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Abstract. Even the most sophisticated global climate mod-
els are known to have significant biases in the way they
simulate the climate system. Correcting model biases is
therefore an essential step towards realistic palaeoclimatolo-
gies, which are important for many applications such as
modelling long-term ecological dynamics. Here, we evalu-
ate three widely used bias correction methods – the delta
method, generalised additive models (GAMs), and quan-
tile mapping – against a large global dataset of empirical
temperature and precipitation records from the present, the
mid-Holocene (∼ 6000 years BP), the Last Glacial Maxi-
mum (∼ 21000 years BP), and the last interglacial period
(∼ 125000 years BP). In most cases, the differences be-
tween the bias reductions achieved by the three methods are
small. Overall, the delta method performs slightly better, al-
beit not always to a statistically significant degree, at min-
imising the median absolute bias between empirical data and
debiased simulations for both temperature and precipitation
than GAMs and quantile mapping; however, there is consid-
erable spatial and temporal variation in the performance of
each of the three methods. Our data also indicate that it could
soon be possible to use empirical reconstructions of past cli-
matic conditions not only for the evaluation of bias correction
methods but for fitting statistical relationships between em-
pirical and simulated data through time that can inform more
effective bias correction methods.

1 Introduction

Realistic reconstructions of global palaeoclimate are a key
input for modelling many important long-term and large-
scale ecological processes (Eriksson et al., 2012; Timmer-
mann and Friedrich, 2016; Leonardi et al., 2018; Zhu et al.,

2018; Rangel et al., 2018; Beyer et al., 2020). In many
of these applications, climatological normals with variables
such as temperature and precipitation at quasi-equilibrium at
different points in time represent the most relevant climatic
inputs. Simulations of these variables remain subject to sub-
stantial biases when compared to observational data despite
advancements in how complex physical processes are repre-
sented in global climate models (Solomon et al., 2007; Ehret
et al., 2012). Depending on the region of interest, these biases
can be of the order of several degrees of temperature and tens
of percents of precipitation, which can make the difference
between markedly different vegetation types (Kottek et al.,
2006).

Bias correction has received a great deal of attention for
present-day and near-future simulations (Ho et al., 2011;
Maraun and Widmann, 2018), whereas work on palaeocli-
mate simulations has been much more limited. This is partly
due to the different timescale of palaeoclimatological appli-
cations, for which computationally intensive bias correction
methods that are used for the recent past and near future
are not suitable. Three main methods have been applied thus
far to correct biases in climatological normals in the palaeo-
context: the delta method (https://www.worldclim.org/data/
downscaling.html, last access: 11 August 2020, http://www.
paleoclim.org/methods/, last access: 11 August 2020; Arm-
strong et al., 2019), statistical methods based on generalised
additive models (GAMs) (Vrac et al., 2007; Levavasseur
et al., 2011; Woillez et al., 2014; Latombe et al., 2018), and
quantile mapping (Lorenz et al., 2016). The delta method
assumes that biases are location-specific and constant over
time; it uses a map of the local differences between observed
and simulated values in the present day to correct biases in
past simulations (Maraun and Widmann, 2018). GAMs at-

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://www.worldclim.org/data/downscaling.html
https://www.worldclim.org/data/downscaling.html
http://www.paleoclim.org/methods/
http://www.paleoclim.org/methods/


1494 R. Beyer et al.: An empirical evaluation of bias correction methods for palaeoclimate simulations

tempt to represent statistical relationships between present-
day simulated climate variables (as well as other known
physical variables such as elevation and the distance from the
coast) and present-day observed climate and apply these re-
lationships to past simulations to reduce biases (Vrac et al.,
2007; Maraun and Widmann, 2018). Quantile mapping ad-
justs the cumulative distribution of the simulated data by ap-
plying a transformation between the quantiles of present-day
simulated and observed climate to the quantiles of past sim-
ulated climate (Maraun and Widmann, 2018).

Here we combine a set of high-resolution simula-
tions of the climatological means of several tempera-
ture and precipitation variables for the present, the mid-
Holocene (∼ 6000 years BP), the Last Glacial Maxi-
mum (∼ 21 000 years BP), and the last interglacial period
(∼ 125 000 years BP) with a global dataset of empirical cli-
mate reconstructions to evaluate the performance of the delta
method, a GAM-based approach, and quantile mapping in
removing simulation biases. We focus on the global perfor-
mance of the different methods but point out that bias cor-
rection is generally not a one-size-fits-all approach (Maraun
and Widmann, 2018) and that our results do not remove the
need for local re-evaluations of methods in specific continen-
tal and sub-continental regions of interest.

Section 2 provides details of the three bias correction
methods, the climate simulations, and the empirical palaeo-
climate reconstructions used in this study. In Sect. 3, we
quantitatively assess the performance of the methods at the
global scale and with regard to spatial and temporal hetero-
geneities. Section 4 discusses how empirical palaeoclimate
reconstructions could be used not only to evaluate methods
but to help estimate the variation of local model biases over
time, thus combining the strengths of the delta method and
statistical bias correction.

2 Material and methods

2.1 Climate data

2.1.1 Modelled climate data

We used 1.25◦× 0.83◦ resolution palaeoclimate simulations
of monthly mean temperature and monthly precipitation for
the present, the mid-Holocene, and the Last Glacial Maxi-
mum (LGM) from the HadAM3H atmospheric model (Hud-
son and Jones, 2002; Arnell et al., 2003), which is part of
the family of HadCM3 climate models (Valdes et al., 2017).
For the last interglacial period, we do not have simulation
data from HadAM3H, but we used the global climate model
emulator GCMET (Krapp et al., 2019) that is based on the
same model and can make predictions at the same spatial
resolution. In all cases, simulations represent climatological
normals (i.e. 30 year averages) at quasi-equilibrium, follow-
ing a 500 year spin-up period. Based on the monthly data,
we computed the following climate variables for which suit-

able empirical reconstructions are available (see Sect. 2.1.2):
terrestrial mean temperature, marine mean annual tempera-
ture, temperature of the coldest month, temperature of the
warmest month, and annual precipitation. We note that the
results presented here may be specific to the particular cli-
mate simulations considered and may not be generalisable to
other models.

Empirical reconstructions (see Sect. 2.1.2) of terrestrial
temperature variables were compared against simulated tem-
perature at 1.5 m height, while simulated air surface temper-
ature was used as a proxy for sea surface temperature as
sea surface temperature is not part of the HadAM3H out-
put. We removed marine data points for which simulated air
surface temperature was below the freezing point of saltwa-
ter, −1.8 ◦C, as in this case the simulated value corresponds
to the temperature of an ice layer rather than that of the top
layer of water.

2.1.2 Empirical climate data

All bias correction methods considered here are calibrated
based on present-day observational data. For this, we used
monthly terrestrial temperature and precipitation data at a
0.167◦ grid resolution (New et al., 2002) and mean annual
sea surface temperature at a 1◦ grid resolution (Reynolds
et al., 2002), which is representative of 1960–1990. These
maps were remapped to the 1.25◦×0.83◦ grid of the palaeo-
climate simulations by taking the average of the values con-
tained in each target grid cell.

We used global datasets of local empirical palaeoclimate
reconstructions of terrestrial mean annual temperature, tem-
peratures of the coldest and warmest months, and annual pre-
cipitation for the mid-Holocene and the LGM from Bartlein
et al. (2011), reconstructions of mean annual sea surface tem-
perature for the mid-Holocene and the LGM from Hessler
et al. (2014) and Waelbroeck et al. (2009), respectively, and
reconstructions of mean annual terrestrial and sea surface
temperatures for the last interglacial period from Turney
and Jones (2010). Standard errors of reconstructed values
are available for all variables except terrestrial and marine
temperatures during the last interglacial period. Terrestrial
temperature and precipitation reconstructions for the mid-
Holocene and the LGM are available on a 2◦ resolution grid,
and LGM marine temperature reconstructions are provided
on a 5◦ grid. We assigned each sample of these datasets to
the 1.25◦× 0.8◦ grid cell of our palaeoclimate simulations
(see Sect. 2.1.1) that contains the centre of the relevant 2 or
5◦ cell. Reconstructions for the last interglacial period are
not gridded and were assigned to the 1.25◦×0.8◦ grid cell
that contains the sample location. Figs. 3 and 4 visualise the
locations of all empirical reconstructions of terrestrial and
marine mean annual temperatures and annual precipitation.

Empirically derived climate reconstructions can them-
selves be subject to biases and uncertainties which arise at the
different stages of the reconstruction process, from collecting
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the data to computationally converting empirical records to
climate variables. Nonetheless, these data represent the best
empirically based estimates of past climatic conditions avail-
able and the most suitable data for our analysis.

2.2 Bias correction methods

2.2.1 The delta method

The delta method consists of adding the difference between
past and present-day simulated climate to present-day ob-
served climate. As such, the delta method assumes that lo-
cal (i.e. grid-cell-specific) model biases are constant over
time (Maraun and Widmann, 2018). For temperature vari-
ables (including terrestrial and marine mean annual temper-
atures and terrestrial temperature of the warmest and cold-
est months considered here), the bias in a geographical lo-
cation x is given by the difference between present-day ob-
served and simulated temperature, Temp(x,0)− T raw

sim (x,0).
Bias-corrected temperature in x at some time t in the past
is estimated as

T DM
sim (x, t) : = Temp(x,0)+

(
T raw

sim (x, t)− T raw
sim (x,0)

)
= T raw

sim (x, t)+
(
Temp(x,0)− T raw

sim (x,0)
)
. (1)

The second expression illustrates that T DM
sim (x, t) is alterna-

tively obtained by adding the local present-day bias to the
local temperature simulated for time t .

Precipitation is bounded below by zero and covers differ-
ent orders of magnitude across different regions. A multi-
plicative rather than additive bias correction is therefore more
common when applying the delta method for precipitation,
which corresponds to applying the simulated relative change
to the observations (Maraun and Widmann, 2018). Analo-
gous to temperature, debiased precipitation is estimated as

P DM
sim (x, t) : = Pobs(x,0) ·

P raw
sim (x, t)

P raw
sim (x,0)

= P raw
sim (x, t) ·

Pobs(x,0)
P raw

sim (x,0)
. (2)

2.2.2 Statistical models/GAMs

Statistical bias correction methods assume the existence of
a functional relationship between true climatic conditions
(dependent variables) and climate model outputs as well
as additional known forcings such as topography (indepen-
dent variables) (Vrac et al., 2007; Maraun and Widmann,
2018). Transfer functions representing this relationship are
calibrated based on present-day simulated and observed cli-
mate and are then applied to simulations of past climate
to derive bias-corrected data. Generalised additive models
(GAMs) have gained particular popularity as transfer func-
tions (Vrac et al., 2007; Levavasseur et al., 2011; Woillez
et al., 2014; Latombe et al., 2018). They accommodate poten-
tial non-linearities in the response of the individual predic-
tor variables but – owing to the computational requirements

of general high-dimensional non-linear regressions – assume
that the interactions between predictors can be neglected.

For a set of geographical locations x1,x2, . . ., we de-
note by Vemp(xi,0) the present-day observed value of a cli-
mate variable V (representing the relevant temperature and
precipitation variables considered here) in the location xi .
Here, x1,x2, . . . represent the locations of the cells of the
1.25◦× 0.8◦ grid of the climate data (see Sect. 2.1) on land
and in the ocean in the case of terrestrial and marine climate
variables, respectively. In a GAM, the present-day observed
values of V are modelled as the sum of functions of variables
that are available both for the present and the past such as
climate model outputs (typically including the raw simulated
data of the variable in question) and/or certain geographi-
cal or physical quantities that are known across time. We de-
note the values of these predictor variables in the location xi

at time t by XV
1 (xi, t),XV

2 (xi, t), . . .. The XV
j are generally

time-dependent not only when they are climate model out-
puts but also when they represent elevation or the distance
to the coast, which vary over time as a result of sea level
changes. The GAM is defined by the regression

Vemp(·,0)∼
∑
j

fj

(
XV

j (·,0)
)
, (3)

where f1,f2, . . . represent smooth functions that are fitted
to minimise the distance between the left- and right-hand
sides in Eq. (3). Once the model has been calibrated with
the present-day data, it is used to estimate the bias-corrected
values of the climate variable V in the location xi at a point
t in the past as

V GAM
sim (xi, t) :=

∑
j

fj

(
XV

j (xi, t)
)
. (4)

Similar to Latombe et al. (2018), here we used elevation, the
shortest distance to the coast, and simulated temperature as
predictor variables XV

j for temperature variables. Elevation,
the shortest distance to the coast, and simulated annual pre-
cipitation, temperature, (absolute) wind speed, air pressure,
and relative humidity were used as predictor variables for an-
nual precipitation. The functions fi were estimated as piece-
wise third-order polynomials (using thin plate splines did
not change the results) using the mgcv package in R (Wood,
2004).

2.2.3 Quantile mapping

Quantile mapping aims to correct distributional biases in the
simulated climate data. The method consists of first comput-
ing a transformation that maps the quantiles of the cumu-
lative distribution function of all present-day observed val-
ues (i.e. from all land or ocean grid cells) of a climate vari-
able onto the quantiles of the cumulative distribution function
of all present-day simulated values. The derived mapping is
then applied to the cumulative distribution function of all
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simulated values at a given point in the past. For example, let
the cumulative distribution function of the values of present-
day observed terrestrial mean annual temperature (i.e. from
all land grid cells) map the value T1

◦C onto the value q ∈

[0,1], and let the analogous cumulative distribution function
of present-day simulated terrestrial mean annual temperature
map T2

◦C onto q. If the value that is mapped onto q by
the cumulative distribution function of simulated terrestrial
mean annual temperature at a given point in the past is T3

◦C,
then the bias-corrected mean annual temperature in all grid
cells with simulated mean annual temperature T3

◦C at that
point in time is estimated as T3+ (T1− T2) ◦C. Notably, by
design of the method, the cumulative distribution function of
present-day bias-corrected simulated data (i.e. after applying
quantile mapping) is identical to the cumulative distribution
functions of present-day observed values.

Formally, we denote by x1,x2, . . . the centres of the
1.25◦× 0.8◦ grid cells of the climate data (see Sect. 2.1)
on land and in the ocean in the case of terrestrial and
marine climate variables, respectively. For a climate vari-
able V (representing the relevant temperature and precip-
itation variables), we denote by F V

emp[0] the cumulative
distribution function of all present-day empirical observa-
tions, Vemp(x1,0),Vemp(x2,0), . . . (i.e. F V

emp[0] is the func-
tion that monotonically maps these values onto the inter-
val [0,1]). Analogously, we denote by F

V,raw
sim [t] the cu-

mulative distribution function of the raw simulated val-
ues, V raw

sim (x1, t),V raw
emp(x2, t), . . ., at time t . We denote by

F V
emp[0]

−1 and F
V,raw
sim [t]−1 (both mapping [0,1] to R) the in-

verse functions of F V
emp[0] and F

V,raw
sim [t], respectively. With

this notation, F
V,raw
sim [t](V raw

sim (xi, t)) is the quantile corre-
sponding to the value V raw

sim (xi, t) in the set of all simulated
values of the climate variable V at time t . Under quantile
mapping, the function F V

emp[0]
−1
−F

V,raw
sim [0]−1 maps each

quantile to a quantile-specific correction term, which is then
applied to the raw simulation data. Thus, the bias-corrected
value of V in the location xi at time t is estimated as

V
QM
sim (xi, t) := V raw

sim (xi, t)+[
F V

emp[0]
−1
−F

V,raw
sim [0]−1

](
F

V,raw
sim [t]

(
V raw

sim (xi, t)
))

︸ ︷︷ ︸
Correction term specific to the quantile of the valueV raw

sim (xi ,t)

. (5)

2.2.4 Method discussion

All three bias correction methods considered here aim at
minimising biases in past simulated data, but they are based
on different assumptions as to how this aim can best be
achieved. The delta method assumes that the known present-
day model bias is also a good estimate for past model bias.
GAM methods and quantile mapping operate on the premise
that this assumption of the delta method – local biases re-
maining constant over time – is too strong. Instead, GAM
methods assume that a better estimate of past model biases

can be obtained by deriving a statistical relationship between
present-day bias and present-day simulations and then apply-
ing this relationship to past simulations in order to estimate
past bias. Because regressions generally do not fit the data
perfectly, present-day biases modelled by the GAM will not
exactly match the observed biases across all grid cells. Un-
like in the case of the delta method, GAM-corrected present-
day simulations are therefore not identical to the present-
day observed climate. This drawback is accepted under the
assumption that the derived statistical model captures the
mechanisms that underlie local model biases better than the
time-invariant local correction term used in the delta method
and indeed to an extent that results in more accurate esti-
mates of past model biases. Similarly, quantile mapping as-
sumes that the distributional correction of climate quantiles –
whilst, again, not perfectly eliminating biases in present-day
simulations – ultimately represents a better strategy for min-
imising past bias than the rigid local correction of the delta
method.

Another important commonality between the methods is
that they are calibrated only using present-day simulated and
observed data. All three are based on the concept of estab-
lishing a relationship between present-day simulated and ob-
served data and then extrapolating that relationship in order
to estimate past biases. The specific aspect that is assumed to
be invariant over time is the present-day local bias in the case
of the delta method, the regression model linking present-day
simulated and observed data in the case of GAMs, and the
present-day distributional correction in the case of quantile
mapping.

2.3 Method evaluation

Empirical palaeoclimate reconstructions of climatological
normals allow us to assess the performance of different bias
correction methods in removing biases in past simulated
data. In the following, we define the local differences be-
tween empirical reconstructions and bias-corrected simula-
tions for the different climate variables and bias correction
method considered and develop a spatially aggregated mea-
sure to assess the global performance of each method.

We denote by Vemp(x, t) the empirically reconstructed
value of a climate variable V (representing terrestrial mean
temperature, marine mean annual temperature, temperature
of the coldest month, temperature of the warmest month, or
annual precipitation) at a time t in a location x. For a bias
correction method M (representing the delta method, GAM-
based statistical bias correction, quantile mapping), we de-
note by V M

sim(x, t) the simulated value of the climate variable
V at the time t in the location x that was processed using the
method M . The remaining local bias B between the empiri-
cally reconstructed and the bias-corrected simulation data at
time t in the location x is then given by
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BM
V (x, t)=



V M
sim(x, t)−Vemp(x, t)

if V is a temperature variable

V M
sim(x, t)−Vemp(x, t)

Vemp(x, t)
if V is annual precipitation.

(6)

Thus, we used the absolute difference between empirical
and simulated data for temperature variables and the rela-
tive difference in the case of precipitation. We denote by
x

(t,V )
1 ,x

(t,V )
2 , . . . the geographical locations of the available

empirical records at time t for the climate variable V . In
Sect. 3, we provide the complete distributions of the local
biases that were derived for each climate variable, point in
time, and bias correction method. In addition, as a summary
statistic of these distributions and a spatially aggregated mea-
sure for evaluating the performance of each bias correction
method, we used the median of the available local absolute
biases {|BM

V (x(t,V )
i , t)|}i=1,2,.... The median is weighted by

grid cell area for the present and by the local inverse standard
errors of the empirical data for the past. We rescaled the latter
proportionally so that their sum equals 1 and denote the re-
sult by {ωemp(x(t,V )

i , t)}i=1,2,... (i.e.
∑

iωemp(x(t,V )
i , t)= 1).

Formally, the median absolute bias MAB for the variable V

and the bias correction method M at time t is given by

MABM
V (t)=

weighted median
({∣∣∣BM

V

(
x

(t,V )
i , t

)∣∣∣}
i=1,2,...

)
=∣∣∣BM

V

(
x

(t,V )
k , t

)∣∣∣ , (7a)

where the median index k satisfies∑
|BM

V (x(t,V )
i ,t)|<...

|BM
V (x(t,V )

k ,t)|

ωemp

(
x

(t,V )
i , t

)
≤

1
2

(7b)

and ∑
|BM

V (x(t,V )
i ,t)|>...

|BM
V (x(t,V )

k ,t)|

ωemp

(
x

(t,V )
i , t

)
≤

1
2
. (7c)

Thus, the median absolute bias is a measure of the average
difference between empirical and bias-corrected simulated
data. We considered a bias correction method to improve the
raw simulation outputs overall if the associated median ab-
solute bias is smaller than the median absolute difference be-
tween raw simulations and empirical data. The local biases
B in Eq. (6) and the MAB only permit us to assess the per-
formance of the three methods in correcting biases in quasi-
equilibrated climatological normals of the variables consid-
ered here and not of climatic signals that are not captured by
the underlying data such as short-term climatic variability.

We tested whether the median absolute biases associated
with any two bias correction methods, as well as a certain
climate variable and point in time, were statistically signifi-
cantly different under the given uncertainty in the empirical
reconstructions using the following approach. For each cli-
mate variable and point in time, we generated 104 Monte
Carlo realisations of empirical past climatic values in the
locations where reconstructions are available by applying a
normally distributed noise term with mean zero and stan-
dard deviation equal to the error of the local empirical re-
construction to the value provided by the empirical recon-
struction. Next, we calculated the local absolute biases be-
tween these empirical past climatic values and the relevant
simulated values obtained after applying the different bias
correction methods. For each of these 104 sets of local ab-
solute biases between empirical and simulated data, we used
a one-sided Wilcoxon rank sum test to assess whether the
median of the absolute biases associated with one bias cor-
rection method was significantly smaller than that associated
with a different bias correction method (at a 5 % significance
level). We then determined the number of iterations, out of
the total 104 Monte Carlo realisations, in which this was the
case. If, for a given climate variable and point in time, a bias
correction method was found to perform significantly better
than another one in more than half of the realisations, we re-
port this result in Sect. 3.

Debiased simulated data should ideally not contain any
systematic bias in that the median bias MB given by

MBM
V (t)=

weighted median
({

BM
V

(
x

(t,V )
i , t

)}
i=1,2,...

)
, (8)

where the weighted median is calculated analogously as in
Eq. (7a–b), should not differ substantially from zero. In ad-
dition to the median absolute bias (Eq. 7a), we also examined
how the different methods affect the associated median bias
(Eq. 8).

In some applications, the climate change signal, i.e. the
difference between past and present climatic states, may be
more relevant than the climate at a fixed point in time. The
difference between the empirical and the simulated climate
change signal CCB of a climate variable V whose biases
were corrected using method M at a location x and between
the present and time t in the past is calculated as

CCBM
V (x(t,V )

i , t)=

(
V M

sim(x, t)−V M
sim(x,0)

)
−
(
Vemp(x, t)−Vemp(x,0)

)
if V is a temperature variable

V M
sim(x, t)−V M

sim(x,0)

V M
sim(x,0)

−
V M

emp(x, t)−Vemp(x,0)

Vemp(x,0)
if V is annual precipitation,

(9)
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and the median absolute bias associated with the climate
change signal CCMAB is given by

CCMABM
V (t)=

weighted median
({∣∣∣CCBM

V

(
x

(t,V )
i , t

)∣∣∣}
i=1,2,...

)
, (10)

where the weighted median is calculated analogously as in
Eq. (7a–b). We also compared the performance of the three
bias correction methods in terms of this quantity. We did not
determine the median absolute bias for the climate change
signal between different points in the past due to the much
smaller number of empirical records that are available from
the same location across the past and due to the increased un-
certainty in the local empirical climate change signals, which
are given by the sum of the uncertainties in the local recon-
structions of the relevant points in time.

3 Results

Figure 1a–e compare empirically reconstructed and bias-
corrected simulated data for the five climate variables con-
sidered. They show that the biases that remain after applying
a bias correction method are not uniformly distributed across
the range of simulated values. In a number of cases, very
low temperatures in several bias-corrected simulations tend
to be lower than empirically reconstructed values, while very
high temperatures in the simulated data tend to be higher than
what empirical reconstructions suggest (e.g. mid-Holocene
and last interglacial mean annual marine temperature and
mid-Holocene and LGM temperature of the warmest month).
For some bias correction methods, analogous patterns can be
observed in the case of precipitation.

All bias correction methods reduce the median absolute
bias (MAB in Eq. 7a) of present-day simulated data for all
climate variables, as would be expected (Maraun and Wid-
mann, 2018) (Fig. 2). By design, the delta method completely
eliminates all differences between present-day simulated and
observed data. The delta method also provides the strongest
reduction in the median absolute bias for all variables and
points in time except for the temperature of the coldest month
in the mid-Holocene and precipitation in the LGM (Fig. 2).
The comparatively good performance of the delta method
is reflected in strong correlations between present-day and
past model biases, which the delta method assumes to be
similar (Fig. A1). The GAM method and quantile mapping
also generally lead to a reduction in bias although not quite
as strongly overall as the delta method. In a few cases, the
original bias is actually increased after applying a correction
method (Fig. 2).

The above trends in the performances of the different bias
correction methods in terms of the median absolute bias are
not always statistically significant. The median absolute bias
associated with the delta method was significantly smaller
(p < 0.05) than that associated with quantile mapping and

the GAM method for mid-Holocene terrestrial mean annual
temperature (in 96 % and 83 % of Monte Carlo realisations
– see Sect. 2.3 – when compared against quantile mapping
and the GAM method, respectively), marine mean annual
temperature (in 93 % and 89 % of realisations, respectively),
terrestrial mean temperature of the warmest month (in 92 %
and 100 % of realisations, respectively), and precipitation (in
100 % and 100 % of realisations, respectively). The delta
method also performed significantly better than the GAM
method for mid-Holocene terrestrial mean temperature of the
coldest month (86 % of realisations) and significantly better
than quantile mapping for LGM marine mean annual tem-
perature (65 % of realisations). The GAM method performed
significantly better than quantile mapping for LGM precip-
itation (100 % of realisations). By design, the delta method
has a significantly lower median absolute bias (namely zero)
than both other methods for all variables in the present day.

Across time periods, raw simulations tended to underes-
timate terrestrial and marine mean annual temperatures and
terrestrial temperature of the warmest month and overesti-
mated annual precipitation (Fig. A2). These trends are less
present in the bias-corrected data: methods consistently re-
duced the absolute value of the median bias (MB in Eq. 8)
of the raw simulations except in the case of the terrestrial
temperature of the coldest month.

The differences between bias correction methods in terms
of improving the climate change signal (CCMAB in Eq. 10)
are negligible in all scenarios except for marine mean annual
temperature during the Last Glacial Maximum, for which the
GAM method performs slightly better than other methods
(Fig. A3).

The performance of the different methods is not uniform
across space nor time. Figure 3 illustrates this heterogeneity
for the delta method. For example, the delta method signifi-
cantly reduces the original bias of modelled precipitation in
eastern North America in the mid-Holocene but hardly im-
proved the raw simulations in the Sahara, whereas the oppo-
site pattern can be observed at the LGM.

The performances of the methods relative to each other
also vary substantially across both space and time. For exam-
ple, whilst globally the delta method has a slight overall edge
over the GAM approach (Fig. 2), the comparison of the two
methods in Fig. 4 shows that even within small geographi-
cal regions neither method performs consistently better than
the other. Moreover, a better performance of one method in
a certain location at some point in time generally does not
guarantee the same result at a different time. For instance,
the delta method overall reduced the original bias of mod-
elled precipitation more than the GAM approach in eastern
North America during the mid-Holocene but less during the
LGM (Fig. 4).
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Figure 1.
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Figure 1. Comparison of bias-corrected simulated and empirically reconstructed climate variables. (a) Terrestrial mean annual temperature.
(b) Marine mean annual temperature. (c) Mean temperature of the warmest month. (d) Mean temperature of the coldest month. (e) Annual
precipitation. Black lines show 1 : 1 relationships. Red lines and shades show fifth-degree polynomial regressions and 95 % confidence
intervals, respectively.
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Figure 2. Median absolute biases (MAB in Eq. 7a) of the raw and bias-corrected climate simulation data. Error bars represent 25 % and
75 % weighted quantiles of the local absolute biases available for the given climate variable and point in time.

Figure 3. Reduction of the original model bias by the delta method for terrestrial and marine mean annual temperatures and terrestrial annual
precipitation. The lower end of the colour scale was capped at −100 % (i.e. a doubling of the original bias).
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Figure 4. Relative performances of the delta method and the GAM approach in terms of debiasing simulated mean annual temperature (left
column) and annual precipitation (right column). The colour spectrum represents the interval [0,1], and marker colours are calculated as
the ratio of the absolute value of the local bias (Eq. 6) of the GAM-based approach divided by the sum of the absolute local biases of both
methods.

4 Discussion

Whilst, overall, the delta method performs slightly better
at debiasing temperature and precipitation compared to the
GAM-based method and quantile mapping for the empirical
data considered here, we note that this method is only appro-
priate for a given land conformation. Thus, it is only suitable
for the late Quaternary, and, even for this period, changes
in sea levels are problematic as they expose areas for which
there is no bias information. GAMs should, in theory, obviate
this problem by quantifying bias-related processes as statis-
tical relationships; however, whilst this approach might be
the only option for the deeper past, our results point to the
fact that estimating such processes in such a way is challeng-
ing, as demonstrated by its overall inferior performance to
the delta method. A possible limitation of GAMs as currently

applied is that they assume additivity between predictor vari-
ables. By fitting interactions, it would be possible to allow for
more complex processes, but the computational complexity
of interactions with such large datasets is non-trivial.

A major limitation of current approaches for correcting bi-
ases in climate model data is that they all assume bias pat-
terns in present-day climate to be fully representative of the
past (see Sect. 2.2.4). With the progressive increase in the
number of empirical records of past climatic conditions, it
may be possible to soon move from a situation in which past
reconstructions are used to verify bias correction methods (as
we did in this paper) to one in which those data are actively
used to calibrate bias correction methods. Despite large un-
certainties and patterns that are not fully consistent across
time, Fig. 5 suggests an intriguing relationship between the
variation of local model biases across time, on the one hand,

Clim. Past, 16, 1493–1508, 2020 https://doi.org/10.5194/cp-16-1493-2020



R. Beyer et al.: An empirical evaluation of bias correction methods for palaeoclimate simulations 1503

Figure 5. Differences between local past and present model bias (at locations for which empirical reconstructions are available) against
the local simulated climate change signal (i.e. the difference between past and present simulated value) of the variable of interest. Red,
blue, and green markers represent data from the mid-Holocene, the LGM, and the last interglacial period, respectively. Error bars represent
standard errors of the empirical reconstructions. Lines and shades show robust linear regressions and 95 % confidence intervals, respectively.
Whilst weak, the relationships suggest that it may be possible to model some of the variability of local model biases over time using only
the available simulation data. Such an approach could potentially significantly enhance the delta method, which currently operates on the
simplifying assumption that this variability is negligible.

and simulated climate change signals, on the other hand.
Such a relationship could, in principle, be used to refine the
delta method by accounting for the change in local model
biases over time. For example, instead of Eq. (1), we would
have

T DM+
sim (x, t) : = T raw

sim (x, t)+(
Temp(x,0)− T raw

sim (x,0)
)︸ ︷︷ ︸

standard time-invariant delta
method bias correction term

+

f
(
T raw

sim (x, t)− T raw
sim (x,0)︸ ︷︷ ︸

simulated climate
change signal

, . . .︸︷︷︸
additional
predictor
variables

)
︸ ︷︷ ︸

time-variable correction term

, (11)

where f represents a non-linear regression model satisfying
f |t=0 = 0. A robust statistical model f will require not only
additional data from currently under-represented geographi-
cal areas (specifically the Southern Hemisphere) but also the
curation of empirical reconstructions, as successfully done

for the last millennium (Hakim et al., 2016; Tardif et al.,
2019).

Such an approach would tie in with data assimilation
methods, which also use empirical climate proxy records to
improve climate simulations. These methods have been used
to estimate global climate variables at times at which the
quantity and spatial coverage of available empirical records
is high enough to allow a robust calibration of the relevant
computational methods. As a result, they have focussed ei-
ther on single points in the past, such as the mid-Holocene
(Mairesse et al., 2013) or Last Glacial Maximum (Kurahashi-
Nakamura et al., 2017), or on time intervals across which
suitable empirical data are available, namely the last millen-
nium period (Tardif et al., 2019; Goosse, 2017). In contrast
to the aforementioned approaches, based on Fig. 5 we sug-
gest that it may be possible to use empirical reconstructions
even from only a small set of points in time (e.g. the present,
mid-Holocene, LGM, and last interglacial period) to param-
eterise a statistical model of the temporal variation of local
biases that could be used to improve simulated data at any
time point in the Late Pleistocene–Holocene period.
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5 Conclusions

Our comparison of global debiased palaeosimulation data
and empirical reconstructions suggests that, despite its con-
ceptual simplicity, the delta method is a good starting point
for the bias correction of simulated late Quaternary climate
data at a global scale, providing slightly stronger bias re-
ductions compared to GAMs and quantile mapping. How-
ever, given the lack of statistical significance of the supe-
rior performance in some cases and the considerable vari-
ability in the effectiveness of the three methods across dif-
ferent locations and points in time, we echo earlier proposi-
tions that studies focussing on specific regions require case-
by-case assessments of which bias correction method is most
suitable for improving palaeoclimate simulations (Maraun
et al., 2017). We also reiterate that our results may be dif-
ferent for other palaeoclimate simulations than the ones used
here. Finally, it is important to bear in mind that bias correc-
tion methods are unable to substantially correct a fundamen-
tally poor climate model, e.g. with strong circulation biases,
which such methods are not capable of removing (Maraun
et al., 2017). Seeking to improve the representation of cli-
mate dynamics in simulation models therefore remains a pri-
ority alongside the development of bias correction methods.

A key limitation of all three methods considered here is
their assumption that present-day patterns between simulated
and observed climate can be extrapolated to estimate model
biases in the past. High uncertainties and the spatial and tem-
poral sparseness associated with currently available empiri-
cal palaeoclimate datasets will likely impede a robust assimi-
lation of these data into bias correction methods at this stage;
however, our data indicate that the increasing quantity and
quality of global proxy records could soon make it possible
to use empirical reconstructions in the development of im-
proved methods that effectively account for the variation of
local model biases through time.
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Appendix A

Figure A1. Comparison of present-day and past model biases (which the delta method assumes to be similar) from locations where empirical
reconstructions are available. Lines represent 1 : 1 relationships.

Figure A2. Median biases (MB in Eq. 8) of the raw and bias-corrected climate simulation data. Error bars represent 25 % and 75 % weighted
quantiles of the local biases available for the given climate variable and point in time.
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Figure A3. Median absolute biases of the climate change signal (CCMAB in Eq. 10). Error bars represent 25 % and 75 % weighted quantiles
of the local absolute climate change biases available for the given climate variable and point in time.
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