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Abstract. Proxy records represent an invaluable source of
information for reconstructing past climatic variations, but
they are associated with considerable uncertainties. For a sys-
tematic quantification of these reconstruction errors, how-
ever, knowledge is required not only of their individual
sources but also of their auto-correlation structure as this de-
termines the timescale dependence of their magnitude, an is-
sue that has been often ignored until now. Here a spectral
approach to uncertainty analysis is provided for paleoclimate
reconstructions obtained from single sediment proxy records.
The formulation in the spectral domain rather than the time
domain allows for an explicit demonstration and quantifi-
cation of the timescale dependence that is inherent in any
proxy-based reconstruction uncertainty. This study is pub-
lished in two parts.

In this first part, the theoretical concept is presented, and
analytic expressions are derived for the power spectral den-
sity of the reconstruction error of sediment proxy records.
The underlying model takes into account the spectral struc-
ture of the climate signal, seasonal and orbital variations, bio-
turbation, sampling of a finite number of signal carriers, and
uncorrelated measurement noise, and it includes the effects
of spectral aliasing and leakage. The uncertainty estimation
method, based upon this model, is illustrated by simple ex-
amples. In the second part of this study, published separately,
the method is implemented in an application-oriented con-
text, and more detailed examples are presented.

1 Introduction

The central issues of climate sciences include the estimation,
understanding, and prediction of climatic variations across
ranges of space and timescales that are relevant to the spe-
cific field of study. From an inductive perspective, such stud-
ies are necessarily based on observational data which the
variability may be estimated from, whereas from a deduc-
tive perspective observational data are needed in the course
of the validation of theories and models. For certain fields of
study, instrumental or satellite data may provide a useful data
source. Nonetheless, once processes are studied that involve
climate states or variations at times before the instrumental
era or that involve timescales longer than this, reconstruc-
tions obtained from paleoclimate proxies become indispens-
able. Such proxy records reveal imprints of past climatic con-
ditions created by, for example, impacts on the calcification
of the shells of marine organisms (Nürnberg et al., 1996),
now preserved in sea sediments, on terrestrial pollen assem-
blages archived in lake sediments (Birks and Seppä, 2004), or
on stable water isotopes that can be recovered from ice cores
(Jouzel et al., 1997). Proxy-based reconstructions, however,
are associated with notable uncertainties that are often much
larger than those of instrumental data (Münch and Laepple,
2018; Reschke et al., 2019) and that can emerge from a va-
riety of sources – they are essentially highly noisy and dis-
torted observations of selected climate variables. Hence, an
important task of the paleoclimate research field is to pro-
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vide thorough quantitative estimates of these reconstruction
uncertainties.

Reconstruction uncertainties may arise, for example, dur-
ing the sampling and measurement procedure associated with
measurement errors occurring in the laboratory (Rosell-Melé
et al., 2001; Greaves et al., 2008) and with aliasing of vari-
ability from frequencies higher than those resolved (e.g.,
from El Niño–Southern Oscillation, ENSO, or the seasonal
cycle; see, for example, Thirumalai et al., 2013; Laepple
et al., 2018). Uncertainties may also arise from archive for-
mation processes associated with errors induced by smooth-
ing processes like bioturbation affecting sediment archives
(Berger and Heath, 1968; Goreau, 1980) or diffusion within
ice cores (Johnsen, 1977; Whillans and Grootes, 1985), with
proxy seasonality (Jonkers and Kučera, 2015) potentially
interacting with modulations of the seasonal cycle ampli-
tude caused by slow orbital variations (Huybers and Wun-
sch, 2003; Laepple et al., 2011), and with uncertainties in the
understanding of the climate–proxy relationship (including
calibration errors; Tierney and Tingley, 2014). Further un-
certainty sources may exist depending on the type of proxy
used.

It turns out that a careful and systematic investigation of
these reconstruction uncertainties is indispensable if we are
to properly exploit the source of information contained in
proxy archives, for such important issues like the estimation
of the future evolution of natural and forced climate vari-
ability. Until now, however, reconstruction uncertainty es-
timates have often lacked the required accuracy (Lohmann
et al., 2013; Reschke et al., 2019). In particular, one issue that
deserves more detailed consideration is the timescale depen-
dence of the reconstruction uncertainties (Amrhein, 2020).
Although some of their sources like measurement errors
will often be independent and, thus, uncorrelated between
individual measurements, others like smoothing processes
and orbital variations, in conjunction with proxy seasonal-
ity, have the potential to create serially correlated uncertain-
ties (i.e., they are auto-correlated in the time domain). Thus,
some uncertainty components may be described by white
noise, while others may have the properties of red noise or
an even more complex auto-correlation structure. The direct,
and practically relevant, implication of this is the fact that,
when averaging the proxy-based climate reconstruction over
some time interval (e.g., by applying a moving average fil-
ter), the uncertainties may shrink at a different rate than if
they were purely white noise.

One possibility to estimate the auto-correlation structure
of reconstruction uncertainties is in the application of proxy
forward models that generate proxy time series from climate
(model) time series (see, for example, Evans et al., 2013;
Dee et al., 2015; Dolman and Laepple, 2018). Specifically,
the auto-correlation structure may then be inferred from en-
sembles of such simulated proxy time series. This approach
is flexible regarding the complexity of the uncertainty-
generating processes included in the model, but the insights

gained from its application are limited by the fact that it rep-
resents a trial-and-error strategy. Moreover, the involved nu-
merical simulations easily become computationally expen-
sive. Therefore, it is useful and desirable to complement this
with an alternative approach that allows for a systematic un-
derstanding of the auto-correlation structure of the recon-
struction error components from an analytic point of view.

Accordingly, the aim of this paper is to provide a con-
ceptual approach and, based thereon, an analytically derived
method to estimate timescale-dependent reconstruction un-
certainties for the example of sediment archives. Specifically,
the method yields uncertainty estimates having been given a
set of parameters that specify (i) the spectral structure of a
supposed true climate signal, (ii) seasonal and orbital vari-
ations, (iii) proxy seasonality, (iv) bioturbation, (v) archive
sampling parameters, (vi) sampling of a finite number of sig-
nal carriers, and (vii) uncorrelated measurement noise, and it
takes into account the effects of spectral aliasing and leakage.
The fact that archive smoothing is represented by bioturba-
tion limits the validity of the method in its current form to
proxy archives from sea and lake sediments. However, it has
the potential to be generalized to other sedimentary archives
such as ice cores by modifying the smoothing operator to
represent isotopic diffusion.

The pivotal idea of our approach to address the timescale
dependence of the uncertainty is in the derivation of its
power spectrum since the spectrum is directly related (by the
Wiener–Khintchine theorem; see Priestley, 1981) to the auto-
correlation structure which, in turn, determines how the un-
certainty scales with timescale (e.g., the length of an averag-
ing interval). The convenience of the obtained mathematical
expressions for the uncertainty power spectrum is twofold:
(a) they can be used to acquire a qualitative understanding
of the effects and relative importance of the various sources
of uncertainty, and (b) they can serve to obtain quantitative
uncertainty estimates for specific practical applications in pa-
leoclimate science.

Part 1 of this study provides the theoretical basis of the
uncertainty estimation method. In Sect. 2, the underlying
reconstruction uncertainty model is defined in the time do-
main. Section 3 translates the model into the spectral do-
main by deriving the corresponding uncertainty power spec-
trum. Section 4 summarizes the results and demonstrates
how timescale-dependent uncertainties can be obtained from
the spectrum. The method and its limitations are discussed in
Sect. 5, followed by the final conclusions in Sect. 6. Part 2
of this study, published separately (see Dolman et al., 2020),
demonstrates the practical applicability of the method and
also provides a software implementation for practical uncer-
tainty estimation purposes, the so-called Proxy Spectral Er-
ror Model (PSEM).
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2 Reconstruction uncertainty model

Before we can formulate our timescale-dependent uncer-
tainty estimation method, we have to provide a precise def-
inition of the underlying reconstruction uncertainty model,
including our assumptions and simplifications that allow for
an analytic treatment of the problem. Specifically, in order to
define the uncertainty model, we need to

– suppose a structure of the true climate signal, which
the final uncertainty estimates will be based upon, be-
cause some uncertainty components and their timescale
dependence are subject to that structure;

– make simplifying assumptions regarding the archive
formation, concerning proxy seasonality, the climate–
proxy relationship, the sediment accumulation rate, and
the effects of bioturbation mixing;

– specify the archive sampling and measurement proce-
dure;

– define the reconstruction error as the difference between
the obtained climate reconstruction and a suitable refer-
ence climate;

– define the reconstruction uncertainty in terms of the ex-
pected value of the squared reconstruction error.

Accordingly, the reconstruction uncertainty model can be
thought of, conceptually, as an operator that takes as its argu-
ments the supposed structure of the true climate signal and a
set of parameters that appear in the mathematical formulation
of the abovementioned assumptions. The remainder of this
section is concerned with the details of the abovementioned
five steps, including an explanation of the involved parame-
ters. A complete list of the model parameters is provided in
Appendix B. For possible sources and specific choices of pa-
rameter values, see Part 2 of this study (Dolman et al., 2020)
and, in particular, its Table 1. Note that the reconstruction
uncertainty model defined in this section is closely related to
the proxy forward model of Dolman and Laepple (2018).

2.1 Climate signal

We assume that the supposed true climate signal consists of
two components: a stochastic signal X(t) that represents the
signal to be reconstructed from the proxy record and a de-
terministic signal Y (t) that represents the seasonal cycle, the
amplitude of which is modulated by slow orbital variations.
In addition, we make the simplifying assumption that X(t)
and Y (t) are stochastically independent.

The stochastic signal X(t) is modeled as a zero-mean
stochastically continuous stationary random process with in-
finite and continuous time parameter t , which has a purely
continuous power spectrum (i.e., the spectrum has no discrete
components). The actual structure of X(t) is to be specified

in the spectral domain (see Sect. 3), and the uncertainty esti-
mation method is constructed such that any spectral structure
can be specified as long as it is consistent with the abovemen-
tioned properties ofX(t). An illustration of one realization of
such a random process is given by the gray–red line in Fig. 1b
(obtained from a surrogate time series that obeys a simple
power-law frequency scaling). It can be thought of as a time
series of anomalies of a climate signal after the removal of
the climatological seasonal cycle.

The deterministic signal Y (t) is modeled as a single har-
monic oscillation that represents a simplified seasonal cycle,
which is amplitude modulated by another single harmonic
oscillation with a much longer period. Thus, Y (t) has a purely
discrete power spectrum. Such a deterministic signal can be
written as

Y (t)= σc
√

2cos(φc+ 2πνct)
[
1+ σa

√
2cos(φa+ 2πνat)

]
, (1)

where νc = (1yr)−1 and νa� (1yr)−1 are the frequencies
of the seasonal cycle and of its slow amplitude modulation,
respectively, σ 2

c and σ 2
a are the corresponding variances of

those oscillations, and φc and φa are their phases. The square
bracket term represents the amplitude modulation factor that
specifies the time-varying envelope of the seasonal cycle os-
cillation. Note that σc has the same units as X(t) and Y (t),
whereas σa is dimensionless as it determines the fraction by
which the amplitude of the seasonal cycle varies. In particu-
lar, σc

√
2 is the half-amplitude of the unmodulated seasonal

cycle, and σa
√

2 is the fraction by which the seasonal cycle
amplitude changes over an orbital modulation cycle. Further-
more, it is required that σa

√
2< 1, or equivalently σ 2

a < 1/2,
to avoid flipping seasons by a negative amplitude modula-
tion factor (which would correspond to unrealistically strong
effects of orbital variations). The deterministic signal is il-
lustrated by the gray–red line in Fig. 1c. Note that only for
the purpose of illustration has the modulation frequency been
set to νa = (130yr)−1 in this figure, although a realistic value
would be νa = (23kyr)−1, for example, if it were to represent
an idealized planetary precession cycle.

2.2 Archive formation

To reflect proxy seasonality, we assume a seasonally con-
fined time window during which the proxy is abundant. Thus,
the climate signal and, in particular, the seasonal cycle are
recorded only during those seasons. The length of this proxy
abundance window is specified by the parameter τp, and the
timing of the center of this window with respect to the sea-
sonal cycle is specified by φc, as it appears in Eq. (1). Ac-
cordingly, if φc = 0, then the abundance window is centered
at the maximum of the seasonal cycle (i.e., the summer sea-
son if the climate signal X(t)+Y (t) represents temperature,
for example), setting φc =±π/2 centers the window at ei-
ther of the zero crossings (spring or autumn), φc = π at the
minimum (winter), and likewise for all other phases. The sea-
sonality parameters are required to fulfill the relations τp ≤
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Figure 1. Schematic illustration of the reconstruction uncertainty model. (a) Probability density function (as a function of time lag) that
describes the combined effects of bioturbation (with timescale τb), of sediment sample thickness, and of proxy seasonality. (b) Stochastic
component X(t) of the climate signal (gray line) with dates highlighted in red that fall into the proxy abundance window (of length τp)
to reflect proxy seasonality. Blue rectangles indicate time intervals of length τs covered by the sediment slices. From each slice a finite
number of signal carriers (N = 3 in this example) are retrieved from random positions within the slice indicated by the blue dots, each of
which carries the signal from the time at which it settled down on the surface of the sediment before it was mixed to its current position
by bioturbation (indicated by black arrows for the central slice). Green squares indicate the reference climate signal obtained by averaging
X(t) over intervals of length τr as indicated by the green line for the central point. (c) Same as (b) but for the deterministic component
Y (t), which represents the amplitude modulated seasonal cycle. (d) Total reconstructed signal (blue) obtained by averaging over the N signal
carriers from each slice, reference climate signal (green), and the difference between them (magenta) that represents the reconstruction error
at a sampling interval 1t . Measurement errors are neglected in this illustration. Timescale parameters are set to τb = 10 years, τs = 5 years,
τr = 9 years, 1t = 9 years, and τp = 1/3 year.

1 year and −π < φc ≤ π . If τp = 1 year, there is no season-
ality and the parameter φc has no effect. Since in this formu-
lation τp and φc are fixed, the abovementioned assumptions
imply that we are neglecting any changes of proxy season-
ality caused by, for example, habitat tracking. Specifically,
there is no adaptation of proxy seasonality to changes in the
seasonal cycle amplitude nor to variations of the stochastic
component of the climate signal at any timescale. The ef-

fect of proxy seasonality defined in this way is illustrated in
Fig. 1b and c by the red line segments which highlight that
part of the signal that is recorded by the proxy. In this exam-
ple, the proxy abundance window is set to cover the seasons
around the maximum of the seasonal cycle.

In the following, we also neglect any uncertainties regard-
ing the climate–proxy relationship, including calibration er-
rors. Furthermore, we assume a known and constant sedi-
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ment accumulation rate. Thus, we will treat all signals simply
as a function of time and assume that the constant time–depth
relationship is given as independent information.

Signal smoothing by sediment mixing caused by biotur-
bation is assumed to occur instantly and uniformly within
the uppermost layer of the sediment. The thickness of this
layer, the bioturbation depth, can be divided by the sediment
accumulation rate to obtain the corresponding bioturbation
timescale τb. Under the aforementioned assumptions, the ef-
fects of bioturbation can be described by a probability den-
sity function (PDF) of the form (Berger and Heath, 1968)

fb(ε)=
{
τ−1

b exp
[
(ε− τb)/τb

]
if ε ≤ τb

0 otherwise
, (2)

where ε has units of time. This PDF specifies at which proba-
bility a single signal carrier, retrieved from the archive at po-
sition t = t0, has settled down on the surface of the sediment
and, thus, has recorded the climate signal at a given time
t = t0+ ε. Essentially, it states that a signal carrier retrieved
at t = t0 cannot have its origin at times later than t = t0+ τb
but that it can have its origin arbitrarily far in the past rela-
tive to t0, although with exponentially decreasing probability.
Thus, ε can be interpreted as the timing error caused by bio-
turbation that is associated with the signal recorded by an
individual signal carrier. In Fig. 1b and c, the effect of bio-
turbation is illustrated by the black arrows, indicating the net
mixing paths (i.e., the timing errors ε) of three selected signal
carriers (blue dots).

2.3 Sampling and measurement procedure

We assume that the archive is sampled by taking slices of
sediment, the thickness of which corresponds to time inter-
vals of length τs and which are taken at distances (measured
from center to center) corresponding to a sampling interval
1t . This sampling procedure is illustrated in Fig. 1b and c
by the blue rectangles, indicating individual sediment slices.
The total length of the record is denoted by T . For mathe-
matical reasons that become apparent in Sect. 3, it is required
that T is a multiple of 1t , and that 1t and τs are multiples
of 1 year. Setting τs <1t corresponds to discontinuous sam-
pling, τs =1t to continuous sampling, and τs >1t to sam-
pling with overlap. The effects of these cases are discussed
by Amrhein (2020).

Because signal carriers are retrieved from arbitrary posi-
tions within each slice, the effect of the sediment sample
timescale τs can be described by convolving the bioturbation
PDF fb(ε) with a slice PDF that has the shape of a moving
average window,

fs(ε)= τ−1
s 5(ε;τs), (3)

and which is essentially blurring the edge of fb(ε). The sym-
bol 5(t;τ ) denotes the rectangle function

5(t;τ )=
{

1 if − τ/2< t ≤ τ/2
0 otherwise . (4)

Thus, the PDF of the timing errors, which describes the com-
bined effects of bioturbation and of sampling slices of sedi-
ment, can be written as

fbs(ε)= fs(ε)∗fb(ε). (5)

Hence, if there were no bioturbation (τb→ 0) and if sin-
gle signal carriers were retrieved from infinitesimally thin
slices (τs→ 0), then this PDF would reduce to a Dirac
delta function, fbs(ε)→ δ(ε), in which case the abovemen-
tioned sampling procedure would yield the discrete climate
signal Xn+Yn =X(tn)+Y (tn), where tn = n1t (with n=
0,±1,±2, . . .). In the general case with τb > 0 and τs > 0,
we can express the result of the sampling procedure as a dis-
crete signal with jittered sampling,

X
(j )
n +Y

(j )
n =X

(
tn+ ε

(j )
n

)
+Y

(
tn+ ε

(j )
n

)
, (6)

with ε(j )
n ∼ fbs(ε) and ε(j )

n representing the sampling jitter
and fbs(ε) the jitter PDF. In the abovementioned terminol-
ogy, ε(j )

n represents the timing error of a single signal carrier
(labeled j ) retrieved from a slice centered at t = tn.

Finally, we need to include the effect of proxy season-
ality as defined in the previous subsection. This is accom-
plished through multiplying fbs(ε) by a proxy seasonal-
ity function p(ε) which is given by the convolution of the
Dirac comb function III(ε;ν−1

c ) with the rectangle function
(τpνc)−15(ε;τp),

p(ε)=
(
τpνc

)−1
5
(
ε;τp

)
∗III

(
ε;ν−1

c

)
=
(
τpνc

)−1
∞∑

k=−∞

5
(
ε− kν−1

c ;τp

)
, (7)

where the Dirac comb function III(t;τ ) is defined as a series
of Dirac delta functions δ(t):

III(t;τ )=
∞∑

k=−∞

δ(t − kτ ). (8)

It turns out that in the limit of vanishing proxy seasonal-
ity (τp→ 1 year), the proxy seasonality function becomes
constantly one, p(ε)→ 1, whereas in the limit of maxi-
mum proxy seasonality (τp→ 0), the proxy seasonality func-
tion reduces to the Dirac comb function, p(ε)→ III(ε;ν−1

c ).
From the above, the discrete climate signal, obtained from
the sampling procedure, may still be written as in Eq. (6) but
with the sampling jitter,

ε
(j )
n ∼ p(ε)fbs(ε), (9)

now being drawn from the full jitter PDF, p(ε)fbs(ε), which
describes the combined effects of bioturbation, of sampling
slices of sediment, and of proxy seasonality. The proof that
the full jitter PDF defined in this way integrates to unity fol-
lows in Sect. 3. The structure of the full jitter PDF is illus-
trated in Fig. 1a.
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In practice, a finite number, N ≥ 1, of signal carriers is
retrieved from each sediment slice rather than just a single
signal carrier, and subsequently a single proxy measurement
is performed in the laboratory on the collection of those N
signal carriers, which represent an average proxy value. This
can be expressed as

Xn+Y n =
1
N

N∑
j=1

[
X

(j )
n +Y

(j )
n

]
. (10)

In addition, we assume that the involved sampling jitter ε(j )
n

is uncorrelated (i.e., white) in terms of both n and j :

Cor
(
ε

(j )
n ,ε

(j ′)
n′

)
= 0 if n 6= n′ or j 6= j ′, (11)

which reflects our assumption that the bioturbation mixing
paths of the individual signal carriers within the sediment do
not affect each other. Furthermore, it is required that ε(j )

n is a
stationary process to reflect our assumptions of a fixed bio-
turbation depth and a constant sediment accumulation rate.
Finally, we take ε(j )

n as independent of X(t) and Y (t), which
corresponds to the assumption that bioturbation does not de-
pend on the climate.

In general, each laboratory measurement is associated with
a measurement error µn, the magnitude of which may be
characterized in terms of its variance σ 2

µ. Thus, the final re-
construction time series is given by Xn+Y n+µn, although
we will omit µn in the following as it is assumed to be white
noise and can thus easily be added at the very end of the en-
tire uncertainty estimation procedure.

2.4 Definition of reconstruction error

The reconstruction error can now be defined as the difference
between the obtained climate reconstruction (Eq. 10) and a
suitable reference climate:

X̃n+ Ỹn = X̃(tn)+ Ỹ (tn), (12)

where

X̃(t)+ Ỹ (t)= τ−1
r 5(t;τr)∗[X(t)+Y (t)] (13)

is the supposed true climate signal smoothed with a moving
average filter with timescale τr, which is then subsampled at
the same discrete times tn. Here we require that τr is a mul-
tiple of 1 year such that Ỹn = 0 because it is then an average
over a number of complete seasonal cycles. Thus, we obtain
the reconstruction error time series

En = EX,n+EY,n (14)

with the error components

EX,n =Xn− X̃n and EY,n = Y n. (15)

An example of one realization of the discrete climate recon-
struction (Eq. 10), reference climate (Eq. 12), and reconstruc-
tion error time series (Eq. 14) is illustrated in Fig. 1d.

2.5 Definition of reconstruction uncertainty

The reconstruction errorEn refers only to a single realization
of the stochastic processes X and ε, which are specified in
terms of their power spectral density and PDF, respectively.
Thus, to obtain a suitable measure of the reconstruction un-
certainty that characterizes the magnitude of possible errors
under the specified stochastic properties of X and ε, we de-
fine the root mean square (rms) reconstruction error En by

E2
n =

〈〈
E2
n

〉
X

〉
ε
, (16)

where 〈·〉X and 〈·〉ε denote the expected value operators
with respect to X and ε, respectively. Then substitution from
Eq. (14) yields

E2
n =

〈〈
(EX,n+EY,n)2〉

X

〉
ε
=
〈〈
E2
X,n

〉
X

〉
ε
+
〈
E2
Y,n

〉
ε
, (17)

becauseX and Y are assumed to be independent and because
X is a zero-mean process, which is to say 〈X〉X = 0 and, thus,
〈〈EX,n〉X〉ε = 0.

As will be shown in Sect. 3, EX,n can be decomposed into
two uncorrelated zero-mean stationary components: EX,n =
FX,n+WX,n such that FX,n can be expressed as the result
obtained by bandpass filtering the signal X(t) in time and
then subsampling it at the discrete times tn, and WX,n is a
white noise process. Furthermore, it will be shown that EY,n
can be decomposed into two uncorrelated and generally non-
stationary components: EY,n = FY,n+WY,n such that FY,n
can be expressed as the result obtained by filtering and then
subsampling the signal Y (t), and WY,n is a zero-mean white
noise process. Thus, we can write

E2
n =

〈〈
F 2
X,n

〉
X

〉
ε
+
〈〈
W 2
X,n

〉
X

〉
ε
+F 2

Y,n+
〈
W 2
Y,n

〉
ε
, (18)

where FY,n is a deterministic signal.
In addition to the uncertainty caused by the stochasticity of

X and ε, we can in principle equip any of the model param-
eters with its own uncertainty and investigate how this con-
tributes to the obtained reconstruction uncertainty. In the fol-
lowing, we apply this procedure to the seasonal phase φc as
the seasonal timing of the proxy abundance is often a poorly
constrained parameter. For this purpose, we need to specify a
corresponding PDF of the seasonal phase. For simplicity, we
choose the wrapped uniform PDF

fφc (φc)=
1∑

k=−1
1−1
φc
5
(
φc−〈φc〉φc + 2πk;1φc

)
, (19)

with −π < φc ≤ π , the expected seasonal phase −π <
〈φc〉φc ≤ π , and the seasonal phase uncertainty 0≤1φc <

2π . Note that setting 1φc = 2π does not imply vanish-
ing proxy seasonality (as this is expressed by setting τp =

1 year), but it merely means that the seasonal timing of
the proxy abundance window is completely unknown. The
model parameters to be specified are now 〈φc〉φc and 1φc

(see also Appendix B) rather than the single parameter φc,
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which is treated as unknown according to fφc (φc). Now, to
include the effect on the reconstruction uncertainty, we re-
define the rms reconstruction error En by applying the addi-
tional expected value operator 〈·〉φc with respect to φc to the
right-hand side of Eq. (16) or likewise Eq. (18). SinceX does
not depend on φc, we obtain

E2
n =

〈〈〈
E2
n

〉
X

〉
ε

〉
φc

(20)

=
〈〈
F 2
X,n

〉
X

〉
ε
+
〈〈
W 2
X,n

〉
X

〉
ε
+
〈
F 2
Y,n

〉
φc
+
〈〈
W 2
Y,n

〉
ε

〉
φc
. (21)

Hence, by noting that 〈F 2
Y,n〉φc = 〈FY,n〉

2
φc
+Var(φc)(FY,n), we

can finally write

E2
n = B2

n+U2
n , (22)

with the squared reconstruction bias,

B2
n =

〈
FY,n

〉2
φc
, (23)

and the squared reconstruction uncertainty,

U2
n = U2

(1)+U2
(2)+U2

(3),n+U2
(4),n, (24)

the components of which are given by

U2
(1) = Var(X,ε) (FX,n), U2

(2) = Var(X,ε) (WX,n),

U2
(3),n = Var(φc) (FY,n), U2

(4),n =
〈
Var(ε) (WY,n)

〉
φc
. (25)

Note that from U2
(1) and U2

(2) the time index n has been
dropped to indicate the stationarity of these uncertainty com-
ponents. It turns out that E2

n represents the expected power
of the reconstruction error at a given time tn, which, accord-
ing to Eq. (22), is decomposed into the power B2

n contained
in the reconstruction bias and the variance U2

n that quantifies
the scatter around the bias.

The individual components are to be interpreted as fol-
lows: the component U(1) quantifies the reconstruction uncer-
tainty that arises from the difference between (i) the smooth-
ing effect on X(t) caused by bioturbation and by sampling
from slices of sediment and (ii) the smoothing effect on X(t)
caused by the moving average window used to obtain the
reference climate. Since the two smoothing effects repre-
sent low-pass filters with different cut-off frequencies, they
act together as a bandpass filter on X(t) (as shown by Am-
rhein, 2020). This uncertainty component represents the total
smoothing effect in the limit of infinitely many signal carri-
ers being retrieved from each slice of sediment (N→∞).
If only a finite number of signal carriers is retrieved from
each slice, there is an additional residual that is not averaged
out in this case. This residual is quantified by the component
U(2). Likewise, the component U(4),n quantifies the additional
residual that arises from sampling only a finite number of
signal carriers but now pertains to the deterministic signal
Y (t). This residual component also depends on the timing of
the seasonal proxy abundance and its uncertainty, as speci-
fied by Eq. (19), because of the non-linear relation between

the variance, aliased from the seasonal cycle, and the sea-
sonal timing. Because the seasonal cycle amplitude is mod-
ulated over time by orbital variations, this uncertainty com-
ponent is nonstationary. On the other hand, in the limit of
infinitely many signal carriers, the smoothing effects on Y (t)
leave nothing but a deterministic bias that obtains its only un-
certainty, quantified by U(3),n, from the seasonal timing un-
certainty. Finally, when averaging this bias across all possi-
ble seasonal timings that are allowed according to Eq. (19),
a purely deterministic error component is obtained which is
quantified by the reconstruction bias Bn. Further clarification
of these interpretations will emerge in Sect. 3.

Now, in order to formulate our timescale-dependent un-
certainty estimation method, we need a spectral representa-
tion of the expected power E2

n . We will achieve this by de-
riving the power spectral density of the reconstruction error
En separately for its individual components to obtain spec-
tral representations of the squared reconstruction uncertainty
components U2

(1), U
2
(2), U

2
(3),n, U2

(4),n, and of the squared re-
construction bias B2

n. This task is addressed in the following
section. The reader who does not intend to follow the en-
tire derivation may proceed directly to Sect. 4, which sum-
marizes the main results of Sect. 3 and then illustrates the
method based thereon for estimating timescale-dependent re-
construction uncertainties.

3 Spectral representation of reconstruction
uncertainty

The reconstruction uncertainty model, defined in the previ-
ous section, is now translated into the spectral domain. Since
the two components of the supposed true climate signal have
different properties – in the sense that X(t) is a stationary
random process with a continuous power spectrum, whereas
Y (t) is an nonstationary deterministic signal with a discrete
power spectrum – the two components require separate math-
ematical treatment. Accordingly, the derivation of the power
spectral density of the reconstruction error En is accom-
plished separately in the following two subsections for the
components of EX,n that are based on the stochastic signal
X(t) and for those of EY,n that are based on the deterministic
signal Y (t).

3.1 Stochastic signal: continuous climate spectrum

A spectral representation of the stochastic signal compo-
nent X(t), with infinite and continuous time parameter t , is
given by the Riemann–Stieltjes integral (see Priestley, 1981,
Sect. 4.11):

X(t)=

∞∫
−∞

ei2πνtdZ(ν), (26)
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where Z(ν) is a complex-valued stochastic process such that
the power spectral density of X(t) is given by

SX(ν)=
〈
|dZ(ν)|2

〉
X
/dν, (27)

and where the dZ(ν) are zero-mean, orthogonal increments.
Note that a conventional Fourier representation of X(t) does
not exist because of the stochastic nature of the signal and
that it is dZ(ν)/dν rather than Z(ν) which formally plays the
role of the Fourier transform in the abovementioned repre-
sentation (Priestley, 1981). Likewise, the signal Xn =X(tn),
sampled at the discrete times tn = n1t , has the spectral rep-
resentation

Xn =

∞∫
−∞

ei2πνtndZ(ν), (28)

and the signal with jittered sampling, X(j )
n =X

(
tn+ ε

(j )
n

)
, as

defined by (6), can be expressed as (Moore and Thomson,
1991)

X
(j )
n =

∞∫
−∞

e
i2πν

(
tn+ε

(j )
n

)
dZ(ν). (29)

Following the approach of Balakrishnan (1962), we con-
sider its auto-covariance function

〈〈
X

(j )
n

?
X

(j )
n′

〉
X

〉
ε
, where (·)?

denotes the complex conjugate. By substitution from Eq. (29)
and expressing the product of integrals as a double integral,
we obtain (see Priestley, 1981, 249–250, where the same is
shown for the case without sampling jitter)〈〈
X

(j )
n

?
X

(j )
n′

〉
X

〉
ε

=

〈〈 ∞∫
−∞

∞∫
−∞

e
−i2πν

(
tn+ε

(j )
n

)
e
i2πν′

(
tn′+ε

(j )
n′

)
dZ?(ν)dZ(ν′)

〉
X

〉
ε

(30)

=

∞∫
−∞

∞∫
−∞

ei2πtn(ν′−ν)ei2πν
′(tn′−tn)〈ei2π(ν′ε(j )

n′
−νε

(j )
n

)〉
ε〈

dZ?(ν)dZ(ν′)
〉
X
, (31)

where we have used the independence of ε(j )
n and X(t).

Now, from the orthogonality of the dZ(ν), it follows that〈
dZ?(ν)dZ(ν′)

〉
X
= 0 whenever ν 6= ν′. Thus, the contribu-

tion to the integral (Eq. 31) is nonzero only for ν = ν′, and
the auto-covariance function can then be expressed by the
single integral (also using Eq. 27)

〈〈
X

(j )
n

?
X

(j )
n′

〉
X

〉
ε
=

∞∫
−∞

ei2πν(tn′−tn)Cn,n′ (−ν,ν)SX(ν)dν (32)

with the characteristic function

Cn,n′ (ν1,ν2)=
〈
e
i2π (ν1ε

(j )
n +ν2ε

(j )
n′

)〉
ε
. (33)

Note that without sampling jitter (i.e., with ε(j )
n = 0), expres-

sion (32) reduces to the Wiener–Khintchine theorem (see
Priestley, 1981, for example), which states that the auto-
covariance function of a signal and its power spectral den-
sity are a Fourier transform pair. Because ε(j )

n is white, we

have
〈
e
i2πν

(
ε

(j )
n′
−ε

(j )
n

)〉
ε
=
〈
e
i2πνε(j )

n′
〉
ε

〈
e−i2πνε

(j )
n
〉
ε

if n 6= n′ and,
thus,

Cn,n′ (−ν,ν)=
{

1 if n= n′

|C(ν)|2 if n 6= n′
, (34)

where

C(ν)=
〈
ei2πνε

(j )
n
〉
ε

(35)

is the characteristic function (or the complex conjugate of the
Fourier transform) of the jitter PDF, p(ε)fbs(ε), since using
the definition of the expected value yields

C(ν)=

∞∫
−∞

ei2πνεp(ε)fbs(ε)dε (36)

= p̂(ν)∗f̂ ?bs(ν) (37)

=

∞∑
k=−∞

sinc(kνcτp)f̂ ?bs(ν+ kνc). (38)

Here x̂(ν) denotes the Fourier transform of a function x(t),
and we are using the fact that the Fourier transform of5(t;τ )
is given by τ sinc(ντ ) and the Fourier transform of III(t;τ ) by
τ−1III(ν;τ−1), and fbs(ε) and p(ε) are defined by Eqs. (5)
and (7), respectively. The cardinal sine function is defined as

sinc(x)=

{
1 if x = 0

sin(πx)/(πx) if x 6= 0
, (39)

and, for the steps from Eq. (36) to Eq. (38), the convo-
lution theorem is used. Expression (38) represents a series
of amplitude-modulated and shifted versions of the function
f̂ ?bs(ν), which is obtained by taking the Fourier transform of
Eq. (5):

f̂ ?bs(ν)= sinc(ντs)
[
1+ i2πντb

]−1 exp(i2πντb), (40)

and, thus,

|f̂ ?bs(ν)|2 = sinc2(ντs)
[
1+ (2πντb)2]−1

, (41)

which is the product of a squared sinc function and a
Lorentzian function. In the following, we assume that
[max(τb,τs)]−1

� νc such that the characteristic width of the
functions f̂ ?bs(ν+ kνc) is much less than the shift increment
νc. These functions then have negligible overlap, and we can
write

|C(ν)|2 =
∞∑

k=−∞

sinc2(kνcτp)|f̂ ?bs(ν+ kνc)|2. (42)

Clim. Past, 16, 1469–1492, 2020 https://doi.org/10.5194/cp-16-1469-2020



T. Kunz et al.: Spectral approach to uncertainty estimation – Part 1: Theory 1477

The structure of |C(ν)|2 is illustrated in Fig. 2a, and it repre-
sents the squared modulus of the Fourier transform of the jit-
ter PDF shown in Fig. 1a. Since it is shown for τb = 10 years
and τs = 5 years, we have [max(τb,τs)]−1

= 1/(10 years)�
νc, and, thus, the |f̂ ?bs(ν+ kνc)|2 peaks are well separated
along the frequency axis.

The proof that the jitter PDF p(ε)fbs(ε), as defined by
Eq. (9), does indeed integrate to unity is equivalent to show-
ing that C(0)= 1, as can be seen from Eq. (36) with ν = 0.
To demonstrate this, we evaluate C(0) using Eq. (38), not-
ing (i) that the term with k = 0 is equal to one at ν = 0 be-
cause f̂ ?bs(0)= 1 according to Eq. (40) and (ii) that the re-
maining terms with k 6= 0 are all equal to 0 at ν = 0 because
f̂ ?bs(kνc)= 0 since sinc(kνcτs)= 0 according to the require-
ment that τs be a multiple of 1 year (see Sect. 2.3).

To obtain the power spectral density of the reconstruc-
tion error components of EX,n, we rewrite the integrand of

Eq. (29) as ei2πνtnei2πνε
(j )
n and split the jitter factor ei2πνε

(j )
n

into its expected value C(ν) and the deviation thereof,
ei2πνε

(j )
n −C(ν), as in Moore and Thomson (1991). Then we

can decompose X(j )
n as

X
(j )
n = Un+V

(j )
n , (43)

with the components

Un =

∞∫
−∞

ei2πνtnC(ν)dZ(ν) (44)

and

V
(j )
n =

∞∫
−∞

ei2πνtn
[
ei2πνε

(j )
n −C(ν)

]
dZ(ν). (45)

From this we obtain, by analogy with the steps from Eq. (30)
to Eq. (32), the auto-covariance functions of Un and V (j )

n , as
well as their cross-covariance function:

〈
U ?nUn′

〉
X
=

∞∫
−∞

ei2πν(tn′−tn)
|C(ν)|2SX(ν)dν, (46)

〈〈
V

(j )
n

?
V

(j )
n′

〉
X

〉
ε

=

∞∫
−∞

ei2πν(tn′−tn)[Cn,n′ (−ν,ν)− |C(ν)|2
]
SX(ν)dν, (47)

〈〈
U ?nV

(j )
n′

〉
X

〉
ε

=

∞∫
−∞

ei2πν(tn′−tn)C?(ν)
〈
ei2πνε

(j )
n −C(ν)

〉
ε
SX(ν)dν. (48)

Since the term
〈
ei2πνε

(j )
n −C(ν)

〉
ε

in Eq. (48) is 0, the cross

power spectral density ofUn and V (j )
n vanishes at all frequen-

cies, and, thus, the two processes are uncorrelated. Accord-
ingly, the sum of their auto-covariance functions, Eqs. (46)

and (47), equals the auto-covariance function of X(j )
n , given

by Eq. (32). Furthermore, Eq. (32) with n= n′ shows that
Var(X,ε)(X

(j )
n )= Var(X)(X).

Note that the square bracket term in Eq. (47) represents
the auto-covariance function of the jitter factor ei2πνε

(j )
n , and

Eq. (34) implies that[
Cn,n′ (−ν,ν)− |C(ν)|2

]
=

{
1− |C(ν)|2 if n= n′

0 if n 6= n′
. (49)

Thus, the auto-covariance function of V (j )
n is nonzero only

at lag zero (n= n′) and zero at all other lags (n 6= n′), and,
hence, V (j )

n is a white noise process. On the other hand, Un
can be seen as the result of linearly filtering the signal X(t)
with the jitter PDF, p(ε)fbs(ε), and then subsampling it at
the discrete times tn, with |C(ν)|2 in Eq. (46) being inter-
preted as the squared modulus of the spectral transfer func-
tion. Since neither the linear filter nor the subsampling alters
the expected value, we have

〈
Un
〉
X
=
〈
X

(j )
n

〉
X
=
〈
X
〉
X
= 0, and

from Eq. (43) it follows that also
〈
V

(j )
n

〉
X
=
〈
X

(j )
n −Un

〉
X
= 0.

Finally, the stationarity of X and ε implies that Un and V (j )
n

are stationary. The structure of the auto-covariance function
of X(j )

n , given by Eq. (32), is illustrated schematically in
Fig. 3, highlighting its decomposition into the respective con-
tributions from Un and V (j )

n . In particular, it turns out that
the magnitude of the variance of the white noise component
V

(j )
n is obtained by extrapolating the auto-covariance func-

tion from nonzero lags towards lag zero. This separates the
full variance into two components (indicated in the figure by
the transition in color at lag zero) such that, by setting n= n′

in Eqs. (46), (47), and (49) and substitution from Eq. (49)
into Eq. (47),

Var(X,ε)(V
(j )
n )= Var(X)(X)−Var(X)(Un). (50)

This is the key idea of the approach of Balakrishnan (1962),
and we will return to this idea in Sect. 3.2 in the context of
the deterministic signal component Y (t).

With these properties of the abovementioned components
Un and V (j )

n , we can now rewrite the error component EX,n,
defined by Eq. (15), also using the X component of Eq. (10):

EX,n = FX,n+WX,n, (51)

with

FX,n = Un− X̃n (52)

and

WX,n =
1
N

N∑
j=1

V
(j )
n , (53)
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Figure 2. (a) Squared modulus of the characteristic function (or of the Fourier transform) of the jitter PDF, |C(ν)|2, given by Eq. (42) (solid
line), for the same parameters as used in Fig. 1 (i.e., τb = 10 years, τs = 5 years, τp = 1/3 year) and the envelope function sinc2(ντp) (dashed
line). (b) Squared modulus of the error transfer function, |C(ν)− sinc(ντr)|2, as it appears in Eq. (58) and with τr = 9 years (dashed line as
in a). The frequency axis is normalized by the seasonal cycle frequency νc = (1yr)−1.

Figure 3. Schematic illustration of the auto-covariance function of
the discrete process X(j )

n (black circles), as given by Eq. (32), nor-
malized by the variance of X(t) and the auto-covariance contribu-
tion from Un (red lines), as given by Eq. (46), and from V

(j )
n (green

lines), as given by Eq. (47), with green dots indicating zero contri-
bution.

where FX,n and WX,n represent the components of EX,n ex-
plained in Sect. 2.5, which is to say a component obtained by
filtering the signal X and a white noise component.

By analogy with Eq. (28), a spectral representation of the
X component X̃n of the reference climate signal, defined by
Eqs. (12) and (13), is given by

X̃n =

∞∫
−∞

ei2πνtnsinc(ντr)dZ(ν), (54)

which also uses the convolution theorem and where the sinc
function represents the Fourier transform of the moving av-
erage window in Eq. (13). Then the auto-covariance function
of FX,n is obtained from Eqs. (44), (52), and (54) as〈
F ?X,nFX,n′

〉
X

=

∞∫
−∞

ei2πν(tn′−tn)
|C(ν)− sinc(ντr)|2SX(ν)dν. (55)

Since, by analogy with Eq. (48), it can be shown that the
cross power spectral density of X̃n and V (j )

n vanishes at all
frequencies, the same holds for the error components FX,n
and WX,n in Eq. (51), and, thus, the power spectral density
of their sum equals the sum of their spectral densities. Fi-
nally, because ε(j )

n is also white in terms of j , we have, from
Eqs. (50) and (53),

Var(X,ε)(WX,n)=
[
Var(X)(X)−Var(X)(Un)

]
/N (56)

=
1
N

∞∫
−∞

[
1− |C(ν)|2

]
SX(ν)dν, (57)
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where the second step may be obtained directly from Eq. (53)
by substitution from Eq. (49) into Eq. (47) with n= n′.

From this we can now obtain a spectral representation of
the squared reconstruction uncertainty components U2

(1) and
U2

(2) as defined by Eq. (25) by writing the power spectral den-
sity of FX,n, denoted by SU(1) (ν), and the power spectral den-
sity ofWX,n, denoted by SU(2) (ν). Specifically, from Eq. (55)
we obtain (also taking into account spectral aliasing and leak-
age; see Priestley, 1981, for example)

SU(1) (ν)= III
(
ν;1t−1

)
∗
{
T sinc2(νT )

∗
[
|C(ν)− sinc(ντr)|2SX(ν)

]}
, (58)

with −ν∗ < ν ≤ ν∗. Here, ν∗ = (21t)−1 denotes the Nyquist
frequency, 1t the sampling interval between the discrete
sampling times tn = n1t , and T the length of the proxy
record (being a multiple of 1t). Likewise, by confining the
variance of the white noise process WX,n, given by Eq. (57),
to the same frequency interval, we obtain the constant spec-
tral density

SU(2) (ν)=
1t

N

∞∫
−∞

[
1− |C(ν′)|2

]
SX(ν′)dν′, (59)

with −ν∗ < ν ≤ ν∗. To understand the structure of SU(1) (ν),
note that the term |C(ν)− sinc(ντr)|2 in Eq. (58), referred to
as the squared modulus of the error transfer function, acts
as a linear filter on the stochastic component X(t) of the
supposed true climate signal. Its structure is illustrated in
Fig. 2b under the additional assumption that τ−1

r � νc. It
turns out that it represents a multi-bandpass filter with the
low-frequency band being confined between [max(τb,τs)]−1

and τ−1
r (this corresponds to the frequency band of the trans-

fer function discussed by Amrhein, 2020; see his Fig. 2),
whereas each high-frequency band is confined to an interval
bounded by kνc± [max(τb,τs)]−1 with k =±1,±2, . . ., ac-
cording to Eq. (42). The consequences of this particular filter
structure, in conjunction with the effects of spectral aliasing,
are discussed in Sect. 4. Finally, according to the finite length
of the proxy record, we need to subsample the abovemen-
tioned power spectral densities at the discrete frequencies
νm =m1ν (with m= 0,±1,±2, . . . and 1ν = 1/T ), which
yields

SU(1),m = SU(1) (νm) (60)

and

SU(2),m = SU(2) (νm). (61)

Since FX,n and WX,n have zero cross power spectral densi-
ties, the power spectral density of EX,n is then given by

SU(1,2),m = SU(1),m+ SU(2),m. (62)

3.2 Deterministic signal: discrete orbital spectrum

The deterministic signal Y (t), defined by Eq. (1), can be ex-
pressed as

Y (t)= Yc(t)
[
1+Ya(t)

]
, (63)

with the seasonal cycle oscillation,

Yc(t)= αc
[
Y−c (t)+Y+c (t)

]
, (64)

and the amplitude modulating orbital oscillation,

Ya(t)= αa
[
Y−a (t)+Y+a (t)

]
, (65)

where

Y±c (t)= e±i(2πνct+φc), Y±a (t)= e±i(2πνat+φa), (66)

and

αc = σc/
√

2, αa = σa/
√

2. (67)

Then we can rewrite the signal (Eq. 63) as a complex Fourier
series,

Y (t)= Y−(t)+Y+(t), (68)

with

Y±(t)

= αcαaY
±
c (t)Y∓a (t)+αcY±c (t)+αcαaY

±
c (t)Y±a (t) (69)

such that Y+(t)= [Y−(t)]?. Thus, the right-hand side of
Eq. (68) is the sum of six Fourier modes, two of which occur
at the frequencies ±νc (the carrier wave in amplitude modu-
lation terminology) and four of which occur at the frequen-
cies ±νc± νa (representing the sidebands of ±νc).

Again following the approach of Balakrishnan (1962) and
by analogy with Sect. 3.1, we evaluate

〈
Y

(j )
n

?
Y

(j )
n′

〉
ε
, where

Y
(j )
n = Y (tn+ε

(j )
n ), as defined by Eq. (6). However, this is not

the auto-covariance function in this case because sampling
the seasonal cycle oscillation Yc(t) at an average interval of
1t may leave a nonzero bias as 1t is a multiple of 1 year
(= ν−1

c ). Thus, in general, we may have
〈
Y

(j )
n

〉
ε
6= 0, and it

turns out that〈
Y

(j )
n

?
Y

(j )
n′

〉
ε
=
〈
Y

(j )
n

〉?
ε

〈
Y

(j )
n′

〉
ε
+Cov(ε)

(
Y

(j )
n

?
,Y

(j )
n′

)
, (70)

where Cov(ε)(Y
(j )
n

?
,Y

(j )
n′

) is the nonstationary auto-
covariance function of Y

(j )
n . We now decompose this

signal as

Y
(j )
n = An+B

(j )
n , (71)

with the components

An =
〈
Y

(j )
n

〉
ε
, (72)
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B
(j )
n = Y

(j )
n −

〈
Y

(j )
n

〉
ε
, (73)

and by analogy with the components Un and V (j )
n , respec-

tively, in Sect. 3.1 such that we can rewrite Eq. (70) as〈
Y

(j )
n

?
Y

(j )
n′

〉
ε
= A?nAn′ +Cov(ε)

(
B

(j )
n

?
,B

(j )
n′

)
. (74)

This also implies that An and B(j )
n are uncorrelated.

The structure of An is obtained from Eq. (68) by replacing
t in the exponential terms in Eq. (66) by n1t + ε(j )

n and then
applying the expected value operator. Note that because 1t
is a multiple of 1 year, the modes at ±νc become aliases of
ν = 0, the modes at±νc−νa become aliases of ν =−νa, and
those at±νc+νa become aliases of ν = νa. Then considering
phase interference caused by the aliasing, using Eqs. (35),
(38), and (40), noting that e±i2πνcn1t = 1, and exploiting the
symmetry property C(−kνc+ ν)= C(kνc+ ν), we obtain

An = 2αc cos(φc)sinc(νcτp)An′, (75)

with

An
′
= 1+αa(

f̂ ?bs(−νa)e−i(2πνatn+φa)
+ f̂ ?bs(νa)ei(2πνatn+φa)

)
. (76)

If we explicitly express the argument and the modulus of
f̂ ?b (νa) as

φb1 = arg
[
f̂ ?b (νa)

]
= 2πνaτb− arctan(2πνaτb) (77)

and

Mb1 = |f̂
?
b (νa)| =

[
1+ (2πνaτb)2

]−1/2
, (78)

respectively, then we can rewrite Eqs. (75) and (76) as

An = σc
√

2cos(φc)sinc(νcτp)An′, (79)

with

An
′
= 1+ σa

√
2Mb1sinc(νaτs)cos(2πνatn+φa+φb1). (80)

It turns out that, as long as we take the seasonal phase φc
as fixed, An represents a deterministic bias caused by un-
even sampling of the seasonal cycle due to proxy seasonal-
ity and that this bias varies in time because the amplitude of
the seasonal cycle is modulated by orbital variations. Since
σa
√

2< 1, the termAn
′ is always positive, and, thus, the sign

of the bias An is determined only by the seasonal phase φc.
Note that the phase component φb1 of the oscillation results
from the asymmetry of the bioturbation PDF, fb(ε), defined
by Eq. (2), which creates a time lag caused by bioturbation.
However, if τb� ν−1

a , we have φb1 ≈ 0 and the time lag van-
ishes.

Figure 4. The white noise variance Var(ε)(B
(j )
n ) that is sampled

from the seasonal cycle (normalized by the seasonal cycle variance
σ 2

c ) for the simplified case without amplitude modulation by orbital
variations. The variance is shown as a function of the width of the
proxy abundance window τp and of the seasonal phase φc, which
together characterize proxy seasonality. Values greater than 1 are
indicated by gray shading.

To understand the structure of B(j )
n , we consider its vari-

ance given by the auto-covariance function at lag zero,
Cov(ε)(B

(j )
n

?
,B

(j )
n′

)|n=n′ . From this we find, as is shown in
Appendix A, that B(j )

n is a nonstationary zero-mean white
noise process. In particular, the variance has a stationary
component and two time-varying components which oscil-
late at the frequencies νa and 2νa (see Eq. A12). To illus-
trate this behavior, we consider the following three simplified
cases.

First, if there is no amplitude modulation of the seasonal
cycle (σ 2

a = 0), the variance of B(j )
n is stationary and is given

by

Var(ε)

(
B

(j )
n

)
= σ 2

c{
1− sinc2(νcτp)+ cos(2φc)

[
sinc(2νcτp)− sinc2(νcτp)

]}
. (81)

The dependence of this variance on the width of the proxy
abundance window τp and its seasonal timing φc is illustrated
in Fig. 4. If τp = 0, the white noise variance vanishes because
each year the same value is sampled from the seasonal cycle.
If τp = 1 year, the white noise variance equals the seasonal
cycle variance σ 2

c . For intermediate values of τp the white
noise variance depends on the seasonal phase. Note that for
phases around |φc| = π/2 the white noise variance can ex-
ceed the seasonal cycle variance by up to 22 %.

Second, if the seasonal cycle is modulated by orbital vari-
ations (0< σ 2

a < 1/2) and we set τp = 0 (and, for simplicity,
we choose (i) τb = 0 so as to avoid any additional phase lags,
φb1 = φb2 = 0, and (ii) φc = 0 for a maximum effect of proxy
seasonality), then the variance of B(j )

n is given by
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Var(ε)

(
B

(j )
n

)
= 2σ 2

c σ
2
a
{
1− sinc2(νaτs)+ cos(4πνatn+ 2φa)[

sinc(2νaτs)− sinc2(νaτs)
]}
. (82)

Note the analogy with Eq. (81) but with νcτp and φc being re-
placed by νaτs and φa, respectively. This is because the white
noise variance is now sampled from the orbital oscillation.
Also it now has a time-varying component with frequency
2νa.

Third, if we consider the same case but with τp = 1 year,
we obtain

Var(ε)

(
B

(j )
n

)
= σ 2

c
{[

1+ 2σa
√

2sinc(νaτs)cos(2πνatn+φa)
]

+ σ 2
a
[
1+ sinc(2νaτs)cos(4πνatn+φa)

]}
. (83)

In this case, the white noise variance has two time-varying
components with frequencies νa and 2νa because the ampli-
tude modulation factor has the basic structure 1+cos(2πνat),
the square of which, as it appears in the variance, is 1+
2cos(2πνat)+ cos2(2πνat). Note that the seasonal phase φc
has no effect in this case with τp covering the full seasonal
cycle.

With these properties of the abovementioned components
An and B(j )

n , we can now rewrite the error component EY,n,
defined by Eq. (15), also using the Y component of Eq. (10)
as

EY,n = FY,n+WY,n, (84)

with

FY,n = An (85)

because Ỹn = 0, and

WY,n =
1
N

N∑
j=1

B
(j )
n . (86)

Then we obtain the reconstruction bias, defined by Eq. (23),
as

Bn =
〈
An
〉
φc
= σc
√

2γ1An
′, (87)

with

γ1 = cos(〈φc〉φc )sinc(1φc/2π )sinc(νcτp), (88)

where the seasonal phase uncertainty 1φc and the expected
seasonal cycle phase 〈φc〉φc are defined by Eq. (19) and An′

by Eq. (80). With this, the third squared reconstruction un-
certainty component, defined by Eq. (25), can be expressed
as

U2
(3),n =

〈
A2
n

〉
φc
−
〈
An
〉2
φc
= σ 2

c γ2An
′2, (89)

with

γ2 =
{
1− sinc2(1φc/2π )+ cos(2〈φc〉φc )[

sinc(21φc/2π )− sinc2(1φc/2π )
]}

sinc2(νcτp). (90)

Finally, from Eq. (86) and because ε(j )
n is white in terms of

j , we have

Var(ε)(WY,n)= Var(ε)(B
(j )
n )/N, (91)

and, thus, the fourth squared reconstruction uncertainty com-
ponent is obtained as

U2
(4),n =

1
N

〈
Var(ε)

(
B

(j )
n

)〉
φc
, (92)

with Var(ε)(B
(j )
n ) given by Eq. (A12) and where applying the

expected value operator 〈·〉φc amounts to replacing each in-
stance of cos(2φc) as it appears multiple times in the compo-
nents of Eq. (A12), according to

cos(2φc)
repl.
−→ cos(2〈φc〉φc )sinc(21φc/2π ). (93)

Note that sinc(21φc/2π )= 0 if 1φc = π or 2π , in which
case the expected value in Eq. (92) simplifies because all
terms in the components of Eq. (A12) that are multiplied by
cos(2φc) vanish.

To obtain spectral representations of B2
n and U2

(3),n, we
consider first the power spectral density of the signal An′,
limited to a finite time interval of length T (centered at t = 0)
and interpreted as the length of the proxy record. Specifically,
we can express this discretized power spectral density as

S0,m =
∣∣F[5(tn;T/1t)An′

]
(νm)

∣∣2/T , (94)

given at the discrete frequencies νm =m1ν (with m=

0,±1,±2, . . . and 1ν = 1/T ). In the above,

F[xn](ν)=
nh∑

n=−nh

e−i2πνn1txn1t

denotes the discrete time Fourier transform of a sequence
xn (with −ν∗ < ν ≤ ν∗), the discrete rectangle function acts
as a window to confine An′ to the finite time interval, and
T/1t is the number of sampling times tn = n1t with n=
0,±1,±2, . . .,±nh, where nh = (T/1t−1)/2, for odd num-
bers of sampling times.

The discrete time Fourier transform of the rectangle func-
tion is given by the Dirichlet kernel (see Priestley, 1981,
p. 437) which can be expressed as T multiplied by the aliased
(or periodic) sinc function, defined by

asinc(ν;T ,1t)

=

{
1 if ν = 0
sin(πνT )/[sin(πν1t)T/1t] if ν 6= 0 , (95)
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within the interval −2ν∗ < ν < 2ν∗. With this, and if we ex-
press the discrete time Fourier transform of An′ as a series of
Dirac delta functions, we obtain from Eq. (76)

F
[
5(tn;T/1t)An′

]
(ν)= T asinc(ν;T ,1t)

∗
{
δ(ν)+αa

[
δ(ν+ νa)f̂ ?bs(−νa)e−iφa

+ δ(ν− νa)f̂ ?bs(νa)eiφa
]}
. (96)

Then from Eq. (94), also considering phase interference be-
tween the asinc functions, using Eqs. (77) and (78), and not-
ing that the central asinc function centered at ν = 0 has its
zeros at the discrete frequencies νm, we have

S0,m = T (Sc,m+ Sca,m+ Sa,m), (97)

with

Sc,m = δm,

Sca,m = δmσa
√

2Mb1sinc(νaτs)2ξ (0)cos(φa+φb1), (98)

and

Sa,m = (σ 2
a /2)M2

b1sinc2(νaτs)
{
ξ2
+(νm)+ ξ2

−(νm)

+ 2ξ+(νm)ξ−(νm)cos
[
2(φa+φb1)

]}
, (99)

and where

ξ±(ν)= asinc(ν± νa;T ,1t), (100)

with δm denoting the single-argument Kronecker delta with
δm=0 = 1 and δm 6=0 = 0.

With Eq. (97) we obtain, by analogy with Eqs. (87) and
(89), the spectral representation of B2

n given by

SB,m = 2σ 2
c γ

2
1 S0,m, (101)

with −ν∗ < νm ≤ ν∗ and the spectral representation of U2
(3),n

given by

SU(3),m = σ
2
c γ2S0,m, (102)

with −ν∗ < νm ≤ ν∗. Since WY,n, given by Eq. (86), is white
noise, we can express the spectral representation of U2

(4),n as

SU(4),m =
1t

N

〈
Var(ε)

(
B

(j )
n

)〉
φc
, (103)

with −ν∗ < νm ≤ ν∗, and where Var(ε)(B
(j )
n ) is given by

Eq. (A19). Note that, as in Eq. (92), applying the expected
value operator 〈·〉φc amounts to applying the replacement
(Eq. 93) to the components of Eq. (A19). From the above,
the power spectral density of EY,n is then given by

SB,U(3,4),m = SB,m+ SU(3),m+ SU(4),m. (104)

Hence, we obtain the spectral representation of Eq. (22) that
relates the rms reconstruction error En, defined by Eq. (20), to

the reconstruction bias Bn and the reconstruction uncertainty
Un:

SE,m = SB,m+ SU ,m, (105)

where SU ,m = SU(1),m+SU(2),m+SU(3),m+SU(4),m, the first two
components of which are given by Eqs. (60) and (61), re-
spectively, at the end of Sect. 3.1. Thus, SE,m is the power
spectral density (given at the discrete frequencies νm) of the
reconstruction error En (given at the discrete times tn).

4 Timescale-dependent reconstruction uncertainty

The reconstruction uncertainty components U(1), U(2), U(3),n,
and U(4),n and the reconstruction bias Bn, defined in Sect. 2.5,
can now be quantified using the expressions derived in
Sect. 3. Specifically, given the set of parameters of the re-
construction uncertainty model (see Appendix B), including
the specifications of the deterministic component of the sup-
posed true climate signal, and given the power spectral den-
sity of the stochastic signal component, we obtain the follow-
ing.

– First is the uncertainty component U(1) that arises
from the various smoothing processes which affect the
stochastic signal component X(t) in the limit of in-
finitely many signal carriers retrieved from each slice
of sediment (N→∞). From Eq. (60) or from Eq. (58),
noting that for stochastic signals spectral aliasing and
leakage neither generate nor destroy but only redis-
tribute power spectral density, we have

U2
(1) =

mh∑
m=−mh

SU(1),m1ν (106)

=

∞∫
−∞

|C(ν)− sinc(ντr)|2SX(ν)dν, (107)

with mh = (T/1t − 1)/2 for odd numbers of sampling
times, and C(ν) is given by Eq. (38). This uncertainty
component depends on the timescale parameters τb, τs,
τr, and τp and on SX(ν).

– Second is the white noise uncertainty component U(2)
that arises from sampling only a finite number N of sig-
nal carriers from each slice of sediment. From Eq. (61),
or likewise from Eq. (59), we obtain

U2
(2) =

mh∑
m=−mh

SU(2),m1ν (108)

=
1
N

∞∫
−∞

[
1− |C(ν)|2

]
SX(ν)dν. (109)

This uncertainty component depends on the timescale
parameters τb, τs, and τp and on SX(ν) and N .
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– Third are the reconstruction bias Bn, its uncertainty
U(3),n caused by the imperfectly known seasonal tim-
ing of the proxy abundance, and the white noise uncer-
tainty component U(4),n arising from sampling only a
finite number of signal carriers, which are all readily
given in the time domain by Eqs. (87), (89), and (92), re-
spectively. These components depend on the timescale
parameters τb, τs, and τp, on the seasonal phase param-
eters 〈φc〉φc and1φc , and on the specifications of the de-
terministic signal components σc, σa, νc, νa, and φa. The
white noise component U(4),n also depends on N . The
time averages of the squares of these components over
the length of the proxy record T can be obtained directly
from their spectral representations, given by Eqs. (101)
to (103) as

B2
n =

mh∑
m=−mh

SB,m1ν,

U2
(3),n =

mh∑
m=−mh

SU(3),m1ν,

U2
(4),n =

mh∑
m=−mh

SU(4),m1ν, (110)

which then also depend on T .

Since all of the abovementioned uncertainty components and
the bias depend on a number of timescale parameters, the rms
reconstruction error En, in this sense, already represents a
timescale-dependent uncertainty measure. However, we may
extend the concept of uncertainty timescale dependence as
follows.

In practice, during the process of data analysis, climate re-
constructions are often smoothed by some linear filter either
because one is explicitly interested in time averages of the
reconstructed climate variable or because one may hope to
reduce the reconstruction uncertainty by averaging out short-
timescale noise. However, the extent to which the uncertainty
actually shrinks depends on the auto-correlation structure of
the reconstruction error, which, by the Wiener–Khintchine
theorem, is directly related to the power spectral density of
the error. Thus, from the expressions of the error power spec-
tral densities, derived in Sect. 3, we can directly quantify the
uncertainty reduction that is achieved by applying a linear
filter, as is shown in the following for the uncertainty com-
ponents U(1) and U(2) as an example.

If the reconstruction error time series is smoothed by, for
simplicity, a discrete moving average filter of width τ0 (being
a multiple of1t), then the squared uncertainty obtained after
smoothing is given by

U2
(1,2)(τ0)=

mh∑
m=−mh

asinc2(νm;τ0,1t)SU(1,2),m1ν, (111)

where the squared asinc function represents the squared mod-
ulus of the discrete time Fourier transform of the filter win-

dow acting as a spectral transfer function, and the asinc func-
tion is defined by Eq. (95). Note that if τ0 =1t (i.e., no
smoothing), then this transfer function is constantly 1 across
all frequencies, and that if τ0 = T , then it is equal to 1 at fre-
quency zero, and it is 0 at all other frequencies. Thus, in the
latter case the uncertainty of the time average over the entire
proxy record is obtained. Figure 5 illustrates the above for
some choices of parameters designed to exemplify as many
aspects as possible of the uncertainty estimation procedure
in a single example at the expense of using somewhat unre-
alistic parameter values. More realistic application examples
of the method follow in Part 2 of this study (Dolman et al.,
2020). Specifically, we set τb = 10 years, τs = τr = 6 years,
τp = 1/3 year, 1t = 6 years, T = 231t = 138 years, τ0 =

31t = 18 years, and N = 100. For the power spectral den-
sity of X(t) we assume a Lorentzian shaped AR(1) red noise
spectrum given by SX(ν)= 2α/[(2πν)2

+α2
] with the char-

acteristic timescale α−1
= (1/10) years such that the process

X is only weakly red.
This power spectral density is shown in Fig. 5a by the gray

line. According to the reconstruction uncertainty model de-
fined in Sect. 2, SX(ν) is decomposed into two components:
(i) |C(ν)|2SX(ν), shown by the red line, the integral of which
equals the variance of Un defined by Eq. (44) and where
|C(ν)|2 (shown in Fig. 2a) acts as a spectral transfer function
on SX(ν); (ii)

[
1− |C(ν)|2

]
SX(ν), the integral of which, indi-

cated by the green area, equals the variance of the white noise
component V (j )

n defined by Eq. (45). If SX(ν) is multiplied
by the squared modulus of the error transfer function (shown
in Fig. 2b), the component |C(ν)− sinc(ντr)|2SX(ν), shown
by the blue line, is obtained, the integral of which equals the
variance of FX,n defined by Eq. (52).

This component (blue dots), as well as the white noise
component (green dots), is shown again in Fig. 5b but af-
ter spectral aliasing and leakage have been applied accord-
ing to the sampling and measurement procedure described in
Sect. 2.3. These components represent the discretized power
spectral densities SU(1),m and SU(2),m. Note that the broad
peaks at nonzero frequencies in Fig. 5b are direct images of
the low-frequency peaks in Fig. 5a (blue line), whereas the
bump centered at ν = 0 represents the summed aliases of the
high-frequency peaks in Fig. 5a (blue line) at ±kνc. With-
out proxy seasonality (τp = 1 year), those peaks do not ex-
ist, and, thus, the SU(1),m power spectrum in Fig. 5b falls off
to near zero at ν = 0. Only spectral leakage may then lead
to nonzero SU(1),m at ν = 0, although in the example shown
here the effect of the leakage is small (cyan dots). However,
in cases with small T (implying large 1ν), spectral leakage
can provide a relevant contribution of power at ν = 0 as the
power from the neighboring broad spectral peaks is then ef-
fectively redistributed to the center of the frequency domain.
This contribution is particularly important if the uncertainty
of the time average over the entire proxy record is computed

https://doi.org/10.5194/cp-16-1469-2020 Clim. Past, 16, 1469–1492, 2020



1484 T. Kunz et al.: Spectral approach to uncertainty estimation – Part 1: Theory

Figure 5. Illustration of the method for estimating timescale-dependent reconstruction uncertainties in the spectral domain, shown for the
uncertainty components U(1) and U(2) which are based on the stochastic component X(t) of the supposed true climate signal. (a) Power
spectral density SX(ν) (gray line) of this signal component, defined on a continuous and infinite frequency axis (normalized by the seasonal
cycle frequency νc = (1yr)−1), together with the product |C(ν)|2SX(ν) (red line) and the product |C(ν)− sinc(ντr)|2SX(ν) (blue line). The
green area equals the integral

∫
∞

−∞

[
1− |C(ν)|2

]
SX(ν)dν, as it appears in Eq. (59), which measures the variance of the white noise error

component caused by sampling only a finite number of signal carriers. (b) The same white noise variance (green area) but divided by N (the
number of signal carriers) after spectral aliasing and leakage have been applied to obtain the power spectral density SU(2),m (green dots),

defined by Eq. (61), on a finite and discrete frequency axis now normalized by the Nyquist frequency ν∗ = (21t)−1, together with SU(1),m
(blue dots), defined by Eq. (60), and SU(1,2),m (magenta dots), defined by Eq. (62). Cyan dots indicate the same as blue dots but neglect the

effect of spectral leakage for comparison. (c) The product asinc2(νm;τ0,1t)SU(1,2),m (magenta dots), the integral of which (magenta area)

equals the squared reconstruction uncertainty U2
(1,2)(τ0), defined by Eq. (111).

by setting τ0 = T in Eq. (111) as in this case it is the only
contribution to U2

(1)(τ0).
Finally, the sum of the abovementioned components, given

by SU(1,2),m, is shown by the magenta dots in Fig. 5c.
By multiplying this summed power spectral density by the
spectral transfer function of the discrete moving average
window mentioned above and then integrating it, we ob-
tain the squared reconstruction uncertainty after smoothing,
U2

(1,2)(τ0), defined by Eq. (111) and shown by the magenta
area in Fig. 5c.

Likewise, one can define other timescale-dependent uncer-
tainty metrics. For example, one might be interested in the
uncertainty of the difference between the time averages over
two periods of length T1 and T2, which are separated in time
by the interval δt = (n′−n)1t , measured from center to cen-

ter. This can be expressed by the variance

Var
([
T −1

1 5(tn;T1/1t)∗EX,n
]

−
[
T −1

2 5 (tn;T2/1t)∗EX,n+n′
])

= Var
(
T −1

1 5 (tn;T1/1t)∗EX,n
)

+Var
(
T −1

2 5 (tn;T2/1t)∗EX,n+n′
)
− 2Cov(

T−1
1 5 (tn;T1/1t)∗EX,n,T

−1
2 5 (tn;T2/1t)∗EX,n+n′

)
(112)

if it were to be computed for the uncertainty components
based on X(t) and where T1, T2 and δt are multiples of 1t .
Then, using the Wiener–Khintchine theorem, we obtain the
difference uncertainty metric
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δU2
(1,2)(T1,T2,δt)

=

mh∑
m=−mh

{[
asinc2(νm;T1,1t)+ asinc2(νm;T2,1t)

]
SU(1,2),m1ν

}
− 2F−1[

asinc(νm;T1,1t)asinc(νm;T2,1t)SU(1,2),m

]
(δt), (113)

where F−1
[xm](k1t)=

∑mh
m=−mh

ei2πm1νk1txm1ν denotes
the inverse discrete Fourier transform of a sequence xm. Note
that in this form the abovementioned difference uncertainty
metric is valid only for stationary uncertainty components. If
the seasonal cycle amplitude is constant over time (i.e., no
orbital variations), then all uncertainty components are sta-
tionary. If orbital variations are taken into account, however,
only U(1) and U(2) are stationary, as shown in Sect. 3. For the
components U(3),n, U(4),n, and Bn, the difference metric, in
this case, had to be computed directly from their time do-
main expressions; see Eqs. (87), (89), and (92), respectively.

To conclude this section, we briefly present an example
of the time series and power spectra of the reconstruction
bias Bn and of the reconstruction uncertainty components
U(3),n and U(4),n. Specifically, we set τb = τs = 100 years,
τp = 1/3 year, 1t = 100 years, T = 1011t = 10100 years,
and N = 5. Furthermore, the deterministic signal is speci-
fied in this example by the parameters σc =

√
1/2, 〈φc〉φc =

π/4, 1φc = π/2, σa =
√

1/8, νa = (23kyrs)−1, and φa =

π/2, which implies that the amplitude of the seasonal cy-
cle decreases during the 10 100 years, as is the case during
the Holocene. According to the proxy seasonality parame-
ter values chosen here, the bias Bn is positive and exhibits
a negative trend, as shown in Fig. 6a (cyan line). Likewise
the uncertainty components U(3),n and U(4),n also decrease
over time (blue and green lines). Since the orbital modula-
tion frequency νa is located on the discrete frequency axis
between ν0 and ν1, its power spectral density is distributed by
spectral leakage across all frequencies. This yields a highly
red power spectrum of Bn and U(3),n, shown in Fig. 6b.
Thus, at high frequencies the summed power spectral densi-
ties SU(3,4),m (dashed black line) and SB,U(3,4),m (dashed gray
line) are dominated by the white noise component, whereas
at low frequencies they are dominated by the effect of or-
bital variations. Hence, if we were to compute the timescale-
dependent uncertainty metric (Eq. 111) but for U(3),n and
U(4),n, denoted by U2

(3,4),n(τ0), the uncertainty would shrink
only slowly for increasing values of τ0 because the orbital
variations are associated with a highly correlated error in
time at long timescales.

5 Discussion

To allow for an analytic treatment of the problem, the method
for estimating timescale-dependent reconstruction uncertain-

Figure 6. Example of the reconstruction uncertainty based on the
deterministic component Y (t) of the supposed true climate signal.
(a) Time series of the reconstruction bias Bn (cyan line), of the
uncertainty components U(3),n (blue line) and U(4),n (green line),
of [U2

(3,4),n]
1/2 (dashed black line), and [B2

n+U2
(3,4),n]

1/2 (dashed
gray line). (b) Power spectral densities of the corresponding error
components: SB,m (cyan line), SU(3),m (blue line), SU(4),m (green
line), SU(3,4),m (dashed black line), and SB,U(3,4),m (gray line).

ties, presented in Sects. 2 to 4, is necessarily based on a num-
ber of simplifying assumptions.

– We assume a fixed proxy seasonality in the sense of ap-
plying every year the same seasonal timing of a pre-
scribed proxy abundance period, characterized by the
parameters τp and φc. For this reason we have to sep-
arate the supposed true climate signal into a stochas-
tic component X(t) and a deterministic component Y (t)
that represents the seasonal cycle because proxy season-
ality then implies an in-phase subsampling from Y (t)
which, in turn, affects the amount of variance aliased
from the seasonal cycle U(4),n and which may also lead
to a reconstruction bias Bn and associated uncertainty
U(3),n. This scenario represents the extreme case where
a seasonal abundance period is completely imposed on
the proxy by an external process (see, for example,
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Leduc et al., 2010), such as, for example, seasonally
determined nutrient supply possibly controlled by the
seasonality of solar irradiance or oceanic upwelling. By
contrast, in the opposite extreme case where no season-
ality is imposed at all, we do not need to separate the
climate signal into X(t) and Y (t). In this case the to-
tal climate signal is fully recorded by the proxy, but
its total variance is reduced by some factor because
of habitat tracking if the habitat PDF of the proxy is
narrower than the PDF of the climate signal. Accord-
ing to the idea of Mix (1987), this factor can be ob-
tained by multiplying the two PDFs, and it may possi-
bly also be expressed as a frequency-dependent spectral
transfer function. This scenario corresponds to setting
τp = 1 year in our method and subsequently multiply-
ing the obtained error power spectrum by the aforemen-
tioned transfer function. Hence, if we introduce some
parameter, 0≤ s ≤ 1, that measures the extent to which
seasonality is imposed for a specific proxy record (with
s = 0 indicating no imposition of seasonality), then we
may express the actual uncertainty as a linear combina-
tion of the uncertainties obtained from the abovemen-
tioned two extreme scenarios, weighted by s and by
1− s, respectively. Note, however, that the effects of
seasonality can be rather complex (see, for example,
Jonkers and Kučera, 2017), depending on the type of
proxy used, and, thus, the optimal strategy for model-
ing the associated uncertainties depends on the specific
application.

– We neglect calibration errors representing uncertain-
ties regarding the climate–proxy relationship. Assum-
ing this relationship is linear and is obtained by linear
regression, errors of this type may have two effects. Un-
certainties in the intercept parameter will introduce a
reconstruction uncertainty that is constant in time like
the bias uncertainty U(3),n (in the case without orbital
variations). Uncertainties in the slope parameter, on the
other hand, will introduce a frequency-independent un-
certainty in the error variance. The mean of the pos-
sible error variances, however, might be close to the
variance obtained from our method unless the PDF of
the obtained error variances is strongly skewed. If the
climate–proxy relationship is non-linear, or if there are
uncertainties regarding the linearity itself, modeling of
the implied uncertainties might be more complex, al-
though it should still be possible to decompose those
errors into a bias and a variance component.

– We assume a constant sediment accumulation rate and
a constant bioturbation depth, and we also assume regu-
lar sampling from the sediment core and neglect dating
uncertainties, although relaxing these assumptions may
generate additional uncertainties of noticeable magni-
tude. For example, the relevance of dating uncertainties
is demonstrated by Goswami et al. (2014) and Boers

et al. (2017). If these sources of uncertainty are treated
in a stochastic sense, they could, in principle, be in-
cluded in our approach by allowing for correlated sam-
pling jitter ε, the mathematical basis of which is given
by Balakrishnan (1962) (see also Moore and Thom-
son, 1991). More generally, these uncertainties could be
modeled by allowing for a variable time–depth relation-
ship and perhaps by also allowing for the nonstationar-
ity of the uncertainty components U1 and U2 to represent
variations of the smoothing timescales τb and τs.

From the above, it turns out that, in its current form, the
method is neither complete in terms of processes affecting
the reconstruction uncertainty nor does it cover all possible
reconstruction scenarios in terms of proxy type and applica-
tion context. However, our formulation of the method out-
lines a conceptually and mathematically well-founded ap-
proach of how timescale-dependent reconstruction uncer-
tainties could, and probably should, be estimated – in par-
ticular, when systematic and exact quantification is required.
This latter point is highly relevant, for example, in the con-
text of comparisons between circulation models and paleo-
observations (e.g., Lohmann et al., 2013; Laepple and Huy-
bers, 2014; Matsikaris et al., 2016) or likewise for any reanal-
ysis efforts (e.g., Hakim et al., 2016) if data obtained from
proxy records are involved. Thus, the fact that some of the
neglected sources of uncertainty might be large compared to
what is gained by our exact mathematical treatment does not
qualify our approach as overly precise. The approach rather
demonstrates the directions for future efforts in quantitative
uncertainty estimation. As discussed above, our current for-
mulation of the method may indeed be extended beyond the
simplifications made. But as mathematical complexity in-
creases in such case, extended formulations should be tai-
lored to specific applications. In this sense, our formulation
provides a minimal basis for the development of future un-
certainty estimation methods.

Furthermore, the timescale-dependent uncertainties ob-
tained from our method depend explicitly on assumptions
regarding the structure of the supposed true climate sig-
nal X(t)+Y (t), although this climate signal is the unknown
quantity to be reconstructed from the proxy record. However,
it is an inevitable fact that the timescale-dependent recon-
struction uncertainties do actually depend on this structure,
a fact that is made obvious by our method and likewise by
Amrhein (2020). One possible approach towards solving this
problem would be an iterative procedure: (i) assume a spe-
cific structure for the supposed true climate signal; (ii) apply
our method to obtain reconstruction uncertainties for a given
proxy record; (iii) check whether the reconstructed signal is
consistent under the obtained uncertainties with the assumed
structure given its spectral or auto-correlation properties; and
(iv) if this is not the case, update the assumptions and repeat
these steps.
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Finally, although our method provides an advancement in
the quantification of reconstruction uncertainties, it also in-
troduces a number of model parameters which are associ-
ated with their own uncertainty. However, if we are to im-
prove quantitative uncertainty estimates, our reconstruction
uncertainty model helps to identify those parameters which
are most important and, therefore, need to be determined
at higher precision. For example, how much seasonality is
imposed on a certain proxy at a given geographical loca-
tion within a specific local ecological system? On the other
hand, it is possible to investigate how parameter uncertain-
ties translate into reconstruction uncertainties, as was shown
for the seasonal phase parameter φc. Nonetheless, the even-
tual benefit of uncertainty estimation methods like the one
presented in this study and of extensions based thereon has
still to be worked out in the future by systematically applying
such methods to real data.

6 Conclusions

The present study introduces a method, the so-called Proxy
Spectral Error Model (PSEM; see also Part 2 of this study
by Dolman et al., 2020), for estimating timescale-dependent
uncertainties of paleoclimate reconstructions obtained from
single sediment proxy records. The method is based on an
uncertainty model that takes into account proxy seasonality
(together with orbital variations of the seasonal cycle am-
plitude), bioturbation, archive sampling parameters, and the
effects of measuring only a finite number of signal carriers.
For this model, analytic expressions are derived for the power
spectrum of the reconstruction error from which timescale-
dependent reconstruction uncertainties can be obtained. This
approach is motivated by the fact that the spectral struc-
ture of the error is equivalent to its auto-correlation structure
which, in turn, determines how archive smoothing, sampling,
and averaging timescales affect the uncertainties. Various
timescale-dependent uncertainty metrics can be defined and
then computed from the error power spectrum by multiply-
ing the spectrum by specific transfer functions and then inte-
grating. This corresponds, in the time domain, to additional
postprocessing steps performed on the reconstructed time se-
ries. For example, it is possible to investigate the uncertainty
reduction achieved by a low pass filter with a given cut-off
timescale or to quantify the uncertainty of the difference be-
tween two time averages with given averaging timescales.

The method proves useful in different ways. First, it can
serve to obtain quantitative uncertainty estimates for prac-
tical applications in paleoclimate science. This is demon-
strated in Part 2 of this study (Dolman et al., 2020) in which
a number of application examples are presented. Second, the
derived analytic expressions can be used to acquire a better
qualitative understanding of the structure of the uncertainties.
In particular, we can conclude the following.

– The reconstruction uncertainties can be decomposed
into two components. The first is a component whose
variance is obtained by multiplying the power spectrum
of the supposed true climate signal by a transfer func-
tion and then integrating. This so-called error transfer
function has a structure corresponding to a bandpass
filter with its cut-off timescales given by the longest
applied archive smoothing timescale and by a suit-
ably chosen reference smoothing timescale (by analogy
with the transfer function discussed by Amrhein, 2020).
Thus, multiplying the spectrum by the error transfer
function corresponds to applying that bandpass filter to
the supposed true climate signal. The second is a white
noise component that scales inversely with the number
of signal carriers retrieved from each slice of sediment
(and being subject to the same single laboratory mea-
surement). Thus, in the asymptotic limit of infinitely
many signal carriers, this component vanishes. In the
opposite limit, with only a single signal carrier being
measured from each slice, the variance of this compo-
nent equals the variance that is contained in the sup-
posed true climate signal at timescales shorter than the
longest applied archive smoothing timescale. This com-
ponent corresponds to what is referred to, according to
Dolman and Laepple (2018), as the noise created by the
aliasing of variability from interannual and intra-annual
timescales. Depending on geographical location and cli-
matic conditions, this white noise uncertainty compo-
nent may be dominated by ENSO variability or by the
seasonal cycle, for example.

– In the presence of proxy seasonality such that the cli-
mate signal is recorded by the proxy only during a lim-
ited seasonal window each year, the abovementioned
error transfer function has additional high-frequency
peaks at the seasonal cycle frequency and at its higher
harmonics, and, thus, it corresponds to a multi-bandpass
filter in this case. In consequence of this, a certain
amount of variance is reallocated from the abovemen-
tioned white noise uncertainty component to the first
component, although it appears there at the lowest fre-
quencies because of spectral aliasing. Thus, proxy sea-
sonality may generate uncertainties that are highly cor-
related in the time domain. In most cases, this low-
frequency uncertainty will be dominated by the seasonal
cycle and its amplitude modulation caused by orbital
variations (as demonstrated by Huybers and Wunsch,
2003, for example). Nonetheless, if the stochastic cli-
mate variability is only weakly red such that it is asso-
ciated with notable power near the seasonal cycle fre-
quency, it may also give rise to low-frequency uncer-
tainties, in particular if the seasonal cycle is weak by
comparison.

– If, in addition, the proxy abundance window is known
to have a preferred seasonal timing throughout the year,
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then the contribution that the seasonal cycle signal (with
its deterministic phase) makes to both of the abovemen-
tioned two uncertainty components is further modified.
The white noise component can be larger or smaller
than for random seasonal timing, and, in particular, the
first uncertainty component may include a (potentially
time-varying) deterministic bias in this case. Moreover,
the sum of their variances may change because of the
in-phase subsampling from a deterministic signal.

– Uncertainties caused by laboratory measurement errors
are independent of the abovementioned components,
and, thus, the associated power spectral density can sim-
ply be added to the error power spectrum obtained from
our method. In practice, this uncertainty component is
assumed to be white noise such that it scales inversely
with any averaging timescale.

Another interesting and future application of the derived
analytic expressions would be the inference of the power
spectrum of the true climate signal. Specifically, by setting
the reference climate in our method to zero and then repeat-
ing the entire derivation, one obtains the analytic expressions
for the power spectrum of the climate reconstruction itself
rather than of its error. Thus, one obtains an operator that
transforms the power spectrum of the supposed true climate
signal into a spectrum subject to the distortions caused by the
processes included in our reconstruction uncertainty model.
Then, given all of the parameters of the uncertainty model,
and assuming a parametric form for the true climate signal,
it might be possible to estimate its parameters by means of
a maximum likelihood approach (that investigates the like-
lihood, under a given set of parameters, of the power spec-
trum estimated from a specific proxy record). This essentially
amounts to inverting the aforementioned operator, which is
similar to the correction technique used by Laepple and Huy-
bers (2013) and motivated by the anti-aliasing approach of
Kirchner (2005).
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Appendix A: Nonstationary variance of the white
noise component B(j)

n

The variance of B(j )
n is given by its auto-covariance function

at lag zero, Cov(ε)

(
B

(j )
n

?
,B

(j )
n′

)
|n=n′ . By substitution from

Eq. (73), it can be shown, after some algebraic transforma-
tions, that

Cov(ε)

(
B

(j )
n

?
,B

(j )
n′

)∣∣∣
n=n′
=R+R?, (A1)

with

R= α2
c (R1+R2)+ 4α2

cαa (R3+R4)

+ 2α2
cα

2
a (R5+R6+R7+R8) , (A2)

where

R1 =D1, R2 = e
−i2φcD2, R3 = e

i(2πνatn+φa)D3,

R4 = cos(2φc)ei(2πνatn+φa)D4, R5 =D5,

R6 = cos(2φc)D6, R7 = e
i2(2πνatn+φa)D7,

R8 = cos(2φc)ei2(2πνatn+φa)D8, (A3)

and the characteristic function differencesD1 toD8, also us-
ing definition (33), are given by

D1 = Cn,n′ (−νc,νc)|n=n′ −Cl,l′ (−νc,νc)|l 6=l′

= 1− sinc2 (νcτp
)
, (A4)

D2 = Cn,n′ (−νc,−νc)|n=n′ −Cl,l′ (−νc,−νc)|l 6=l′

= sinc
(
2νcτp

)
− sinc2 (νcτp

)
, (A5)

D3 = Cn,n′ (−νc+ νa,νc)|n=n′

−Cl,l′ (−νc+ νa,νc)|l 6=l′

= f̂ ?bs(νa)
[
1− sinc2 (νcτp

)]
, (A6)

D4 = Cn,n′ (−νc+ νa,−νc)|n=n′

−Cl,l′ (−νc+ νa,−νc)|l 6=l′

= f̂ ?bs(νa)
[
sinc

(
2νcτp

)
− sinc2 (νcτp

)]
, (A7)

D5 = Cn,n′ (−νc− νa,νc+ νa)|n=n′

−Cl,l′ (−νc− νa,νc+ νa)|l 6=l′

= 1−
∣∣∣f̂ ?bs(νa)

∣∣∣2sinc2 (νcτp
)
, (A8)

D6 = Cn,n′ (−νc− νa,−νc+ νa)|n=n′

−Cl,l′ (−νc− νa,−νc+ νa)|l 6=l′

= sinc
(
2νcτp

)
−

∣∣∣f̂ ?bs(νa)
∣∣∣2sinc2 (νcτp

)
, (A9)

D7 = Cn,n′ (−νc+ νa,νc+ νa)|n=n′

−Cl,l′ (−νc+ νa,νc+ νa)|l 6=l′

= f̂ ?bs(2νa)− f̂ ?2bs (νa)sinc2 (νcτp
)
, (A10)

D8 = Cn,n′ (−νc+ νa,−νc+ νa)|n=n′

−Cl,l′ (−νc+ νa,−νc+ νa)|l 6=l′

= f̂ ?bs(2νa)sinc
(
2νcτp

)
− f̂ ?2bs (νa)sinc2 (νcτp

)
. (A11)

Since the auto-covariance contributions R3, R4, R7, and R8
depend on tn, the variance of B(j )

n is nonstationary. Further-
more, it turns out that with n 6= n′ the characteristic func-
tion differences D1 to D8 are all zero, and, thus, the auto-
covariance contributions R1 to R8 are all zero. This implies
that the auto-covariance function of B(j )

n is nonzero only at
lag zero (n= n′) and zero at all other lags (n 6= n′). Hence,
B

(j )
n is a white noise process, and from its definition (Eq. 73)

it follows that it has zero mean. Note that Eq. (A4) is identi-
cal to Eq. (49) in Sect. 3.1 but with ν = νc, and so the above-
mentioned procedure follows the same key idea (according
to the approach of Balakrishnan, 1962) of extrapolating the
auto-covariance function from nonzero lags towards lag zero.

From the abovementioned expressions, we can write the
variance of B(j )

n as

Var(ε)

(
B

(j )
n

)
= V (0)

B +V (1)
B,n cos(2πνatn+φa+φb1)

+V (2′)
B,n cos(4πνatn+ 2φa+φb2)

+V (2′′)
B,n cos(4πνatn+ 2φa+φb1) , (A12)

with the amplitude of the stationary variance component,

V (0)
B = σ

2
c
{
1− sinc2 (νcτp

)
+ cos(2φc)[

sinc
(
2νcτp

)
− sinc2 (νcτp

)]}
+ σ 2

c σ
2
a{

1−M2
b1sinc2 (νaτs) sinc2 (νcτp

)
+ cos(2φc)[

sinc
(
2νcτp

)
−M2

b1sinc2 (νaτs) sinc2 (νcτp
)]}
, (A13)

the amplitude of the variance component oscillating at fre-
quency νa,

V (1)
B,n = 2σ 2

c σa
√

2
{
Mb1sinc(νaτs)

[
1− sinc2 (νcτp

)]
+ cos(2φc)Mb1sinc(νaτs)[
sinc

(
2νcτp

)
− sinc2 (νcτp

)]}
, (A14)

and the amplitudes of the variance components oscillating at
frequency 2νa,

V (2′)
B,n = σ

2
c σ

2
a
{
Mb2sinc(2νaτs)

[
1+ cos(2φc) sinc

(
2νcτp

)]}
, (A15)

V (2′′)
B,n =−σ

2
c σ

2
a
{
M2

b1sinc2 (νaτs) sinc2 (νcτp
)[

1+ cos(2φc)
]}
, (A16)

and where

φb2 = arg
[
f̂ ?b (2νa)

]
= 4πνaτb− arctan(4πνaτb) (A17)

and

Mb2 =

∣∣∣f̂ ?b (2νa)
∣∣∣= [1+ (4πνaτb)2

]−1/2
, (A18)

and φb1 and Mb1 are defined by Eqs. (77) and (78), respec-
tively. The time average of this variance over an infinitely
long time interval is then given by V (0)

B , provided that 1t
is not a multiple of ν−1

a . If the time average is taken over a
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finite time interval of length T , centered at t = 0, the time
mean variance is given by

Var(ε)

(
B

(j )
n

)
= V (0)

B +V (1)
B,n cos(φa+φb1) sinc(νaT )

+V (2′)
B,n cos(2φa+φb2) sinc(2νaT )

+V (2′′)
B,n cos(2φa+φb1) sinc(2νaT ) , (A19)

provided that 1t � ν−1
a .

Appendix B: Parameters of the reconstruction
uncertainty model as defined in Sect. 2

Parameter Symbol
Seasonal cycle variance σ 2

c
Seasonal cycle frequency νc
Expected seasonal cycle phase 〈φc〉φc

Seasonal phase uncertainty 1φc

Amplitude modulation variance σ 2
a

Amplitude modulation frequency νa
Amplitude modulation phase φa
Proxy abundance timescale τp
Bioturbation timescale τb
Sediment sampling timescale τs
Sampling interval 1t

Length of proxy record T

Number of signal carriers N

Measurement error variance σ 2
µ

Reference climate averaging timescale τr
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