



# Supplement of

## Comparison of observed borehole temperatures in Antarctica with simulations using a forward model driven by climate model outputs covering the past millennium

#### Zhiqiang Lyu et al.

Correspondence to: Zhiqiang Lyu (zhiqiang.lyu@student.uclouvain.be)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

#### S1: Forward model description

The equation ruling subsurface temperature evolution in the forward model is given in Eq. 1. According to the original publications, we applied different methods to determine the density profile for each borehole in the model. For WAIS and Styx, the density profiles,  $\rho(z)$ , were obtained by a quadratic fit to the measured bulk density data following Severinghaus et al. (2010). For Larissa, the density profile was approximated following Salamatin (2000). For Mill Island, because of the similarity between the density profiles at Mill Island and Law Dome (van Ommen et al., 1999), the density is described by a piecewise exponential plus linear or dual exponential according to the analysis on the Law Dome ice core density profile (van Ommen et al., 1999). The density is considered to be constant in time in the model.

For the other parameters in the forward model, the specific heat capacity  $c_p$  is calculated by  $c_p = 152.5+7.122T$  (J kg<sup>-1</sup> K<sup>-1</sup>) (Cuffey and Paterson, 2010, Chap. 9, Eq. 9.1 where T is the temperature). The thermal conductivity in ice is taken from  $K_{ice} =$ 9.828 exp ( $-5.7 \times 10^{-3}T$ ) (Wm<sup>-1</sup>K<sup>-1</sup>) (Cuffey and Paterson, 2010, Chap. 9, Eq. 9.2), and the thermal conductivity of the firn is calculated by Schwerdtfeger formula (Cuffey and Paterson, 2010, Chap. 9, Eq. 9.4). The vertical velocity at the surface is simply the accumulation rate and decreases with depth as the integral of the densification process (compaction) and the strain due to ice flow divergence. The vertical velocity profile is determined by the method of Alley et al. (1990) and Cuffey et al. (1994) with a constant strain rate. For the accumulation rate, we use a constant value derived from their original publication, which is specified in the Table 3 of the main text. The bottom boundary condition is given by the basal heat flux and the basal temperature. The heat flux is determined by matching the slope of the temperature increase in the bottom section of the record. At Mill Island, this was not possible, because the data do not extend very deep with respect to the total ice thickness. A zero heat flux boundary condition was chosen instead. The validity of this hypothesis is demonstrated in the original study of Roberts et al. (2013). The basal temperature is determined using the lower "undisturbed" sections of the measured borehole temperature extrapolated to the bottom.

In order to save computation time, the vertical discretization of the model is not homogenous. For WAIS, which is the only very deep borehole, the vertical step is of 1 m for the upper 500 m and up to 25 m for the deepest part. For other sites where the depth of borehole is close or less than 500 m, the step is set to 1 m for the whole depth range.

Before the forward model is driven by the climate model results, it is initialized with a stationary profile, which is generated after a 20000-year model run with a constant climate history and a realistic seasonal cycle. Seasonal-scale variations are "undetectable below a depth of 20m" (Cuffey and Paterson, 2010), and its does not change throughout the run. At WAIS and Styx, the seasonal cycles are determined from weather station data; at Larissa and Mill Island, since the original studies do not give the seasonal cycle, we use a seasonal cycle amplitude of 10 °C similar to WAIS (Eq. S1). At WAIS, it includes a periodic function with annual and semi-annual components, fitted to 3 years of weather station data from WAIS Divide and Byrd station (AMRC, SSEC, UW-Madison) as follows (Orsi et al., 2012):

$$T(t) = 10(\cos(2\pi t) + 0.3\cos(4\pi t)) \text{ (in K)}$$
(S1)

At Styx, the seasonal cycle is determined by fitting a sinusoidal function to the automated weather station data as follows (Yang et al., 2018):

$$T(t) = 10(\cos(2\pi t) + 0.35\cos(4\pi t)) \text{ (in K)}$$
(S2)

Where t is time, T is the temperature.

Equations S1 and S2 for WAIS and STYX are nearly identical, so we presume the seasonal cycle is also similar at Larissa and Mill Island, where no seasonal data is available. Including a seasonal cycle wave is important because the heat capacity and thermal conductivity depend on temperature, and temperature changes a lot in the top 15m, but below that, it is of negligible effect.

S2: Supplementary figures



Figure S1. The correlation map (blue-red shading area) showing the relationship between the temperature from 1825 to 1925 CE at Larissa and other grid cells in Antarctica for each CESM member. The black dotted contour lines show a significant correlation at the 99 % significant level.



Figure S2. The correlation map showing the relationship between the temperature from 1950 to 2005 CE at WAIS and other grid cells for each climate models. The red dashed contour lines show a significant correlation at the 99% significant level.



Figure S3. The correlation map showing the relationship between the temperature from 1950 to 2005 CE at Larissa and other grid cells for each climate models. The red dashed contour lines show a significant correlation at the 99% significant level.



Figure S4. The correlation map showing the relationship between the temperature from 1950 to 2005 CE at Mill Island and other grid cells for each climate models. The red dashed contour lines show a significant correlation at the 99% significant level.



Figure S5. The correlation map showing the relationship between the temperature from 1950 to 2005 CE at Styx and other grid cells for each climate models. The red dashed contour lines show a significant correlation at the 99% significant level.



**Figure S6.** Comparison of borehole temperature profile outputs for the forward model driven by the corresponding reconstruction with the observation at each site. (a) WAIS: 15-300 m; (b) WAIS: 15-50 m; (c) Larissa: 15-430 m; (d) Larissa: 15-50 m; (e) Mill Island: 15-150 m; (f) Mill Island: 15-50 m; (g) Styx: 15-200 m; (h) Styx: 15-50 m. The thick dash-dot line denotes the simulated borehole profile at each site, and red across represent the observation.

| Depth(m) | Temperature (°C) |
|----------|------------------|
| 7.96     | -29.7594         |
| 9.19     | -29.604          |
| 9.95     | -29.5588         |
| 11.94    | -29.4741         |
| 13.93    | -29.4806         |
| 15.92    | -29.5267         |
| 17.91    | -29.6397         |
| 19.9     | -29.6645         |
| 21.89    | -29.7642         |
| 23.89    | -29.7642         |
| 25.88    | -29.8132         |
| 27.87    | -29.8587         |
| 29.86    | -29.8871         |
| 31.85    | -29.8891         |
| 33.84    | -29.9115         |
| 35.83    | -29.9285         |
| 37.82    | -29.9503         |
| 39.81    | -29.9549         |
| 41.8     | -29.9663         |
| 43.79    | -29.9785         |
| 45.78    | -29.9872         |
| 48.77    | -29.998          |
| 51.75    | -30.0089         |
| 56.73    | -30.0253         |
| 61.7     | -30.0352         |
| 66.68    | -30.046          |
| 71.65    | -30.0538         |
| 76.63    | -30.0603         |
| 81.6     | -30.0635         |
| 86.58    | -30.0682         |
| 91.55    | -30.0701         |
| 96.53    | -30.0724         |
| 101.5    | -30.0738         |
| 106.48   | -30.0746         |
| 111.55   | -30.0753         |
| 116.43   | -30.0755         |
| 121.4    | -30.0757         |
| 126.38   | -30.0756         |
| 131.35   | -30.0753         |
| 136.33   | -30.0752         |
| 141.3    | -30.0748         |

### S3: Observed borehole temperature distribution at WAIS.

| 146.28 | -30.0743 |
|--------|----------|
| 151.25 | -30.0736 |
| 156.23 | -30.0734 |
| 161.2  | -30.0722 |
| 166.18 | -30.0715 |
| 171.15 | -30.0698 |
| 176.13 | -30.0686 |
| 181.1  | -30.0672 |
| 186.08 | -30.0653 |
| 191.05 | -30.0632 |
| 196.03 | -30.0608 |
| 201    | -30.0584 |
| 205.98 | -30.0564 |
| 210.95 | -30.0532 |
| 215.93 | -30.0502 |
| 220.9  | -30.0471 |
| 225.88 | -30.0436 |
| 230.85 | -30.0404 |
| 235.83 | -30.0365 |
| 240.8  | -30.0329 |
| 245.78 | -30.0299 |
| 250.75 | -30.0248 |
| 255.73 | -30.022  |
| 260.7  | -30.0165 |
| 265.68 | -30.0129 |
| 270.65 | -30.0078 |
| 275.63 | -30.0042 |
| 278.61 | -30.0017 |
| 280.6  | -30.0003 |
| 285.58 | -29.9954 |
| 290.55 | -29.991  |
| 295.53 | -29.9863 |
| 300.5  | -29.9821 |

### S4: Observed borehole temperature distribution at LARISSA.

| Depth(m) | Temperature (°C) |
|----------|------------------|
| 8.41     | -15.35           |
| 10.51    | -15.3            |
| 21.02    | -14.75           |
| 42.04    | -14.7            |
| 63.06    | -14.78           |
| 84.09    | -15.07           |
| 105.11   | -15.4            |

| 126.13 | -15.61 |
|--------|--------|
| 147.15 | -15.7  |
| 168.17 | -15.77 |
| 173    | -15.8  |
| 189.19 | -15.77 |
| 210.21 | -15.84 |
| 231.24 | -15.68 |
| 273.28 | -15.16 |
| 294.3  | -14.9  |
| 315.32 | -14.53 |
| 336.34 | -13.98 |
| 357.36 | -13.39 |
| 378.86 | -12.7  |
| 400.77 | -11.93 |
| 409.92 | -11.61 |
| 420.43 | -11.29 |
| 430.94 | -10.82 |
|        |        |

#### S5: Observed borehole temperature distribution at Mill Island.

| Depth(m) | Temperature (°C) |
|----------|------------------|
| 9.05     | -14.275          |
| 14.06    | -13.8625         |
| 19.07    | -13.8625         |
| 21.07    | -13.925          |
| 23.07    | -13.9625         |
| 25.07    | -14              |
| 27.07    | -14.05           |
| 29.07    | -14.075          |
| 31.09    | -14.1125         |
| 33.09    | -14.15           |
| 35.11    | -14.175          |
| 37.11    | -14.2            |
| 39.11    | -14.225          |
| 44.125   | -14.3            |
| 49.14    | -14.35           |
| 69.17    | -14.4875         |
| 89.24    | -14.55           |
| 109.3    | -14.6            |
| 119.31   | -14.6125         |

### S6: Observed borehole temperature distribution at Styx.

| Depth(m) | Temperature (°C) |
|----------|------------------|
| 1        | -29.7244         |
| 2        | -32.6116         |
| 3        | -33.4131         |
| 4        | -33.522          |

| 5   | -33.2036 |
|-----|----------|
| 6   | -32.9317 |
| 7   | -32.5716 |
| 8   | -32.3349 |
| 9   | -32.1212 |
| 10  | -31.9562 |
| 11  | -31.8512 |
| 12  | -31.7853 |
| 13  | -31.7379 |
| 14  | -31.6974 |
| 15  | -31.6752 |
| 18  | -31.6255 |
| 20  | -31,5921 |
| 24  | -31,5332 |
| 27  | -31.4905 |
| 30  | -31.452  |
| 33  | -31.4144 |
| 36  | -31 3781 |
| 40  | -31 3275 |
| 42  | -31 3006 |
| 45  | -31 2628 |
| 48  | -31 2209 |
| 50  | -31 1898 |
| 54  | -31 1366 |
| 57  | -31.0925 |
| 60  | -31.0493 |
| 63  | -31.0032 |
| 66  | -30,9585 |
| 69  | -30 9144 |
| 72  | -30.8683 |
| 75  | -30.82   |
| 78  | -30 7722 |
| 81  | -30 7296 |
| 84  | -30 6835 |
| 87  | -30.6367 |
| 90  | -30 5892 |
| 95  | -30.5113 |
| 100 | -30.4264 |
| 105 | -30.3411 |
| 110 | -30.253  |
| 115 | -50.255  |
| 120 | -30.1048 |
| 125 | -20.001  |
| 130 | -29.9900 |
| 135 | -29.09/5 |
| 140 | -27.805  |
| 140 | -29.7075 |
| 140 | -29.6079 |
| 130 | -29.50/8 |

| 155 | -29.412  |  |
|-----|----------|--|
| 160 | -29.3098 |  |
| 165 | -29.2065 |  |
| 170 | -29.0968 |  |
| 175 | -28.9922 |  |
| 180 | -28.883  |  |
| 185 | -28.7783 |  |
| 190 | -28.6518 |  |
| 195 | -28.5633 |  |
| 200 | -28.4535 |  |
| 205 | -28.3431 |  |
| 210 | -28.2515 |  |

#### Reference

- R. В.. and Koci, Β. R.: Recent Alley, Warming in Central Greenland?. Ann. Glaciol. 14. 6-8. https://doi.org/10.3189/s0260305500008144, 1990.
- Cuffey, K. M., Alley, R. B., Grootes, P. M., Bolzan, J. M., and Anandakrishnan, S.: Calibration of the δ<sup>18</sup>O isotopic paleothermometer for central Greenland, using borehole temperatures, Journal of Glaciology, 40, 341-349, 10.3189/s0022143000007425, 1994.
- Cuffey, K., and W. Paterson, The Physics of Glaciers, Academic, Amsterdam, 2010.
- Orsi, A. J., Cornuelle, B. D., and Severinghaus, J. P.: Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012gl051260, 2012.
- Roberts, J. L., Moy, A. D., van Ommen, T. D., Curran, M. A. J., Worby, A. P., Goodwin, I. D., and Inoue, M.: Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades, Cryosphere, 7, 263-273, https://doi.org/10.5194/tc-7-263-2013, 2013.
- Salamatin A. N.: Paleoclimatic reconstructions based on borehole temperature measurements in ice sheets. Possibilities and limitations, in: Physics of Ice Core Records, edited by: Hondoh, T., Hokkaido University Press, Sapporo, 243–282, 2000.
- Severinghaus, J.P., Albert, M.R., Courville, Z.R., Fahnestock, M.A., Kawamura, K., Montzka, S.A., Mühle, J., Scambos, T.A., Shields, E., Shuman, C.A. and Suwa, M.: Deep air convection in the firn at a zero-accumulation site, central Antarctica, Earth Planet. Sci. Lett., 293(3-4), 359-367, https://doi.org/10.1016/j.epsl.2010.03.003, 2010.
- van Ommen, T., Morgan, V., Jacka, T., Woon, S., and Elcheikh, A.: Near-surface temperatures in the Dome Summit South (Law Dome, East Antarctica) borehole, Ann. Glaciol., 29, 141–144, https://doi.org/10.3189/172756499781821382 ,1999.
- Yang, J.-W., Han, Y., Orsi, A. J., Kim, S.-J., Han, H., Ryu, Y., Jang, Y., Moon, J., Choi, T., Hur, S. D., and Ahn, J.: Surface Temperature in Twentieth Century at the Styx Glacier, Northern Victoria Land, Antarctica, From Borehole Thermometry, Geophys. Res. Lett., 45, 9834-9842, https://doi.org/10.1029/2018gl078770, 2018.