the PMIP2 dataset (strong
correlation). (b) Posteriors computed with the PMIP2 and PMIP3 datasets combined (weak correlation). The Cauchy prior is defined with a
peak of 2.5 and a scale of 3. The gamma prior is defined with a peak of 2 and a scale of 2. The uniform prior is bounded between 0 and 10.

from the model regression line, even if the models were oth-
erwise perfect. Such issues are relevant to both the LGM,
wherein there are significant uncertainties relating to dust and
vegetation effects, and the mPWP, wherein even the green-
house gas (GHG) forcing is somewhat uncertain, as well as
to older simulations that are designed as a general representa-
tion of interglacial warm periods rather than a specific quasi-
equilibrium climate state.

However, while we may anticipate reality deviating further
from the regression line, it is difficult to quantify such devia-
tion. Here, we perform two sensitivity tests for which we de-
fine σ ∗2 = (2σ )2; that is to say the distribution for the resid-
ual term ε∗ is defined as N (0, (2σ )2) for our predictions. We
consider this to correspond to a rather large inadequacy term.
To compare with our previous analysis, we investigate the ef-
fect of the model inadequacy using the dataset of PMIP2 and
PMIP3 combined for the case of the LGM and the dataset
of PlioMIP1 for the case of the mPWP. For the LGM, the
5 %–95 % posterior range computed after doubling σ is 0.5–
5.8 K, while the 5 %–95 % posterior range for the mPWP
is 0.5–5.4 K. When we consider the “latest model version”
approach outlined in Sect. 3.3 and take the same approach
of doubling the estimated residual, the 5 %–95 % posterior
ranges increase to 0.5–6.3 K for the LGM and a 5 %–95 %
posterior range of 0.4–5.0 K for the mPWP. Thus these sen-
sitivity tests typically involve a change of around half a de-
gree to the upper bound obtained, while having much less
influence on the lower bounds in these examples.

4 Conclusions

Past climates are relevant sources of information on the prop-
erties of the climate system, specifically the equilibrium cli-
mate sensitivity, due to the quasi-equilibrium changes in re-
sponse to external forcing, which are of similar magnitude
as the projected future climate changes. In this study, we
have described a new statistical method based on Bayesian
inference to approach the question of emergent constraints.
We believe this method provides a reasonable representa-
tion within the Bayesian paradigm of the underlying struc-
ture of emergent constraint principles. This Bayesian method
is designed to be as explicit and flexible as possible. Previ-
ous work using ordinary least squares has usually applied
implicit assumptions. Because of these assumptions, pre-
dictions obtained via OLS tend to generate tight posterior
ranges, particularly on the lower end and when the correla-
tion is rather weak; this is something that may well be re-
garded as an artefact of using such a method.

By applying the method to the LGM tropical tempera-
ture model ensemble used in Schmidt et al. (2014), which
included 14 models from the PMIP2 and PMIP3 genera-
tions, we estimate the climate sensitivity to be 2.6 K (0.7–
4.8, 5th–95th percentiles). Similarly, applying the method to
the mPWP tropical temperature dataset of Hargreaves and
Annan (2016) gives a climate sensitivity of 2.4 K (0.5–5.0)
but with the more uncertain ensemble of models which con-
tributed to PlioMIP1.

With the new generation of climate models, LGM and
mPWP analyses have been widened by the addition of sev-
eral CMIP6 model outputs. By adding the PMIP4 LGM sim-
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ulations, we computed a 5 %–95 % interval for climate sen-
sitivity of 0.6–5.2 K. We performed the same analysis by
combining PlioMIP1 and PlioMIP2 models and obtained a
5 %–95 % interval of 0.5–4.4 K. However, these results come
with some caveats attached. In particular, combining the two
model generations of the mPWP could lead to biased re-
sults, since the experimental protocol substantially changed
in PlioMIP2. An alternative approach is to consider solely
the latest version of each model. By doing this we reduce
expected redundancy in the ensemble, and so improve our
confidence in the result despite the smaller ensemble sizes.
This leads to similarly constrained climate sensitivity of 2.7
(0.6–5.2, 5 %–95 %) for the LGM simulations and 2.3 (0.4–
4.5, 5 %–95 %) for the mPWP simulations. Although most of
the computed ranges are wider than the ranges obtained with
OLS or Kalman filtering, the Bayesian framework avoids the
underlying assumptions of both methods and, in particular,
makes us regard the Kalman filtering approach in its cur-
rent form as too restrictive for the question of emergent con-
straints.

Nevertheless, our results obtained by analysing the LGM
or the mPWP in isolation are broadly consistent with results
obtained by other statistical methods used in previous stud-
ies. The differences between the way the information is ob-
tained from the paleo-record for the mPWP and the LGM
and the different dominant climate features of the intervals
suggest it may be reasonable to consider these estimates to
be statistically independent, given climate sensitivity. It is
then possible to combine them within the same Bayesian
framework to compute a narrower range of climate sensitiv-
ity. By doing so, we evaluated the climate sensitivity to be
2.5 K (0.8–4.0, 5 %–95 %). However, this approach requires
independence between the different combined emergent con-
straints.

It is, in principle, straightforward to include other inde-
pendent emergent constraints into our Bayesian framework.
As well as evidence from historical or present-day analyses,
other past climates are starting to be explored by modellers
and may be potential candidates for future analyses, such as
the Eocene, the Miocene, and the last deglaciation. Over the
next couple of years we expect new outputs for models from
CMIP6 and new data analyses to become available, which
will enable these preliminary analyses to be compared with
results from expanded LGM and mPWP ensembles and im-
proved data estimates.
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Appendix A: Conjugate prior approach

In Sect. 3, we introduce the NUTS Markov chain Monte
Carlo method, used with the Python package PyMC3 (Sal-
vatier et al., 2016), to compute the posterior distributions of
α, β, and σ and obtain the likelihood P (Ttropical|S). However,
the likelihood model of the Bayesian linear regression is de-
fined as Ti ∼N (α×Si+β,σ 2), where (Ti,Si) is the Ttropical
and S of the i models. Thus, it is possible to choose con-
jugate priors in this specific case of emergent constraints to
avoid using the complex Hamiltonian-based NUTS method.
We show here that both approaches lead to similar results.

For the case of the mPWP, we defined the priors α ∼
N (1,12), β ∼N (0,12), and σ ∼ half-Cauchy (scale= 5).
Changing the prior σ to another family of distribution, such
as σ ∼ inverse−gamma, leads to a conjugate problem of the
form normal – inverse gamma and allows us to generate a
well-defined form for the posterior distributions of these pa-
rameters.

To illustrate this approach, we use the R implementation
bayesLMConjugate (where LM stands for linear model) of
the package spBayes (Finley et al., 2013, 2014). For clarity,
a code to perform the MCMC approach is also provided in
R based on the package RSTAN (Stan Development Team,
2019). Conjugate approaches are based on defining priors on
the regression parameters conditioned on the (uncertain) er-
ror σ , scaled with a precision matrix 30. As an example, we
define the prior σ ∼ InvGamma (a = 0.5, b = 0.5), where a
represents the shape parameter and b the rate parameter. The
prior matrix of the regression parameters (both intercept and
slope) is then N (µ0,σ

2
×30), where

µ0 =
0
1, the prior mean (A1)

and

30 =
0.5 0
0 0.5, the prior precision. (A2)

The priors provided on the regression parameters in the
MCMC method then need to be modified for comparison
with the conjugate approach, i.e. conditioned on σ itself,
which is straightforward to do thanks to the flexibility of
PyMC3. Running the code is significantly faster than the use
of an MCMC method, and both posterior outputs are com-
pared in Fig. A1. The difference between the two methods is
minimal and is within the range of precision of MCMC. If
we take the full ensemble of PlioMIP1 and PlioMIP2 mod-
els simulating the mPWP, and using the posterior distribu-
tions of α, β, and σ from the conjugate prior method, we
estimate a 95 % S of 2.3 K (0.5–4.4) compared to a similar
value obtained via NUTS. An interesting aspect shown here
is that the computed posterior range for S is similar to the
one computed with the Cauchy and gamma prior, giving us
confidence in the reduced influence of prior distribution in a
well-correlated and large enough ensemble of data.

Figure A1. Posterior distributions of the three parameters α, β, and
σ for the case of combined PlioMIP1 and PlioMIP2 simulating the
mPWP. A resample of two chains in the MCMC method NUTS (in
blue) is compared to the conjugate prior approach (in orange). With
similar prior distributions on α, β, and σ , the differences between
the two methods are minimal.

Although the choice of conjugate priors would simplify
the computation, NUTS (or MCMC methods in general) have
the advantage of allowing an explicit and flexible choice of
priors for the users. Having such flexibility is a vital element
for the analysis presented in this paper. The example taken
here to illustrate the Bayesian framework, i.e. the relation-
ship of Ttropical and S, is a simple linear regression problem.
However, we stipulate that such a framework could be used
in more complex cases, such as higher-complexity emergent
constraint relationships, in which the use of MCMC methods
would become essential.
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Code and data availability. The Python codes used for the dif-
ferent statistical methods are available from the Bolin Centre Code
Repository at https://git.bolin.su.se/bolin/renoult-2020 (last access:
2 July 2020; https://doi.org/10.5281/zenodo.3928315, Renoult and
Annan, 2020). The data of the PMIP2 models can be obtained
by asking the corresponding modelling groups. The data of the
PMIP3 and CMIP6 models can be downloaded from the ESGF Por-
tal at CEDA, located at https://esgf-index1.ceda.ac.uk/ (last access:
14 June 2020). The data of the PlioMIP1 models can be downloaded
from Redmine at the School of Earth and Environment of the Uni-
versity of Leeds, located at https://www.see.leeds.ac.uk/redmine/
public/ (last access: 6 June 2020). For a username and password,
email Alan Haywood (a.m.haywood@leeds.ac.uk). The PRISM3
SST reconstruction can be downloaded from the PRISM/PlioMIP
web page at https://geology.er.usgs.gov/egpsc/prism/1_background.
html (last access: 6 August 2020; files PRISM3_SST_v1.1.nc
and PRISM3_modern_SST.nc). The LGM SAT geological re-
construction can be downloaded from the Supplement of An-
nan and Hargreaves (2013), currently located at http://www.
clim-past.net/9/367/2013/cp-9-367-2013-supplement.zip (last ac-
cess: 14 June 2020). At the time of publication, the data of AWI-
ESM-1-1-LR, INM-CM4-8, MIROC-ES2L, and MPI-ESM1.2-LR
for the LGM and CESM2, EC-EARTH3.3, GISS-E2-1-G, IPSL-
CM6A-LR, and NorESM1-F for the mPWP are available on
ESGF at https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/ (esgf-
index1.ceda.ac.uk node, last access: 14 June 2020).
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