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Abstract. The species composition of many groups of ma-
rine plankton appears well predicted by sea surface tempera-
ture (SST). Consequently, fossil plankton assemblages have
been widely used to reconstruct past SST. Most applications
of this approach make use of the highest possible taxonomic
resolution. However, not all species are sensitive to tempera-
ture, and their distribution may be governed by other parame-
ters. There are thus reasons to question the merit of including
information about all species, both for transfer function per-
formance and for its effect on reconstructions.

Here we investigate the effect of species selection on
planktonic foraminifera transfer functions. We assess species
importance for transfer function models using a random for-
est technique and evaluate the performance of models with an
increasing number of species. Irrespective of using models
that use the entire training set (weighted averaging) or mod-
els that use only a subset of the training set (modern analogue
technique), we find that the majority of foraminifera species
does not carry useful information for temperature reconstruc-
tion. Less than one-third of the species in the training set is
required to provide a temperature estimate with a prediction
error comparable to a transfer function that uses all species in
the training set. However, species selection matters for pale-
otemperature estimates. We find that transfer function mod-
els with a different number of species but with the same error
may yield different reconstructions of sea surface tempera-
ture when applied to the same fossil assemblages. This am-
biguity in the reconstructions implies that fossil assemblage
change reflects a combination of temperature and other en-
vironmental factors. The contribution of the additional fac-
tors is site and time specific, indicating ecological and ge-
ological complexity in the formation of the sedimentary as-
semblages. The possibility of obtaining multiple different re-

constructions from a single sediment record presents a pre-
viously unrecognized source of uncertainty for sea surface
temperature estimates based on planktonic foraminifera as-
semblages. This uncertainty can be evaluated by determining
the sensitivity of the reconstructions to species pruning.

1 Introduction

Any method to infer quantitative paleoenvironmental infor-
mation from (fossil) species assemblages relies on the use
of a modern (or near modern) training set to identify a sta-
tistical relationship between the species assemblage and the
environmental variable to be reconstructed. There is a range
of methods varying broadly in the way the training set is used
to define the relation between the species community and
the environmental parameter of interest. In this context, one
aspect of the training set design that has received little for-
mal attention is species selection. In applications based on
marine microfossils, the assumption has been that (nearly)
all species potentially carry useful information, and training
sets have been designed to include as many species as practi-
cally possible (Kucera et al., 2005a). However, there are fun-
damental, theoretical reasons to question whether the inclu-
sion of all species is necessary for accurate reconstructions.
Firstly, species may respond to environmental variables other
than the one of interest and therefore confound the recon-
struction. Such species would negatively impact the predic-
tive power of the transfer function model. Secondly, species
could be opportunistic or have a wide ecological niche and
hence provide little information on the environmental vari-
able to be reconstructed. These species would add little to
no information to constrain the reconstruction. The premise
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of full taxonomic resolution has been recently tested by Jug-
gins et al. (2015), who demonstrated that transfer function
techniques are variably sensitive to the influence of non-
informative taxa. These authors used highly diverse assem-
blages from coastal and lacustrine environments in which the
proportion of uninformative or confounding taxa can be ex-
pected to be high and species selection for transfer function
models is intuitively appropriate.

However, marine microfossil assemblages (notably plank-
tonic foraminifera) are less diverse and the species display a
low degree of endemicity. In these circumstances, it would
appear important to retain as many species in the training
set as possible. Indeed, up to now, species pruning in ma-
rine microplankton applications has been done, if at all, for
practical rather than ecological reasons. Species were re-
moved or lumped because of low abundance, preservation,
or taxonomic issues (Hayes et al., 2005; Vernal et al., 2001;
Zielinski et al., 1998). However, the minimum number of
taxa required for a robust transfer function model, or the in-
fluence of non-informative or nuisance taxa on such mod-
els, has never been formally evaluated. This is remarkable,
considering that many species of marine microplankton ap-
pear to have similar responses to the modelled variables and
that there is also evidence for responses to multiple variables
(Telford et al., 2013; Siccha et al., 2009; Steinke et al., 2008).
Furthermore, from a practical point of view, reducing the
number of species in the model may improve counting statis-
tics and reduce counting time. Finally, reducing taxonomic
resolution may also be beneficial for the application of au-
tomated identification and counting systems (e.g. Beaufort
and Dollfus, 2004; Hsiang et al., 2016) and enable the use
of legacy datasets with incomplete taxonomy. The lack of a
formal evaluation of species pruning in marine microfossil
studies is also relevant because of the prolific use of differ-
ent transfer function techniques. The evaluation of species
pruning by Juggins et al. (2015) was carried out for “global
models” for which the entire training set is used to define the
species response curve to an environmental variable. Such
methods are used on marine microfossil applications as well
(e.g. the Imbrie and Kipp method after Imbrie and Kipp,
1971; weighted averaging (WA), or artificial neural networks
after Malmgren and Nordlund, 1997). However, in marine
studies the most popular approach is the modern analogue
technique (MAT). This approach uses similarity measures to
identify a small “local” subset of samples from the training
set to derive the environmental variable to be reconstructed.
Such a local approach is fundamentally different and could
be sensitive to species pruning in the training set in a differ-
ent way.

Here we evaluate species importance for transfer func-
tion performance for two widely differing methods (WA and
MAT) representing both ends of the spectrum between lo-
cal and global methods. We start by assessing species impor-
tance to determine the ranking of species for transfer func-
tion performance. We then investigate why some species are
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more important than others. Finally, because the behaviour
of transfer functions models cannot be assessed within the
modern training set only, we assess the influence of species
selection on paleotemperature reconstructions.

We use planktonic foraminifera as a model group, but the
results from this study are likely of wider relevance to pa-
leoecological reconstructions based on marine microfossils.
Planktonic foraminifera are ideal for this purpose because
of the existence of a large global training set (Siccha and
Kucera, 2017a) and because of strong evidence that their dis-
tribution in surface sediments can be predicted by sea surface
temperature alone (Bé and Hutson, 1977; Morey et al., 2005).

2 Data and methods

To derive the transfer functions, we use planktonic
foraminifera assemblage data from core top sediments re-
cently compiled in the ForCenS dataset (Siccha and Kucera,
2017a). Multi-species categories and morphotypes were re-
moved, and in the case of replicate samples (at the same
location) one sample was randomly selected. Annual mean
temperature was assigned to each sample in the training set
based on data from climatology (Stephens et al., 2002) av-
eraged over the upper S0m and within a 100 km radius of
each core top sample. To test the effect of species selec-
tion on the performance of the transfer function outside of
the calibration dataset, we analysed three fossil datasets. To
evaluate the effect on assemblages with different diversity,
we use two downcore records from the Atlantic: M35003-
4 from the Caribbean (Hiils and Zahn, 2000), which spans
0-55 ka, and a longer 0—180 ka record from the Iberian Mar-
gin: MD95-2040 (De Abreu et al., 2003a). To evaluate the
effect on past spatial sea surface temperature (SST) patterns,
we reanalyse the MARGO Last Glacial Maximum (LGM)
dataset from the North Atlantic Ocean (Kucera et al., 2005a).
The taxonomy of all fossil samples was harmonized with the
ForCenS dataset following the same criteria as in Siccha and
Kucera (2017a). Species not reported to be present in the
downcore assemblages were assumed to be absent.

To determine how many and which species are needed for
the transfer function models we start with assessing species
importance following the approach described by Juggins et
al. (2015). Briefly, this involves randomly selecting 1/3 of
the species in the training set and dividing this reduced train-
ing set into a part that is used to build the transfer function
model including approximately 63 % of the samples and an
out-of-bag (OOB) part that is used to evaluate the model.
The proportion of each species in the OOB selection is then
randomly permuted and the performance of the model is re-
assessed. Species for which the permutation leads to an in-
crease in the prediction error are considered important. The
species importance is derived from the average difference in
prediction between the OOB and the permuted OOB sam-
ples across 1000 bootstrap samples of the training set. The

www.clim-past.net/15/881/2019/



L. Jonkers and M. KuCera: Species selection indicates nuisance variables in transfer functions

(@) MAT

—_

(@]

N

w

n

=

X 4-

Lo ;

5 [ ]

o) LX)

e 2 + ©0090000000000000000000000000

I +¢

= (XXX XYY

= (X

S oA $00000000000000000000

g' TrrrrrrrrT TrrrrrrrrrrrrrrrrrrrrrrrT

= 0 = 1%} ‘B w unun {2} 0 n 12} =

= ES0888E 38888888832 3383348983838¢8
SSSEEOCS So00505R0s82 550580555888
588, S5 S83535358,,588S528852 55 255¢
S§° 8SCRP5ES3ED05SSOSE R 86 g 8 8%
T > ¢ 20083F O0fF &85Sg g © . QT
Q P T 3 5% S 1% (¢}
z = 2 %6

(O]

— (WA
(@]
. 64
L
g °
4 -
4
= o
[0] ’ o
°
© 24 ®90c000000000000000000°°%°00000
®© (X ]
g See,
[ X)
Q 04 00000000000 00000000000000
E T TrrrrrorrT TrrrrrrrrrrrrrrrrrrrrrrrrorrT
= = PO R (2] 12} 2] 2] =
SR R R
=S 8 5298 =3 2 S
§SE35 0S50 9885822555555 85.258
R 8S8S235 . 885=E35E 85 8C g 232535, =270
S§CE838CCESS 53583502283, 0 g8-C2%C yg2
¥ S GaZ T §ZT8C g5 O . ©Q T
Q S s ggg S 3 %) 0]
2 = £ S
G

Figure 1. Species importance (black) and transfer function performance (red) for models including all species to the left of the point (e.g. the
first red point for the MAT transfer function for the North Atlantic denotes the prediction error (root mean square error; RMSE) of a model
with N. pachyderma and G. ruber (white). Error bars on the species importance show the standard deviation of 10 replicates; see “Data and
methods” for details. The dark vertical lines indicate the species needed for a transfer function model in which including more species only
leads to a marginal reduction in the reconstruction error (arbitrarily set at when the prediction error is within 10 % of the minimum). Note
that for display purposes the species importance for MAT has been divided by a factor of 5.

entire approach is repeated 10 times in order to get an er-
ror estimate of the species importance. For WA we use in-
verse deshrinking to obtain the environmental variables, and
for MAT we use the five closest analogues determined us-
ing squared chord distance. We note that the way the species
importance is assessed and the transfer function models with
different numbers are designed implicitly uses a rest group
of non-included species. This is because the calculations are
based on the relative abundances of the species in the training
set with the full taxonomic resolution. This procedure simu-
lates a situation in which the total number of fossils in the
studied group has been determined, but only a subset of the
species has been counted.

Next, we use the species importance to build transfer
function models with a successively increasing number of
species. We start with the two most important species and in-
crease the number according to the species importance rank-
ing. The performance of each model (i.e. the prediction er-
ror) was assessed using h-block cross-validation to account
for the effect of spatial autocorrelation in the training set
(Telford and Birks, 2009). We used a cut-off distance of
850 km, which was shown to be appropriate for the North
Atlantic (Trachsel and Telford, 2016). Because of the pres-
ence of cryptic species with specific ecological preferences,
we have carried out the analyses separately for individual
ocean basins following Kucera et al. (2005a), assigning the
new Red Sea samples of ForCenS to the Indian Ocean. The
discussion below focusses on the North Atlantic Ocean be-
cause of the abundance of both core top and downcore data,
but the species ranking for the other oceans is provided in the
Supplement. All calculations were carried out in R (R core
team, 2016) using the packages rioja (Juggins, 2017), raster
(Hijmans, 2017), vegan (Oksanen et al., 2018), and ggplot2
(Wickham, 2016).
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3 Results and discussion

3.1 Species importance ranking

Irrespective of which regional training set is used, for both
WA and MAT only a small number of species appears impor-
tant (Fig. 1 and the Supplement). As shown by the example
of the North Atlantic, cross-validation of the transfer func-
tion models with an increasing number of species shows that
there is a large tail of low-importance species that do not add
information and hence do not lead to improved transfer func-
tion performance (Fig. 1). In general, it appears that recon-
structions with similar errors to the full species reconstruc-
tion can be achieved with less than a third of the total number
of species. The species importance ranking varies somewhat
by method and region but is generally similar (Supplement).
In the North Atlantic there is a 90 % overlap of the species in
the top 10.

To understand why some species are more important than
others, we consider their overall maximum abundance, the
width of their thermal niche in the training set, and their
temperature sensitivity as potential predictors of importance.
We assume that the thermal niche of a species has a Gaus-
sian shape and define temperature sensitivity based on how
well the species abundance in temperature space can be de-
scribed by a simple Gaussian curve. This analysis reveals
that abundance (Fig. 2) is the best predictor of species impor-
tance (Table 1). Indeed, multiple regression models that in-
clude all three variables perform only marginally better than
a model using abundance alone. However, we note that all
three variables are correlated to some degree. Interestingly,
abundance and temperature sensitivity are positively corre-
lated (r = 0.84), implying that the thermal niche of abundant
species is better defined compared to rare species (Fig. 3a).
We also observe that temperature sensitivity and thermal
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Table 1. Factors explaining species importance: coefficient of determination of linear regression between species importance and maximum

abundance, thermal niche width, and temperature sensitivity.

Method Abundance Temperature Niche Abundance Abundance
sensitivity ~ width 4 niche width + niche width
+ temperature sensitivity
MAT 0.79 0.66 0.21 0.83 0.84
WA 091 0.74 0.31 0.93 0.94
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Figure 2. Species thermal niche ranked by average sedimentary
abundance (top to bottom). Colours indicate average abundance (on
a logarithmic scale) within 1°C bins. The essential species (see
Fig. 1) for MAT are marked in bold and those for WA are un-
derlined. Despite their apparently well-defined thermal niche, rare
species are not essential for transfer functions and those that are
important are all abundant.

niche width are correlated. Counter-intuitively, this correla-
tion is positive: species with a narrow thermal niche appear
less temperature sensitive (r = 0.60; Fig. 3b). We attribute
this pattern to a combination of low abundance of species
with narrow thermal niches (sensitivity being correlated with
abundance) and the possibility that their distribution is not
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ecological niche is thus inherently more difficult.

The importance ranking also reveals that there are many
uninformative species but very few — if any — real nuisance
species, i.e. species that lead to an increase in the predic-
tion error when included in the transfer function model. The
single possible species in this category is Globoconella gluti-
nata in the case of WA (Fig. 1), but this may in part reflect
the complex shape of its thermal niche. Globoconella gluti-
nata is a species with a very wide thermal tolerance and a
high degree of cryptic diversity (Darling et al., 2017; André
et al., 2014), suggesting that its response to temperature may
be complex.
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Figure 4. Species selection affects SST reconstructions: examples from two independent datasets showing the effect on temporal and spatial
patterns in reconstructed SST. (a, b) SST reconstructions for core MD95-2040 from the Iberian Margin using 33 possible transfer function
models with the number of species increasing according to their ranking. Red lines show the reconstructions with essential species only, dark
grey lines the reconstructions with more species, and the black line is the “final” reconstruction with all species. (¢, d) Spatial pattern of the
difference between the SST reconstruction for the LGM with the minimum and with all species included.

3.2 Effect on reconstructions

Despite the apparent lack of importance of many species
in the transfer function model development, their inclusion
matters for the reconstruction based on fossil assemblages.
Transfer function models with pruned species numbers yield
reconstructions that are systematically different from re-
constructions with all species included (Fig. 4). The dif-
ferences can be up to several degrees Celsius and variable
in time and space, with important implications for paleo-
ceanographic interpretations. As expected, the average dif-
ference between a reconstruction with all species included
and pruned species reconstructions decreases with an in-
creasing number of species (Fig. 5). Importantly, species
pruning not only results in more variability in the reconstruc-
tions, but also leads to a real bias towards either lower or
higher temperatures than a reconstruction with all species
(Fig. 5).

Inclusion of the most important species leads to a rapid
decrease in the difference between species-pruned and all-
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species reconstructions, but unlike the species importance as-
sessment (Fig. 1), adding more species leads to further step-
wise decreases in the difference (Fig. 5). Importantly, steps
in reconstruction difference occur with the addition of differ-
ent species in different cores, indicating that they result from
specific downcore changes in the assemblage composition.
The exception appears to be G. glutinata in the case of WA,
which leads to an increase in both the prediction error and
the difference of the reconstruction, supporting its potential
rating as a nuisance species.

When adding species to the transfer function model, the
reduction in the difference from the reconstruction with all
species is initially accompanied by a reduction in the predic-
tion error (Fig. 6). However, once the most important species
are included, the prediction error stabilizes, whilst the dif-
ference continues to decrease. This means that for the same
fossil assemblage, multiple different reconstructions with the
same prediction error are possible. This pattern is visible in
datasets from different faunistic and climatic regions and dif-
ferent time spans. Moreover, it holds for both methods, sug-

Clim. Past, 15, 881-891, 2019
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Figure 5. Effect of species selection on SST reconstruction. Graphs show mean difference between reconstructions using species-pruned
transfer function models and the model that includes all species. The results are ordered according to species importance, with each dot
representing the result from a transfer function model with the species up to the marked point (similar to Fig. 1). Grey symbols are the
reconstructions with fewer than the minimum number of species and red symbols the reconstructions with the minimum number of species.
Dots are the average of the mean absolute difference, and diamonds are the mean difference.

gesting that it is a general pattern of the effect of species se-
lection on SST reconstructions using planktonic foraminifera
assemblages. In WA species pruning has a greater effect on
the reconstruction error than in MAT, but for both meth-
ods species pruning leads to different reconstruction with the
same error. Taken at face value and in the absence of inde-
pendent evidence, such inherent ambiguity renders it impos-
sible to decide which of the reconstructions is more realistic.

Clim. Past, 15, 881-891, 2019

This adds a previously unrecognized source of uncertainty to
quantitative assemblage-based reconstructions.

3.3 Sensitivity to species pruning

To evaluate the cause of the sensitivity of reconstructions to
species selection, we calculate for each fossil sample a sensi-
tivity measure based on the standard deviation of the recon-
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portance. The first point details a transfer function model with two
species, and one species is added at each subsequent point. Open
symbols highlight reconstructions with the essential species, the in-
clusion of which leads to a reduction in the prediction error. The re-
construction with minimum error and a minimum number of species
is marked by a star. All other reconstructions are plotted as dots.
Note that for MAT and WA the inclusion of the essential species
leads to a reduction of the prediction error, but once these species
are included there are still multiple reconstructions with the same
error possible.

structions using a different number of species and evaluate its
predictability by properties of the assemblages (Fig. 7). The
pruning sensitivity for all fossil datasets is higher for MAT
than for WA (Fig. 7) despite the fact that the minimum num-
ber of essential species is higher for MAT. This suggests that
MAT is inherently more sensitive to species pruning, perhaps
because the method does not rely on extrapolation to define
a species niche.

Intuitively, it would be expected that the effect of species
pruning is larger in low-diversity assemblages. However, for
both techniques and all datasets, pruning sensitivity is un-
related to the number of species present in the fossil sample
(Fig. 7). The fact that pruning sensitivity is not related to rich-
ness confirms that diverse assemblages contain many unim-
portant (redundant or uninformative) species. Especially for
MAT, it could be expected that fossil samples with a com-
position that differs most from the training set is most sen-
sitive to pruning. This could be so if some species that are
judged as uninformative in the training set carry environ-
mentally relevant information downcore. Indeed, we observe
such an effect of analogue quality, with poorer analogue as-
semblages being more sensitive to pruning (Fig. 7). As ex-
pected, the effect is stronger for MAT, but it is most clear in
the downcore records. However, the fact that the effect is gen-
erally weak combined with the absence of a clear common
pattern in species pruning sensitivity (Fig. 7) highlights the
difficulty of attributing assemblage changes to a single envi-
ronmental factor and suggests that each site, or time slice,
has unique species turnover dynamics. The uniqueness of
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Figure 7. Exploring the effect of species richness and analogue
quality on the sensitivity to species pruning. This sensitivity is de-
fined as the standard deviation of the reconstructions with more
than the minimum required number of species (i.e. based on trans-
fer function models with uninformative species, which are those to
the right of the red dot in Fig. 4). Analogue quality is defined as
the average dissimilarity from the five most similar samples in the
training set; zero values thus mean perfect analogues. A clear effect
of richness cannot be observed, yet for some of the downcore re-
constructions (MD95-2040 and M35003-4) poor analogues appear
associated with higher pruning sensitivity, particularly for MAT.

species dynamics in each dataset is also reflected in the dif-
ferent position of the distinct steps in the difference between
the reconstructions with all species and the pruned recon-
structions (Fig. 4). Because these steps are not accompanied
by a change in the transfer function performance, they in-
dicate changes in the fossil assemblages that either reflect a
temperature sensitivity of the species that is not captured in
the training set (inadequate training set) or are not related to
temperature (non-analogue condition; Hutson, 1977). Non-
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analogue situations could arise either secondarily from post-
depositional changes in the assemblages or primarily and re-
flect a biological response to an environmental variable other
than temperature, which is not apparent in the training set
because of temporally variable covariation between this pre-
dictor variable and temperature.

Post-depositional changes in species assemblages could
arise from processes like dissolution (Berger, 1968) or sed-
iment (and thus fossil) mixing due to bioturbation (Hutson,
1977; Kucera et al., 2005a). The effect of mixing should be
most pronounced around intervals of assemblage change and
may create fossil species assemblages with poor analogues
in the training set. We have assessed to what degree analogue
quality (dissimilarity from the training set) varies as a func-
tion of change in the assemblages for the downcore records
investigated here (Fig. 8). The observed relationship has a
sign consistent with our hypothesis but is weak and not ap-
parent in each time series, suggesting that analogue quality
varies as a function of multiple parameters and does not sim-
ply reflect sediment mixing. Furthermore, we consider the
effect of dissolution on the fossil samples negligible and rule
out expatriation as the cause of the observed patterns because
expatriation is unlikely to have changed considerably in time.
We thus infer that the major reason for the observed ambi-
guity of the reconstructions is the effect of nuisance (non-
temperature) variables on fossil assemblage composition.

3.4 Implications for paleoecological reconstructions

Despite its intuitive simplicity and in spite of apparent sta-
tistical support (Morey et al., 2005), relating species assem-
blage change to a single environmental variable is not trivial
(Juggins, 2013; Telford and Birks, 2009, 2005; Telford et al.,
2013). This means that quantitative reconstructions based on
transfer functions must be interpreted with caution and eval-
uated in view of additional, independent evidence. Our anal-
ysis provides further evidence for the temporal emergence of
apparently non-temperature-related changes in fossil plank-
tonic foraminifera assemblages that are not captured by cal-
ibration (Telford et al., 2013; Steinke et al., 2008; Siccha et
al., 2009). The ambiguity in reconstruction due to species
selection thus highlights the potential of environmental vari-
ables that appear unimportant in shaping species communi-
ties today to explain changes in past assemblages. An impor-
tant question is therefore how can this ambiguity be consid-
ered when interpreting individual reconstructions? We rec-
ommend, as a first step, using the approach outlined here
(ranking of species importance for each basin is provided in
the Supplement) to quantify the sensitivity of reconstructions
to pruning and using this as an indication of the influence of
secondary or nuisance variables on the reconstruction. This
requires that the data are available at full taxonomic reso-
lution, and we therefore explicitly encourage researchers to
continue counting all species.
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Figure 8. A possible role for sediment mixing in determining ana-
logue quality (dissimilarity; see Fig. 6). Sediment mixing would
create poor analogue assemblages when different species communi-
ties are mixed. The difference between subsequent species commu-
nities in the sediment core is defined here in two ways: (i) as the dif-
ference in inferred temperature (a—d) and (ii) as the first derivative
of the loadings of the first axis of a principal component analysis
(PCA) on the species abundances (e—f). A linear regression includ-
ing a 95 % confidence interval is shown as a red line with grey shad-
ing. Only for core M35004-3 is a weak positive relationship visible,
indicating that sediment mixing is a possible contributor to creating
poor analogue assemblages but cannot explain them entirely.

Although a method to translate the effect of pruning into a
mechanistic and quantifiable uncertainty estimate is not cur-
rently available, one may conclude that reconstructions that
are highly sensitive to species pruning indicate that the ob-
served assemblage changes cannot be attributed solely to the
environmental variable that is to be reconstructed.

Ultimately, we need a more mechanistic understanding of
the factors that determine species assemblage composition
in the sediment. Importantly, planktonic foraminifera species
inhabit vertically and seasonally distinct habitats (Jonkers
and Kucera, 2015; Rebotim et al., 2017). Thus, in many cases
the species in a sediment assemblage have never actually
lived together and their abundance is thus unlikely to reflect
the same forcing. Moreover, the controls on vertical and sea-
sonal abundance variability are species specific, adding even
more complexity to deriving a single environmental variable
from an assemblage of different species. Ecological models
that explicitly simulate assemblages from multiple environ-
mental variables (Kretschmer et al., 2018; Lombard et al.,
2011) may improve our capabilities to quantitatively recon-
struct past environmental change from species assemblages.
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In a climate modelling context, such forward modelling of
fossil assemblages is likely more fruitful than directly com-
paring the inferred temperatures.

4 Conclusions

There are both theoretical and practical reasons to investi-
gate whether full taxonomic resolution is required to infer
paleoenvironmental data from microfossil assemblages. We
have addressed this issue using planktonic foraminifera, but
we believe that our results are also relevant to other groups
of (marine) microfossils. We have ranked species according
to their importance for transfer function model development
and shown that less than a third of the species is needed
to derive a model that performs as well as (or better than)
a model with full taxonomic resolution. Nevertheless, even
though the addition of more species has little effect on the
transfer function model performance, sea surface tempera-
ture reconstructions with an increasing number of species are
different. Thus, multiple different reconstructions are possi-
ble and their reliability cannot be assessed by transfer func-
tion performance in the training set. Our analysis suggests
that fossil assemblages do not uniquely reflect a single envi-
ronmental variable (sea surface temperature in this case) but
rather provide an integrated response to biotic (but not tem-
perature related) and abiotic (sediment mixing) factors. We
have identified a new way to detect uncertainty (ambiguity)
in transfer function reconstructions due to nuisance variables.
The sensitivity of reconstructions to species selection can be
quantified using the approach outlined here, facilitating an
assessment of the robustness of the reconstruction.
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