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Abstract. Dynamic vegetation models simulate global veg-
etation in terms of fractional coverage of a few plant func-
tional types (PFTs). Although these models often share the
same concept, they differ with respect to the number and kind
of PFTs, complicating the comparability of simulated vege-
tation distributions. Pollen-based vegetation reconstructions
are initially only available in the form of time series of in-
dividual taxa that are not distinguished in the models. Thus,
to evaluate simulated vegetation distributions, the modelling
results and pollen-based vegetation reconstructions have to
be converted into a comparable format. The classical ap-
proach is the method of biomisation, but hitherto PFT-based
biomisation methods were only available for individual mod-
els. We introduce and evaluate a simple, universally appli-
cable technique to harmonise PFT distributions by assign-
ing them into nine mega-biomes, using only assumptions on
the minimum PFT cover fractions and few bioclimatic con-
straints (based on the 2 m temperature). These constraints
mainly follow the limitation rules used in the classical biome
models (here BIOME4). We test the method for six state-
of-the-art dynamic vegetation models that are included in
Earth system models based on pre-industrial, mid-Holocene
and Last Glacial Maximum simulations. The method works
well, independent of the spatial resolution or the complex-
ity of the models. Large biome belts (such as tropical for-
est) are generally better represented than regionally confined
biomes (warm–temperate forest, savanna). The comparison
with biome distributions inferred via the classical biomisa-
tion approach of forcing biome models (here BIOME1) with
the simulated climate states shows that the PFT-based biomi-
sation is even able to keep up with the classical method.

However, as the new method considers the PFT distributions
actually calculated by the Earth system models, it allows for
a direct comparison and evaluation of simulated vegetation
distributions which the classical method cannot do. Thereby,
the new method provides a powerful tool for the evaluation
of Earth system models in general.

1 Introduction

Within dynamic global vegetation models (DGVMs), the nat-
ural vegetation distribution is usually represented in the form
of plant functional types (PFTs); i.e. plants are grouped with
regard to their physiology and physiognomy (Prentice et al.,
2007). These PFTs differ with respect to phenology, albedo,
morphological and photosynthetic parameters and are usu-
ally constrained by an individual bioclimatic range of tol-
erance defined by temperature thresholds. These thresholds
represent the cold resistance, chilling and heat requirements
of the plants and determine the area where the PFTs can be
established.

In most DGVMs, a “mosaic” approach is used; i.e. each
grid box of the land surface is split into separate parts for
a non-vegetated and a vegetated fraction that is further tiled
in mosaics, taking subgrid-scale heterogeneity into account.
Thus, several PFTs can cover the same grid cell and compete
for space via their net primary productivity (e.g. Sitch et al.,
2003; Krinner et al., 2005; Reick et al., 2013). Non-vegetated
area (seasonally bare soil or permanently bare ground) is pro-
duced where plant productivity is too low.
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Although the main principles for the calculation of PFT
distributions are similar among most DGVMs, they vary re-
garding the number and kind of PFTs used to represent the
global vegetation. Natural (non-anthropogenic) PFTs range
from 2 in, e.g. VECODE (for definition of the acronyms of
the DGVMs, see Table 1), to 10 in, e.g. LPJ and ORCHIDEE
(Table 1). Even within the same model, PFT variety can dif-
fer between individual simulations, e.g. due to the inclusion
of land-use types. These differences among the simulations
and models prohibit the intermodel comparability of simu-
lated global vegetation distributions and the comparability
with pollen-based biome reconstructions.

Pollen records are originally displayed in the form of
pollen percentages or pollen accumulation rates, what cannot
be directly compared to plant functional type distributions, as
pollen records do not reflect the actual plant abundances. For
a systematic comparison of simulated plant functional type
distributions and reconstructions, both need to be converted
in a compatible format. In the last two decades, taxa to PFT
assignment methods and the method of “biomisation” for
pollen-based reconstructions have been developed (e.g. Pren-
tice et al., 1996; Ni et al., 2010; Harrison et al., 2010), so that
pollen assemblages can be grouped into biomes (e.g. tropical
forest, temperate steppe, desert). Pollen-based biome synthe-
ses have been provided (Prentice et al., 1998, 2000; Bigelow
et al., 2003; Ni et al., 2010; Harrison, 2017; Tian et al., 2017)
that have extensively been used to evaluate simulated biome
distributions obtained from diagnostic biome models such as
BIOME1 or BIOME4 (e.g. Prentice et al., 1992; Haxeltine
and Prentice, 1996; Kaplan et al., 2003). These biome mod-
els can be forced by observed or simulated climate fields and
calculate biome distributions in equilibrium to this input cli-
mate. Using this classical method of biomisation, fundamen-
tal palaeo-vegetation analysis can be undertaken (e.g. Jolly
et al., 1998; Harrison et al., 2003, 2016; Wohlfahrt et al.,
2008; Dallmeyer et al., 2017) without requiring an explicit
calculated vegetation distribution by the Earth system models
(ESMs). On the other hand, this also means that existing sim-
ulated plant functional type distributions calculated by the
DGVMs being dynamically coupled in these models are ne-
glected, since only the simulated climate pattern is taken into
account. The biomisation via diagnostic biome models did
not include any information on the original PFT distribution
simulated by the Earth system models. As the DGVMs are
generally more complex than the biome models and include
more relevant processes, valuable information included in the
PFT distribution gets lost in the classical biomisation by the
biome models. A more appropriate method of biomisation
would be to directly use the PFT distributions calculated by
the DGVMs.

Several model studies have taken up this problem by in-
troducing methods for biomising PFT distributions simulated
by DGVMs. Schurgers et al. (2006) derive biome maps for
the Eemian and mid-Holocene from the relative fractional
coverage of the individual PFTs and the soil temperature,

both simulated by LPJ. With this method, reconstructed ma-
jor biome shifts could be reproduced. Roche et al. (2007)
used the dominant PFT and the bioclimate limits defined in
the biome model BIOME1 (Prentice et al., 1992) to biomise
PFT cover fractions for the Last Glacial Maximum (LGM)
simulated by VECODE. As VECODE distinguishes as main
PFTs only trees and herbaceous plants, not all biome types
defined in BIOME1 could be considered (e.g. no shrubs).
The computed biome map shows reasonable agreement with
LGM land cover reconstructions. A similar approach was
chosen by Handiani et al. (2012, 2013) for calculating biome
distributions during Heinrich event 1, based on PFT sim-
ulations of TRIFFID and CLM-DGVM. As these models
strongly deviate in their PFT classification, they applied dif-
ferent methods for biomisation. For TRIFFID, they first cal-
culated the dominant PFT in each grid cell following the
method by Crucifix et al. (2005) and afterwards used tem-
perature limitation defined in BIOME4 (Kaplan et al., 2003)
to assign the dominant PFTs to mega-biomes. For CLM-
DGVM, potential dominant PFTs were estimated by adopt-
ing the scheme of Schurgers et al. (2006) and biomes were
differentiated with the help of temperature limitations that
follow the environmental constraints defined in CCSM3 (i.e.
the fully coupled model used in their study, including the
land and vegetation model CLM-DGVM).

Recently, Prentice et al. (2011) introduced another ap-
proach of biomising plant functional type distributions sim-
ulated by dynamic vegetation models. In their method, sim-
ulated foliage projective cover (FPC) is used to distinguish
between desert, grassland/dry shrubland and forest biomes,
which are further divided into forest and savanna-like biomes
through the vegetation height. The assignment to, e.g. bo-
real, temperate or tropical forest/savanna (or parkland) is
controlled by the tree-PFT composition. Climate limits are
only used to distinguish the tundra biome. This method has
successfully been used in several palaeo-vegetation studies
(Kageyama et al., 2013; Calvo and Prentice, 2015) using dif-
ferent versions of the LPJ and ORCHIDEE models.

All of these methods have in common that they have been
designed for individual models and hence need specific out-
put not necessarily provided by all models. Therefore, these
methods cannot directly be adopted for all existing dynamic
vegetation models. A consistent intermodel comparison of
the simulated vegetation distribution and an evaluation of the
models against reconstructions on biome level is so far not
possible.

To harmonise (palaeo)-vegetation distributions simulated
by dynamic vegetation models and thereby facilitate the eval-
uation of Earth system models (ESMs) and the comparison
of model results and biome reconstructions, we developed a
biomisation technique that is based on the PFT distributions
simulated by DGVMs, few input variables and simple differ-
entiation rules. These include bioclimatic constraints using
near-surface air temperature and assumptions on maximum
required PFT coverage. The aim of developing this method
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Table 1. The PFTs used in the different state-of-the-art dynamic global vegetation models. These are the Jena Scheme for Biosphere Atmo-
sphere Coupling in Hamburg (JSBACH), the Lund–Potsdam–Jena model (LPJ), the Organising Carbon and Hydrology In Dynamic Ecosys-
tems model (ORCHIDEE), the Community Land Model’s dynamic global vegetation model (CLM-DGVM), the Top-down Representation
of Interactive Foliage and Flora Including Dynamics (TRIFFID) model and the Vegetation Continuous Description model (VECODE).

PFT class JSBACH LPJ ORCHIDEE CLM-DGVM TRIFFID VECODE

Tropical
trees

tropical
broadleaf
evergreen

tropical
broadleaf
evergreen

tropical
broadleaf
evergreen

tropical
broadleaf
evergreen

broadleaf trees and
needleleaf trees

trees

tropical
broadleaf
raingreen

tropical
broadleaf
raingreen

tropical
broadleaf
raingreen

tropical
broadleaf
raingreen

Extratropical
trees

extratropical
evergreen

temperate
needleleaf
evergreen

temperate
needleleaf
evergreen

temperate
needleleaf
evergreen

temperate
broadleaf
evergreen

temperate
broadleaf
evergreen

temperate
broadleaf
evergreen

boreal
needleleaf
evergreen

boreal
needleleaf
evergreen

boreal
needleleaf
evergreen

extratropical
deciduous

temperate
broadleaf
deciduous

temperate
broadleaf
deciduous

temperate
broadleaf
deciduous

boreal
needleleaf
deciduous

boreal
needleleaf
deciduous

boreal
deciduous

boreal
broadleaf
deciduous

boreal
broadleaf
deciduous

Shrubs raingreen
shrubs

shrubs

cold
deciduous
shrubs

Grass C3 grass C3 grass C3 grass Arctic grass C3 grass herbaceous

C3 grass

C4 grass C4 grass C4 grass C4 grass C4 grass

was not to construct a better biomisation method than the
classical method via diagnostic biome models but to develop
a more direct method that can convert PFT distributions into
biomes so that the additional information included due to the
coupling of the DGVM will not get lost.

We test this method on pre-industrial, mid-Holocene and
Last Glacial Maximum vegetation simulations performed in
nearly all state-of-the-art dynamic vegetation models. The
skill of this biomisation approach is quantified via (standard)
metrics, by comparing the converted biome maps with esti-
mates of modern potential biome distributions (Ramankutty
and Foley, 1999) and pollen-based biome reconstructions
(Biome6000 database, Harrison, 2017).

2 Methods

2.1 Biomisation

The PFT cover fractions simulated by the individual dynamic
vegetation models are converted into nine different mega-
biomes (Fig. 1), using few bioclimatic limits and assump-
tions on the maximum required coverage of certain PFTs.
The aggregation into the mega-biomes is in line with the def-
initions of the BIOME6000 project (cf. Harrison, 2017) that
are also commonly used for grouping pollen-based biome re-
constructions. Bioclimatic limits and the differentiation rules
basically follow the biome assignment of the BIOME4 model
(Kaplan et al., 2003). As input data, only climatological
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Figure 1. Scheme of the biomisation method. The PFT fractions simulated by the individual DGVMs are assigned to the PFT groups “desert”
(i.e. 1 minus total vegetation), “grass” (containing all grass PFT types) “woody PFT” (containing all trees and shrub types) and “trees”
(containing all tree types). The “trees” and “woody PFTs” are further differentiated into “tropical trees”, “temperate trees”, “temperate
woody PFTs” and “boreal woody PFTs” via bioclimatic limitations (Table 2). For DGVMs explicitly distinguishing tropical, temperate
or boreal tree types, the original classification of the DGVM is used. Afterwards, the PFT groups are assigned to nine mega-biomes by
assumptions on the minimum coverage of certain PFT groups needed in a grid cell and additional bioclimatic limitations (Table 2).

mean growing degree days (GDD0 and GDD5), monthly
mean 2 m air temperature and multi-year mean PFT cover
fractions (e.g. averaged over 100 years) are required. The
limitation to few climatic rules and few variables needed en-
ables the application of the method to all state-of-the-art dy-
namic vegetation models.

In detail, the PFTs calculated by the respective dynamic
vegetation models are aggregated into the groups “trees”,
“woody PFTs” (i.e. shrubs and all tree PFTs), “grass” and
“desert”, which is calculated as 1 minus the total vegeta-
tion. If the model includes land-use types, the affected ar-
eas are redistributed to the other PFTs by simply scaling up
the other PFT fractions proportionally to their ratio of the to-
tal natural vegetation. Based on these groups, regions domi-
nated by trees and regions in which the cover fraction of the
woody PFTs exceeds 25 % (with the additional constraint of
the total vegetation cover exceeding 50 %) are identified, as
these are necessary conditions for the assignment of the land
cover to forest biomes. Afterwards, the groups “trees” and
“woody PFTs” are split into boreal (GDD5 ≤ 900 ◦C), tem-
perate (GDD5 > 900 ◦C) and tropical trees or woody PFTs
(Tc > 15.5 ◦C) via temperature limits (cf. Table 2). If any of
these tree PFTs are simulated directly in the vegetation model
(e.g. in LPJ or ORCHIDEE), the original distributions are
taken and the PFT group is assigned to the dominant tree
type, i.e. the tree type that covers the largest fraction of the
grid cell. These PFT groups (i.e. boreal woody PFTs, temper-
ate trees and woody PFTs, tropical trees, grass and desert) are
the first consistent vegetation classification shared by all in-
put simulations, so that model-to-model comparison is also
possible on this PFT level.

For the biomisation, the forests are considered first; i.e. re-
gions in which trees or woody PFTs are dominant or cover an
area more than 25 % are assigned to tropical, temperate and
boreal forests according to the PFT groups. From the tem-
perate forest, warm regions (i.e. GDD5 > 3000 ◦C) revealing
a dominant temperate tree fraction are subtracted and as-
signed to the biome “warm–temperate forest”. The remaining
area is then tested for fulfilling the constraints for the non-
forest biomes. First, the savanna and dry woodland region
is identified by bioclimatic limitations (GDD5 > 1200 and
Tc > 10 ◦C) and a woody PFT coverage of at least 25 %. The
remaining vegetated area is assigned to the biome “grass-
land and dry shrublands”, if GDD0 exceeds 800 ◦C, or to
the biome “tundra”, if GDD0 is below 800 ◦C (cf. BIOME4;
Kaplan et al., 2003). The non-vegetated area, i.e. regions in
which the total vegetation cover is less than 20 %, is either
assigned to warm or to cold desert, depending on whether
the annual mean temperature is above or below 2 ◦C. For
the biome “tundra”, only 10 % vegetation cover is needed. A
flow chart summarising the details of the PFT-based biomi-
sation is shown for the VECODE model in Appendix A.

We are aware of the simplicity of this approach, calculat-
ing the tundra and the grassland and dry shrubland biomes
as a residual of the non-forested area, not directly depending
on the simulated grass PFT fraction. We decided to attribute
the main priority to the forested biomes as this is also the
strategy commonly used in DGVMs and biome models.

To assess the performance of the biomisation based on
simulated PFTs, we additionally biomise the simulated cli-
mate fields corresponding to the PFT distributions in each
model. This is the conventionally used procedure to biomise
general circulation model (GCM) or ESM output (further re-
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Table 2. Bioclimatic limits and assumptions on minimum PFT coverage needed for the assignment of PFTs into the PFT groups and into the
nine mega-biomes. The separation of boreal, temperate and tropical tree PFTs is based on the same bioclimatic limits as the respective forest
mega-biomes. Only temperature-based limitations are used, i.e. the growing degree days on a basis of 5 ◦C (GDD5) or on a basis of 0 ◦C
(GDD0), the monthly mean temperature of the coldest month (Tc) and the annual mean temperature (Tann). Bioclimatic limits are mainly
taken from the BIOME4 model (Kaplan et al., 2003, marked with ∗). The limit for tropical forest is taken from BIOME1 (Prentice et al.,
1992) but is also commonly used in DGVMs (e.g. JSBACH). The limit for the differentiation of deserts has been empirically determined in
this study and is close to the value chosen by Handiani et al. (2013) and within the range of the Köppen–Geiger climate classification for
polar climate and the Holdridge alpine life zone classification. The Tc limit for warm savannas is taken from JSBACH (C4 grass criteria)
to exclude temperate savannas. The assumptions on minimum coverage have been partly taken, partly empirically adapted from Handiani
et al. (2013). A flow chart displaying the biomisation procedure is shown in Appendix A for the VECODE model, the DGVM used in the
CLIMate-BiosphERe 2 (CLIMBER-2) model.

Mega-biome Minimum coverage needed Bioclimatic limitations

Tropical forest Tropical trees dominant Tc > 15.5 ◦C
Warm–temperate forest Temperate trees dominant GDD5 > 3000 ◦C∗

Temperate forest Temperate woody PFTs dominant 900 ◦C < GDD5≤ 3000 ◦C∗

Boreal forest Boreal woody PFTs dominant GDD5≤ 900 ◦C∗

(Warm) savanna and dry woodland Woody PFT coverage > 0.25 GDD5 > 1200 ◦C∗, Tc > 10 ◦C
Grassland and dry shrubland Total vegetation cover > 0.2 GDD0≥ 800 ◦C∗

Tundra Total vegetation cover > 0.1 GDD0 < 800 ◦C∗

(Warm) desert Total vegetation cover < 0.2 Tann > 2 ◦C
Polar desert/ice Total vegetation cover < 0.2 Tann < 2 ◦C

ferred to as the classical approach or climate-based method).
For this purpose, we use the biome model BIOME1 (Pren-
tice et al., 1992) that calculates the biome distribution in
equilibrium to the input climate. As forcing, BIOME1 needs
the monthly mean climatological precipitation, near-surface
temperature and cloudiness, which were taken from each
simulation considered in this study, respectively. This clas-
sical biomisation approach can only handle climate data as
input; the simulated PFT distributions from the ESMs used in
the here-introduced PFT-based method are ignored. The orig-
inal biomes have been grouped into the same mega-biome
classification that is used for the PFT-based approach.

2.2 Simulations

Simulations from nearly all state-of-the-art global dynamic
vegetation models that are included in Earth system mod-
els have been selected for biomisation. Six different models
could be considered (i.e. JSBACH, TRIFFID, ORCHIDEE,
SEIB, LPJ and VECODE). Overall, eight simulations for
the pre-industrial climate (PI) and vegetation, four for mid-
Holocene (6 ka) conditions and five for Last Glacial Max-
imum (LGM) conditions have been used (Table 3). Most
of these simulations were performed within CMIP5/PMIP3
under strict simulation and output protocols enabling direct
comparison between the models (Braconnot et al., 2011;
Taylor et al., 2012). These include the models MPI-ESM-P,
IPSL-CM5A-LR, MIROC-ESM and HadGem2-ESM. Fur-
ther details on the models and simulations are described in
Appendix B.

For the pre-industrial time slice, two out of eight simula-
tions (MPI-ESM-T63 and IPSL-ESM-T31) were performed

with fixed vegetation distribution, but this has essentially no
effect on the biomisation procedure. Therefore, we include
these simulations in our analysis. Nevertheless, the PFT-
based biome distributions for these simulations are expected
to fit better to the references than the other simulations that
ran with interactive vegetation.

We emphasise that this study is thought of as an introduc-
tion and detailed evaluation of a new biomisation method. It
is not seen as evaluation of the different vegetation models
with respect to the skill of simulating biome or vegetation
distributions. For this purpose, the different vegetation mod-
els would have to be forced by the same climate state. Such
an ensemble including all DGVMs (used here) does not ex-
ist. Therefore, we had to take individual simulations that all
deviate with respect to the prescribed or simulated climate in
the coupled models. These differences in the climatic field
among the models and between the models and observations
(general climate biases) lead – per se – to differences in the
simulated vegetation distributions and biases to the reference
vegetation distribution.

2.3 Preparing the reference datasets

As reference, we use the estimated global potential natural
vegetation map by Ramankutty and Foley (1999, referred to
as RF99 in the following), which is a combination of mod-
ern satellite-based vegetation observations (i.e. the DISCover
land cover dataset) and the vegetation compilation prepared
by Haxeltine and Prentice (1996) that has been taken for re-
gions dominated by land use at present day. The RF99 dataset
is available at 5 min resolution and distinguishes 15 different
biome types that are similar to the mega-biome classification
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Table 3. Overview of the simulations used for testing the biomisation method. Listed are the model acronym, the model name, the name
of the included DGVM, the simulations used in this study, the spatial resolution used in the simulations, the number of PFTs (natural plus
anthropogenic) and the simulation reference. Simulations marked with the ∗ symbol include land use. Simulations marked with the # symbol
ran with prescribed vegetation.

Model acronym Model (DGVM) Period Resolution PFT Reference

MPI-ESM-T63 MPI-ESM-P
(JSBACH)

PI∗# T63 8+ 4 cmip5.output1.MPI-M.MPI-ESM-P.piControl.mon.
land.Lmon.r1i1p1.v20120315

6 ka cmip5.output1.MPI-M.MPI-ESM-P.midHolocene.
mon.land.Lmon.r1i1p2.v20120713

LGM cmip5.output1.MPI-M.MPI-ESM-P.lgm.mon.land.
Lmon.r1i1p2.v20120713

MPI-ESM-T31 MPI-ESM-P
(JSBACH)

PI, LGM T31 8 Klockmann et al. (2016)
(piCTL, LGMref)

IPSL-ESM-T31 IPSL-CM5A-LR
(ORCHIDEE)

PI∗# 1.875◦× 3.75◦ 10+ 2 pmip3.output.IPSL.IPSL-CM5ALR.piControl.
monClim.land.Lclim.r1i1p1.v20140428

IPSL-ESM-T63 CRUNCEP or
IPSL-CM5A-LR
(ORCHIDEE-MICT)

PI, LGM 2◦× 2◦ 10 Zhu (2016),
Zhu et al. (2018)

HadGEM2-ESM HadGEM2-ES
(TRIFFID)

PI∗ 1.875◦× 1.25◦ 6+ 2 cmip5.output1.MOHC.HadGEM2-ES.piControl.
mon.land.Lmon.r1i1p1.v20111007

6 ka cmip5.output1.MOHC.HadGEM2-ES.midHolocene.
mon.land.Lmon.r1i1p1.v20120222

CLIM-LPJ CRU/CLIMBER-2
(LPJ)

PI, 6 ka 0.5◦× 0.5◦ 9 Similar to Kleinen et al. (2010)

MIROC-ESM MIROC-ESM
(SEIB)

PI∗ T42 8+ 2 cmip5.output1.MIROC.MIROC-ESM.piControl.
mon.land.Lmon.r1i1p1.v20120710
Watanabe et al. (2011)

6 ka cmip5.output1.MIROC.MIROC-ESM.midHolocene.
mon.land.Lmon.r1i1p1.v20120710

LGM cmip5.output1.MIROC.MIROC-ESM.lgm.mon.
land.Lmon.r1i1p1.v20120710

CLIMBER CLIMBER-2
(VECODE)

PI, LGM 10◦× 10◦ 2 Thomas Kleinen (personal communication, 2017)

used here. Thus, most biomes could directly be assigned to
the mega-biome types (Table C1 in Appendix C). The prepa-
ration of the RF99 reference dataset is explained in more de-
tail in Appendix C.

As further reference data, we use pollen-based biome
reconstructions that are available for the modern, mid-
Holocene and Last Glacial Maximum time slices within the
Biome6000 database (Harrison, 2017). The biome recon-
structions have been grouped into the mega-biomes accord-
ing to the suggestions made by the Biome6000 project.

Both vegetation datasets are derived for the modern time
slice not exactly corresponding to the pre-industrial period
(around 1850 AD) simulated in the models. While the ice
sheet, the topography and the orbital conditions used for the
pre-industrial control simulations are prescribed from mod-
ern conditions, greenhouse gases are set to pre-industrial val-

ues in the models. These differences in, e.g. atmospheric CO2
concentration between the reference datasets and the simula-
tions may lead to small discrepancies in the model. In addi-
tion, the references may be disturbed by anthropogenic influ-
ences.

Climatological monthly mean data of the years 1901–
1930 from the University of East Anglia Climate Research
Unit Time Series 4.00 (CRU TS4, University of East Anglia,
2017) have been taken as the pre-industrial reference climate.
This is the earliest period available. The CRU TS4 refer-
ence climate has additionally been used as forcing for the
BIOME1 model to provide a best guess for the pre-industrial
biome map. We assume that neither the biomisation of simu-
lated climate states (i.e. the classical method) nor the biomi-
sation of simulated PFTs can agree better with any refer-
ence than this biome distribution, derived with a highly tuned
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biome model and the best global climate observation avail-
able. Therefore, we use the level of agreement between the
CRU TS4 biome map and the RF99 or the Biome6000 recon-
structions as target value for our new biomisation method.
The reference biome distributions and the CRU TS4-based
biome map are displayed in Fig. 2.

2.4 Metrics

2.4.1 Kappa statistic

The kappa statistic (Cohen, 1960) is a widely used quantita-
tive map-comparison technique that has often been applied
for assessing the performance of vegetation simulations (e.g.
Monserud and Leemans, 1992; Prentice et al., 1992; Diffen-
baugh et al., 2003; Tang et al., 2009). The kappa statistic not
only includes the actual observed similarity (p0) of two cate-
gorical maps but also considers the expected agreement (pe),
i.e. the agreement by chance. For each pair of compared grid
cells (or a pair of grid cell and site) taken from the reference
and the simulated biome distributions, a confusion matrix is
prepared containing all combinations of referenced and sim-
ulated biomes. Based on this error matrix, the agreement for
each individual mega-biome is given by the following (Eq. 1,
taken from Tang et al., 2009):

κi =
pii −pi,rpc,i((

pi,r+pc,i
)
/2−pi,rpc,i

) , (1)

where pii is the individual entry for biome i on the main
diagonal of the confusion matrix and pi,r and pc,i are the
row total and the column total of each biome i, respectively.
The overall agreement is derived by Eq. (2):

κ =
p0−pe

1−pe
, (2)

with p0 =
n∑
i=1
pii and pe =

n∑
i=1
pi,rpc,i . κ ranges from 0 (not

better than agreement by chance) to 1 (perfect agreement).
We additionally use the thresholds suggested by Landis and
Koch (1977), classifying a κ below 0.4 into poor agreement,
values between 0.4 and 0.75 in fair to good agreement and
values exceeding 0.75 into very good to excellent agreement.

2.4.2 Fractional skill score (FSS)

The standard kappa statistic underestimates the similarity of
maps sharing a similar biome distribution but being slightly
offset from each other (Foody, 2002; Tang et al., 2009). This
problem is usually overcome by using the fuzzy kappa statis-
tic allowing for fuzziness in category and fuzziness in lo-
cation (Hagen, 2003, 2009), but the fuzzy kappa statistic is
only applicable to assess the similarity of categorical maps
and cannot be used for single point to gridded-data compar-
ison. Biome reconstructions only exist for single sites and
usually indicate not only the local or the regional vegetation

but may contain a large extra-regional component, depend-
ing, e.g. on the configuration (mainly the size) of the lake
(Jacobsen and Bradshaw, 1981). A single grid-cell-to-point
comparison is thus only partly meaningful; more advisable is
the inclusion of the surrounding grid cells of the sites. There-
fore, we looked for a metric taking agreement in the neigh-
bourhood into account (such as the fuzzy kappa statistic) that
could easily be adapted to site to gridded-data comparison.
We decided to use the fractional skill score (FSS; Roberts
and Lean, 2008). While this method was initially developed
and applied for expressing the performance of precipitation
forecasts (e.g. Gilleland et al., 2009; Mittermaier et al., 2013;
Wolff et al., 2014), it has recently been successfully used for
different hydrological patterns (Koch et al., 2017). We fur-
ther adapted the FSS method to biome distributions. For each
mega-biome type, the reference (ref) and simulation (sim)
are truncated into a binary map; i.e. we construct 18 maps
(9 for the reference, 9 for the simulation), in which the grid
cell being covered by the respective mega-biomes is filled
with the value “1” and all other grid cells are assigned to the
value “0”. Based on these maps, the mean fractional cover-
age of the respective mega-biome within the neighbourhood
Nij (three grid cells in each direction for T31, six for T63,
one for a 10◦ grid) of each cell is calculated for the reference
and the simulation. Afterwards, the mean square error (MSE)
between the simulation and the reference fractions for each
individual mega-biome is calculated and normalised by the
MSE representing the worst-case agreement (MSEw), i.e. the
MSE reflecting no similarity between the reference and the
simulation. The fractional skill score is then given by Eq. (3):

FSS= 1−
MSE

MSEw
, (3)

where MSE= 1
N

Ni∑
i=1

Nj∑
j=1

[
refij − simij

]
and

MSEw= 1
N

[
Ni∑
i=1

Nj∑
j=1

ref2
ij +

Ni∑
i=1

Nj∑
j=1

sim2
ij

]
; N is the number

of all neighbourhoods.
Following Robert and Lean (2008), we define the lowest

skill by the FSSran of a random biome distribution with the
same fractional coverage as the observed one over the do-
main (f0). Likewise, the target skill is given by the FSS that
is reached for a uniform distribution of the observed biome
fraction everywhere in the domain (FSSuni = 0.5+f0/2). As
FSSran and FSSuni deviate between the individual biomes, we
compare the relative FSS (rFSS) given by FSS-FSSuni.

The total rFSS is calculated as mean of all individual
mega-biome scores. The total and individual rFSS can range
from approximately −0.5 (as good as a random distribution)
to approximately 0.5 (perfect agreement), depending on the
extent of the individual biomes. The skill to reach is zero for
all biomes. For simplicity, we also use just FSS as an abbre-
viation for the relative FSS.
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Figure 2. Reference biome distributions for the pre-industrial time slice, i.e. (a) the biome distribution inferred by BIOME1 that has been
forced by the CRU TS4 dataset (1901–1930), interpolated to a Gaussian T63 grid; (b) the pollen-based pre-industrial biome reconstructions
provided by the Biome6000 database (Harrison, 2017); (c, d) the modern potential natural vegetation map derived by Ramankutty and Fo-
ley (1999, RF99) remapped on a T63 gaussian grid (c) and a 10◦ grid (d). The biomes are tropical forest (trop.forest), warm–temperate forest
(warm.forest), temperate forest (temp.forest), boreal forest (bor.forest), savanna and dry woodland (savanna), grassland and dry shrubland
(grassland), warm desert (desert), tundra (tundra) and polar desert and ice (ice/pol.desert).

2.4.3 Best neighbour score

Neither the FSS nor the fuzzy kappa statistic is in its original
format applicable for the comparison of site data vs. gridded
data. For quantifying the similarity of simulated biome dis-
tributions and pollen-based biome reconstructions, we there-
fore implement a new metric following both methods called
the best neighbour score (BNS), accounting for agreement
in the neighbourhood of the record site and therewith being
more tolerant of the position of the site. Within this metric,
not only the grid box locating the record sites is used for
comparison with the records but also the surrounding grid
boxes (three grid boxes in each direction for T31, six for T63,
one for a 10◦ grid). Similar to the fuzzy kappa statistic, the
similarity in the neighbouring grid cells is expressed by a
distance decay function. We here choose a Gaussian func-
tion (Eq. 4), giving grid cells directly at the site proportional
larger influence than grid boxes far away.

w = e
−1
2 ·
(

distance
3

)2

with distance =
√

d long2
+ d lat2 (4)

The best neighbour is defined as the nearest grid box within
the neighbourhood agreeing with the reconstructed biome
type. The agreement for each record is then given by the dis-
tance weight (w) of the best neighbour in each neighbour-

hood. It is equal to 1 if the grid box locating the site indi-
cates the same biome as reconstructed and it is equal to 0 if
all grid cells in the neighbourhood disagree with the record.
The BNS is the mean of all individual neighbourhood scores.
For instance, a BNS of approximately 0.82 or 0.46 means
that the best neighbour grid cell is among the grid cell “cir-
cle” next to the site-locating grid cell in T63 or T31, respec-
tively. Accordingly, a BNS of 0.04 indicates a distance be-
tween the best neighbour and the site-locating grid cell of
7.5◦ on a Gaussian grid. In contrast to the fuzzy kappa statis-
tic, the BNS neither takes agreement by chance into account
nor considers potential spatiotemporal autocorrelation.

At this point it should be noted that we have selected
the metrics in accordance with the research question of this
study. For other purposes, such as estimating changes in
biome distribution between present and future climate states,
other metrics may be more appropriate, such as the Delta-V
method, which also weights changes in vegetation attributes
(Sykes et al., 1999). The metrics used in our study do not dif-
ferentiate how far the biomes deviate in their properties; e.g.
differences between tropical forest and tundra are equated as
being qualitatively the same as differences between temper-
ate and boreal forest.
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Figure 3. Simulated pre-industrial mega-biome distributions according to the new biomisation method (PFT-based method). The PFT frac-
tions simulated by the individual models have been converted into mega-biomes through climate limitation rules and assumptions on the
maximum coverage of certain PFTs needed in the grid cells.

3 Results

3.1 Comparison of the PFT-based and climate-based
biome distributions for the pre-industrial time slice

For the pre-industrial time slice, the PFT coverage of eight
different Earth system model simulations has been converted
into mega-biome distributions (Fig. 3). Additionally, the un-
derlying pre-industrial climate states are used as forcing for
the BIOME1 model (i.e. the classical way of biomisation) to
calculate the mega-biome distributions in equilibrium with
the simulated climate states (Fig. 4). Overall, the PFT-based
biome maps look similar to the climate-based ones. All ma-
jor biome belts can be reproduced using the new method,
independent of the resolution or the complexity of the veg-

etation models. The biomisation based on the PFT coverage
generally assigns more grid cells to forest or woody biomes
(e.g. savanna instead of grassland or desert) than the classi-
cal method. This is most noticeable in South America, where
the area covered by tropical forests is strongly increased in
the PFT-based biome distribution (Table D1), being more
in line with observations. Likewise, the savanna and/or for-
est biomes are more spread out on the African continent for
nearly all biomisations with the exception of the CLIMate-
BiosphERe 2 (CLIMBER-2) model and IPSL-ESM-T63.

The Asian forest regions are slightly larger in most PFT-
based biome distributions compared to the climate-based
ones. This impression is reinforced by the fact that for CLIM-
LPJ and IPSL-ESM-T63 the PFT method suggests a pro-
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Figure 4. Simulated pre-industrial biome distributions according to the classical biomisation approach, i.e. biomising the climate states
simulated by the individual models. The climate field were used to force the biome model BIOME1 (Prentice et al., 1992). Afterwards, the
original BIOME1 biomes were aggregated into the nine mega-biomes used in this study.

nounced boreal forest belt in northern Asia, not only reducing
the size of the grassland but also that of the temperate forest
area.

For North America, the PFT-based approach yields less
forest for MPI-ESM-T63 and IPSL-ESM-T31 than shown by
the climate-based biomisation. As a consequence, the North
American prairie fits better to observations for the PFT-based
biome distributions. In Alaska and north-western Canada,
parts of the tundra regions suggested by BIOME1 tend to
be replaced by boreal forest when using the new approach,
which is generally more consistent with the observed vegeta-
tion.

The differences between the PFT-based and climate-based
biome distributions can be caused by deficiencies in the

biomisation methods, biases related to the imperfect vege-
tation models or biases in the simulated climate. While the
effect of shortcomings in the vegetation models cannot be
disentangled, the caveats of the PFT-based method and the
effect of climate biases on the PFT-to-biome conversion are
further discussed in Sect. 4.

3.2 Quantitative comparison of the PFT-based biome
distributions with reference biome maps

To quantify the skill of the new method to represent the
global biome distribution, we compare the resulting biome
maps with the modern potential natural vegetation cover esti-
mated by Ramankutty and Foley (1999, RF99 in the follow-
ing) and the pre-industrial biome reconstructions provided
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Figure 5. Metrics quantifying the total agreement of the simulated pre-industrial biome maps based on the PFT cover fractions (PFT method)
or based on the climate state (classical approach using BIOME1) with the reference datasets, i.e. modern potential natural vegetation (RF)
and pre-industrial pollen-based biome reconstructions (rec.). Shown are the kappa values (a), the relative fractional skill score (FSS, b) and
the best neighbour score (BNS, c) for all models and also for the biomisation based on the CRU TS4 observational climate data in original
resolution (CRU TS4) and interpolated to a T63 grid (CRU TS4_T63).

by the Biome6000 project (Harrison, 2017). As target for the
skill, the level of agreement between the BIOME1 derived
biome distribution of the observed climate (CRU TS4, 1901–
1930; cf. Fig. 2) and the reference datasets is taken, i.e. κ of
0.68 and FSS of 0.13 (Fig. 5) with respect to RF99 and a κ of
0.46 and BNS of 0.73 with respect to the biome reconstruc-
tions.

The PFT-based biome distributions agree well with the ref-
erences, independent of the model. The kappa statistic shows
an overall agreement to RF99 between 0.54 (for MIROC-
ESM) and 0.79 (for MPI-ESM-T63) revealing a good to very
good agreement (Fig. 5). Likewise, all models reach in total
the level of good skill in the FSS metric (0.01–0.27). This
agreement is in line with or even better than the match be-
tween RF99 and the climate-based biomisation and that be-
tween RF99 and the CRU TS4 biomisation that is taken as
the target skill (Fig. 5). However, the spread between the in-
dividual models is larger for the PFT-based method than for
the classical approach.

As expected, the kappa statistic indicates that the PFT-
based biome maps compare worse with the reconstructions
than with RF99, underestimating the similarity to the point
reconstructions. κ ranges from 0.2 (poor) to 0.49 (fair),
which is in line with the target skill and the metrics for the
climate-based biome maps. The BNS, additionally consid-
ering accordance in the neighbouring grid cells of the record
sites, reveals a good to very good agreement of the PFT-based
biome distributions and the records (between 0.40 and 0.74),
not much lower than the target skill and in accordance with
the climate-based biomisations. For the MPI-ESM, IPSL-

ESM-T31, HadGEM2-ESM and CLIMBER biomisations,
the PFT-based method even produces biome distributions
that fit better to the biome reconstructions than the climate-
based biome maps.

Despite the overall agreement between the PFT-based
biome distributions and the references, a closer look at the
representation of individual mega-biomes in the converted
maps indicates large differences among the models as well
as among the individual mega-biomes (Fig. 6). While trop-
ical forests and deserts compare best with RF99, the biome
“warm–temperate forest” is not reproduced, independent of
the underlying model simulation.

The skill for simulating the other biomes is very different
for the diverse models. κ spreads from poor for one model
to very good for other models. Correcting the PFT distribu-
tion in land-use areas by redistributing the area fraction to the
other tiles has no impact on the performance of the method.
The biome maps based on simulations applying land use do
not compare worse with RF99 than the maps of other sim-
ulations. Likewise, the complexity of the vegetation model
and the number of distinguished PFTs have no significant ef-
fect on the representation of the biome distribution, indicat-
ing that the climate limits used in the biomisation procedure
are appropriate for the assignment of the PFTs to the dis-
tinct PFT groups. The differentiation of the PFT types (e.g.
the different forest types) in vegetation models is often based
on similar climate limits, regardless of whether the model
is a complex dynamic vegetation model or a simple biome
model. With the exception of the PFT-based biomisation for
CLIMBER, in which the coarse grid is clearly disadvanta-
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Figure 6. Kappa metric quantifying the agreement of the simulated pre-industrial individual mega-biomes with the reference dataset (i.e.
modern potential natural vegetation) for the PFT-based method (a) and the classical method using BIOME1 forced with the simulated
background climate states (b).

geous for capturing the reconstructed desert belts and the
rather regionally confined biomes (savanna, warm–temperate
forest), the spatial resolution of the models is not the primary
factor for the spread in the metrics. The PFT-based method
performs equally well for simulations using T63 as for sim-
ulations using T31 (in total); only the regionally distributed
warm–temperate forest is better represented in finer resolu-
tions.

In general, the skill in representing the individual mega-
biomes is similar for the PFT- and climate-based meth-
ods. Both approaches have the same strengths and weak-
nesses, but the spread between the models is larger for
the PFT-based biomisations. In comparison to the climate-
based method, the tropical, the warm–temperate and the bo-
real forest biomes tend to be slightly better represented by
the PFT-based method. In contrast, the temperate forest, sa-
vanna and grassland distribution – averaged over all mod-
els – fit better to RF99 when using the climate-based ap-
proach, although for individual simulations, κ derived for the
PFT biomisation exceeds the climate-based one. The savanna
and grassland biomes are particularly misrepresented in the
biome maps that are based on the PFT distributions simulated
by MIROC-ESM, CLIMBER, CLIM-LPJ and HadGEM2-
ESM. The temperate forest is poorly reproduced only in the
PFT-based biomisation of CLIM-LPJ. Overall, the metrics
indicate that the PFT-based method works as well as the clas-
sical approach of biomising climate states via the BIOME1
model. Likewise, the method is able to keep up with the
method by Prentice et al. (2011), further discussed in Ap-
pendix E.

3.3 PFT-based biome distributions for the mid-Holocene
and Last Glacial Maximum time slice

The sensitivity of the PFT-based method to changes in the
vegetation cover is assessed by evaluating palaeo-biome dis-
tributions. For the mid-Holocene time slice, four differ-
ent simulations have been analysed. The main vegetation
changes described by biome reconstructions are the northern
shift of the Northern Hemisphere forest belts, in particular
a northward displacement of the taiga–tundra boundary, and
the decrease of the desert areas compared to pre-industrial
time slice. According to the BIOME6000 records, grassy
vegetation reached at least up to 26◦ N at 6 ka, far into the
modern central Sahara (Fig. 7). For none of the models is this
biome shift reproduced, neither in the PFT-based (Fig. 7) nor
in the climate-based biome distributions (not shown). The
mean Sahara desert border shifts northward by one to two
grid cells in the biomisations (i.e. approximately 1.875 to
3.75◦, Table 4). This shift collocates with substantial reduc-
tions in the desert fractions simulated by the individual ESMs
(Fig. 8). Only in MPI-ESM-T63 is vegetation increased in the
entire western and central Sahara, but this increase is lower
than 20 %, not leading to a change in the biome assignment
from desert to grassland. As the climate-based biomisations
performed with BIOME1 reveal a reduction of the Sahara
desert area in the same magnitude as the PFT-based ones, we
conclude that the new biomisation method shows a reason-
able sensitivity to the simulated changes in the desert frac-
tions.
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Figure 7. Simulated mid-Holocene biome distribution in the different models, based on the PFT method (a), pollen-based biome reconstruc-
tions of the mid-Holocene biome distribution (BIOME6000 database, b) and the best neighbour score (BNS) for all individual sites showing
the agreement of the reconstructed biomes and the biome distribution in the neighbourhood of the sites, ranging from 0 (no grid cell in the
surrounding area shows the same biome as reconstructed) to 1 (the grid cell locating the site and the record at the site indicate the same
biome) (c).

For all models with the exception of MIROC-ESM, the
PFT-based biomisation reproduces an increased forest biome
fraction in Eurasia north of 60◦ N during the mid-Holocene
compared to pre-industrial time slice, in line with the biome

reconstructions (Table 5). However, the magnitude of the
change differs between the models, ranging from 0 % within
MIROC-ESM to 12 % within CLIM-LPJ. For nearly all mod-
els (except for MIROC-ESM), the expansion of the forested
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Figure 8. Differences in the desert fractional coverage simulated by the individual models between the mid-Holocene (6 ka) and pre-
industrial time slices (0 ka).

area in the high northern latitudes seen in the PFT biomi-
sation is of similar magnitude to that in the climate-based
biomisation, confirming that the method covers past vegeta-
tion changes with reasonable sensitivity.

Overall, the biome distributions for the mid-Holocene
compare equally well to the reconstruction as they do for
the pre-industrial time slice (Fig. 9). Although κ is simi-
larly low, ranging from 0.17 for the CLIM-LPJ biomisation
to 0.38 for the MPI-ESM-T63 biomisation (poor agreement),
the spread in the models and the differences in κ between
the PFT-based biomisations and the climate-based biomisa-
tions is nearly identical to the results for the pre-industrial
biome distributions. In line with the results for PI, the BNS
indicates a good to very good agreement to the biome re-
constructions (ranging from 0.44 for MIROC-ESM to 0.72
for MPI-ESM-T63). The skill to capture the reconstructed
individual mega-biomes strongly depends on the number of
available pollen records; thus, temperate and boreal forests
are represented best (Fig. 7), while the simulated savanna re-
gions are not supported by the biome reconstructions.

For the Last Glacial Maximum time slice, five different
simulations have been analysed. According to BIOME6000,
the main reconstructed vegetation differences at LGM com-
pared to PI are a strong equatorward retreat of the forest
biomes and an expansion of tundra and steppe regions. The
northernmost record indicating boreal forest during LGM is
located at approximately 51◦ N in Asia (Fig. 10). The PFT

biomisations mostly reproduce this reduction and the shift in
Northern Hemisphere forest biomes (Fig. 10), though the ex-
tent of the shift is underestimated. Forest reaches up to 50◦ N
(for CLIMBER) to 65◦ N (for MPI-ESM-T63). The boreal
forest position in the MIROC-ESM biomisation is not much
changed compared to PI, but the boreal forest nearly replaces
the temperate forest biome.

The overall agreement of the PFT-based biome distribu-
tions with the biome reconstructions is rather fair but in line
with the results for the climate-based biome distributions. κ
ranges from 0.07 for MPI-ESM-T31 to 0.23 for CLIMBER,
only indicating a poor similarity of the biome maps and
records (Fig. 11). The BNS ranges from 0.24 (for MIROC-
ESM) to 0.57 (for MPI-ESM-T63) revealing a fair to good
agreement. The values for both metrics are in the same mag-
nitude as for the climate-based biomisations. Similar to the PI
time slice, neither the complexity nor the spatial resolution is
the main reason for the differences between the PFT biomi-
sations. The spread in the skill of representing the individual
biomes is large, and no systematic bias for one model can be
found. With the exception of the biomisation for CLIMBER,
the savanna biome is misrepresented in all biomisations, in-
dependent of whether the PFT-based or the climate-based
method was used. Within the model ensemble, tropical and
temperate forest can be reproduced best.
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Figure 9. Metrics quantifying the agreement of the simulated mid-Holocene biome maps based on the PFT method or based on the climate
states (i.e. according to the BIOME1 model) with the pollen-based biome reconstructions (BIOME6000 database) for the mid-Holocene time
slice, i.e. the (total) kappa value (left panel) and the BNS values for the individual mega-biomes.

Figure 10. Pollen-based biome reconstructions (BIOME6000 database) for the Last Glacial Maximum time slice and the simulated biome
distributions according to the new biomisation method (i.e. the PFT-based method).
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Table 4. Position of the desert margin (◦ latitude) in north Africa at PI and 6 ka and the differences in position of the desert margin between
6 ka and PI (◦ latitude), for the PFT-based biomisations and the climate-based biomisations. The desert margin is here defined as latitude at
which the zonal mean desert biome fraction averaged over the region 15◦W to 30◦ E exceeds 50 %.

PFT-based Climate-based

PI 6 ka 6 ka–PI PI 6 ka 6 ka–PI

MPI-ESM-T63 17.72 21.45 3.73 15.85 19.59 3.74
CLIM-LPJ 15.85 17.72 1.87 17.72 21.45 3.73
HadGEM2-ESM 13.99 15.85 1.86 13.99 15.85 1.86
MIROC-ESM 16.7 20.41 3.71 16.7 20.41 3.71

Table 5. Mean forest biome fraction in northern Eurasia (60–80◦ N, 0–150◦ E) in the PFT-based biomisations and the climate-based biomi-
sations for the mid-Holocene (6 ka) and pre-industrial (PI) time slice, and the difference between both (6 ka–PI).

PFT-based Climate-based

PI 6 ka 6 ka–PI PI 6 ka 6 ka–PI

MPI-ESM-T63 0.73 0.75 0.02 0.73 0.76 0.03
CLIM-LPJ 0.64 0.76 0.12 0.67 0.77 0.1
HadGEM2-ESM 0.83 0.89 0.06 0.89 0.93 0.04
MIROC-ESM 0.72 0.72 0.0 0.92 0.96 0.04

4 Discussion

4.1 Caveats in the method

Even if the biomisation is restricted to mega-biome level, no
clear definitions exist to distinguish biomes in terms of plant
functional type compositions. While the bioclimatic limits
used in the biome models are based on empirical analysis, no
equivalent classification regulates the biomisation of PFTs.
We particularly face this problem in finding a meaningful
threshold of maximum tree cover needed for defining forests.
When is an accumulation of trees identified as forest? As
models tend to underestimate the forest coverage and forest
extent in the high northern latitudes (cf. Loranty et al., 2013),
we choose the assumption of tree cover being just dominant
in forested grid cells, although this limit is very low. We test
other limits (e.g. absolute dominance, i.e. fractional coverage
exceeding 50 %), but these work worse for most simulations
used in this study as well as for other simulations.

The mega-biome “warm–temperate forest” (e.g. subtrop-
ical forest) includes PFTs that can be assigned to several
biomes and is rather defined by a coexistence of certain
PFTs. For instance, in the BIOME4 model, it is not only de-
fined by the dominance of temperate evergreen broadleaved
trees but can also be defined by a dominance of cool conifers
(with a sub-PFT of temperate evergreen broadleaved trees).
The cool conifers – in turn – are also part of temperate forest
biomes. Given the limited number of PFTs in the DGVMs,
the confinement of biomes via PFT mixtures is not possi-
ble. As biome models such as BIOME4 generally manage to
simulate warm–temperate forests at the correct locations, we

adopt the bioclimatic limits from BIOME4 (limit for tem-
perate evergreen broadleaved trees) for defining this mega-
biome. Nevertheless, the calculated warm–temperate forest
distribution strongly disagrees with the reference datasets.
The reconstructed biome “warm–temperate forest” shares
some subtropical PFTs with the tropical evergreen forest (Ni
et al., 2010). These biomes are quite different in key species,
but not on genus or family level, on which the pollen iden-
tification in the reconstructions is performed. Thus, these
biomes tend to overlap in some regions and are sometimes
mixed up in reconstructions (Chen et al., 2010). In addition,
this mega-biome includes the warm–temperate rainforest and
the wet sclerophyll forest and woodland in the BIOME6000
reconstructions (cf. Harrison, 2017), which may not be able
to be identified with our biomisation method. Regarding the
modern reference of RF99, we decided to assign the biome
“temperate needleleaf evergreen forest and woodland” of the
RF99 dataset to the mega-biome “temperate forest”, although
this biome is also located, e.g. in the southern US, which
should be assigned to the warm–temperate forest. There-
fore, the evaluation of this method with respect to warm–
temperate forest might be ambiguous. Furthermore, warm–
temperate forests are small and rather patchily distributed
and are thus rarely dominant in the coarse grid cells to which
the RF99 reference had to be interpolated to. The coarser
the grid is, the more warm–temperate forest regions get lost
during the interpolation. Therefore, the warm–temperate for-
est biome is generally better represented for models using a
higher spatial resolution (i.e. MPI-ESM-T63, CLIM-LPJ and
IPSL-ESM-T63).
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Figure 11. Metrics quantifying the agreement of the simulated Last Glacial Maximum biome maps based on the PFT method or based on the
simulated climate states (i.e. according to BIOME1) with pollen-based biome reconstructions (BIOME6000 database), i.e. the (total) kappa
value and the BNS values for the individual mega-biomes. Please notice that the climatic variables needed to force BIOME1 could not be
provided for IPSL-ESM-T63. Thus, no climate-based biomisation exists for IPSL-ESM-T63.

In addition, not all biomes can be differentiated by the
structural composition or climatic tolerance. The biome “sa-
vanna” is the second-largest ecosystem in the tropics, cov-
ering approximately one-fifth of the global land surface (Sc-
holes and Hall, 1996). It occurs in climatic zones that are also
suitable for forest and grasslands (Lehmann et al., 2011) and
is thus very variable regarding the plant composition. Tree
fraction can vary from very dense (open forest savanna) to
nearly zero (Torello-Raventos et al., 2013). While tropical
savannas require the coexistence of trees and C4 grass, they
can only be distinguished from forests by their unique func-
tional ecology, fire tolerance and shade intolerance (Ratnam
et al., 2011). These features make savannas unstable and vul-
nerable to changes in, e.g. grazing, fire regime and climate,
transforming savannas into forest or grasslands (Franco et
al., 2014). The functional diversity of savannas is not ade-
quately included in DGVMs nor considered in the biomisa-
tion method presented here. As even C4 grass is not simu-
lated in all models, we had to define the savanna biome in a
very rudimentary manner by a mixture of woody PFTs and
grass and by bioclimatic limits, i.e. a mean temperature of
the coldest month exceeding 10◦ which is taken as a limit for
C4 grass in dynamic vegetation models (e.g. Jena Scheme for
Biosphere Atmosphere Coupling in Hamburg; JSBACH; cf.
Reick et al., 2013). The savanna biome might therefore not
be represented well. At least in the palaeo-simulations, most
biomisations do not capture the reconstructed savanna area,

but this may partly also be related to the fact that only few
records exist indicating savanna during LGM and 6 ka. Mod-
ern pollen rain analysis reveals that woody plant taxa typ-
ically characterising savannas are underrepresented or even
absent in the pollen/vegetation ratios. Given the lack of sa-
vanna indicators, this biome may be overlooked in fossil
pollen records (Jones et al., 2011).

Similar to dynamic vegetation models, the priority in the
biomisation procedure is given to forest biomes. It is first
tested whether forest biomes are suitable for covering the
grid cell, before the savanna is distributed. Grasslands and
tundra are assigned to the residual grid cells, independent of
the real grassy PFT cover fractions. The only restriction is a
total vegetation coverage exceeding 10 % for tundra or 20 %
for grassland to be distinguishable from deserts. This method
has the large disadvantage that biases in the forest distribu-
tion propagate throughout the assignment of all biomes with
the exception of deserts. The forest biome distribution calcu-
lated for the different models is further tested in Sect. 4.3 for
the pre-industrial time slice.

Another problem is the inclusion of anthropogenic plant
functional types (i.e. land use) in some simulations, making
the biome distribution less comparable to the reference data.
Although land use is often prescribed in the models, this pro-
cess cannot be reversed in the final output data. The area cho-
sen for land use is historically determined and is based on hu-
man decisions and not primarily on climate conditions. These
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human pathways cannot be reproduced in simple biomisation
methods nor in the current dynamic vegetation models. We
artificially rescale the natural vegetation in human-affected
regions by redistributing the fraction of anthropogenic PFT
coverage proportionally to the natural PFTs. This is a very
simple approach and only partly in line with the implemen-
tation of land use in the dynamic vegetation models. For in-
stance, within JSBACH, pasture is preferentially assigned to
natural grasslands; forests are only affected if prescribed pas-
ture fraction exceeds the natural grassland area (cf. Reick et
al., 2013). This rule is plausible but not reversible and there-
fore not appropriate for the biomisation method presented
here. The results show that biome maps based on models
including land use do not agree worse with the references
than the other simulations, underlining that the redistribution
method used here provides a good approximation of the nat-
ural vegetation cover.

The method of PFT biomisation basically uses bioclimatic
limits that have been inferred for the modern vegetation–
climate relationships. These limits may not be valid for all
time periods. During LGM, the atmospheric CO2 concen-
tration was substantially lower than today, which may also
affect the response of the plants to the background climate.
Likewise, the matrices for the assignment of taxa into PFTs
and from PFTs into biomes have been constructed on the ba-
sis of the recent vegetation. These matrices do not have to be
constant in time; i.e. they may not be applicable for glacial
vegetation. Furthermore, the classification of the biomes it-
self corresponds to the modern vegetation and does not nec-
essarily have to reflect the palaeo-vegetation. There might
be other biomes in glacial climates that remain unconsid-
ered. This may lead to biases in the modelling results and the
biome reconstructions taken as reference. The κ values for
the LGM time slice were quite low, indicating disagreement
between the simulated and reconstructed biome distributions.

A rather technical problem is the interpolation of the PFT
distributions to the T31 or T63 grid that partly leads to a de-
crease in the global area to be compared with the reference
datasets due to a mismatch of the land–sea masks. In regions
with a strong change of the PFT fractional composition (e.g.
desert border, coastal region), the interpolation may produce
blurry transitions in the PFT distributions resulting in an er-
roneous conversion into the mega-biomes.

4.2 Biases in the pre-industrial biome distributions and
the influence of the climate background

The classical method of biomising climate states via biome
models (here BIOME1 by Prentice et al., 1992) and the new
PFT-based method result in similar biome distributions for
most models and all time slices. Generally, the PFT-based
method produces more forest in comparison with the classi-
cal approach. This is mainly related to the rather low limit
of forest fraction needed in the assignment of forest in the
PFT-biomisation procedure. In forest regions, where Earth

system models tend to produce large biases in the climate
state, the PFT-based approach may be more suitable for the
biomisation. Therefore, the tropical, warm–temperate and
boreal forests are probably better represented by the PFT
method. However, the biomisation of the PFT distributions
itself strongly depends on the underlying climate, affecting
both the differentiation into the biomes as well as the simula-
tion of the PFT coverage in the different dynamic vegetation
models. To accurately compare the performance and the skill
of the different vegetation models to represent biome distri-
butions, the models should therefore be forced by the same
climate state, but only few models can be run offline. This
study is thus not thought of as a model evaluation but as an in-
troduction to the biomisation method and as a test of whether
the procedure works for models of different complexity and
simulations for different time slices.

To assess the contribution of the effect of biases in the un-
derlying climate to the differences in the PFT-based biomi-
sations and the references, we compare the pre-industrial
climate-based biomisations with the biomisation of the
CRU TS4 dataset. A sensitivity study is performed follow-
ing Dallmeyer et al. (2017) to relate differences in the biome
distributions to precipitation or temperature deviations in the
background climate (Fig. 12). For this purpose, we succes-
sively replace the temperature or the precipitation in the
CRU TS4 forcing file for the BIOME1 model with the re-
spective pre-industrial temperature or precipitation distribu-
tions simulated by the models. Afterwards, we compare the
differences between the calculated biome distributions.

Generally, disagreement in the high northern latitudes is
associated with biases in temperature, while disagreement
in low latitudes co-occurs with precipitation biases for the
pre-industrial time slice. The similarity of the PFT biomisa-
tions and RF99 is lowest for CLIMBER, MIROC-ESM and
CLIM-LPJ. While for CLIMBER the coarse resolution (i.e.
the very different land–sea masks) may be the main respon-
sible factor for disagreement, total κ is reduced by an un-
derestimation of grasslands and savanna and an overestima-
tion of the forests in the PFT-based biomisation of MIROC-
ESM. This is exactly opposite to the biases occurring in the
climate-based biomisation, indicating that the climate is not
the primary origin of the differences. For this specific model,
the PFT-based biomisation strongly differs from the climate-
based one. This may at least partly be related to the handling
of vegetation in the model. The spatially explicit individual-
based (SEIB) vegetation model included in MIROC-ESM is
a forest gap model, not using the tiling approach (Sato et al.,
2007). PFT fractions have only been estimated during the
CMIP5 post-processing, based on the net primary productiv-
ity ratios of the different vegetation categories. This approach
might lead to an overestimation of forest. On the other hand,
according to BIOME1, the underestimation of the tropical
forest domain in the climate-based biomisation of MIROC-
ESM is caused by the way to dry climate in South America.
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Figure 12. Climate factors leading to the differences between the pre-industrial climate-based biome distributions and the biome distribution
inferred from the CRU TS4 observational climate data. The factors were calculated by performing a sensitivity test with the BIOME1 model
following Dallmeyer et al. (2017) by successively replacing the temperature or the precipitation in the CRU TS4 forcing file for BIOME1
with the respective data from the different PI simulations.

In the PFT biomisation of CLIM-LPJ, κ is basically re-
duced by an overestimation of boreal forest at the expense
of temperate forest and an underestimation of the savanna
regions. Both errors are mainly not climate driven. Within
dynamic vegetation models explicitly calculating boreal and
temperate forest, these forest types can coexist. To give a
clear assignment, we decided to differentiate both forest
types by the dominant tree PFT, i.e. if the boreal tree fraction
exceeds temperate tree fraction, forest fraction is assigned
to boreal forest, and vice versa. This partly disagrees with
the handling in biome models; e.g. in cool mixed forest, bo-
real trees could be the dominant PFT and temperate trees
only the subdominant PFT (cf. Kaplan et al., 2003), but this

biome would be assigned to the mega-biome “temperate for-
est”. We assume that due to a slight overestimation of boreal
forest coverage in Europe and at the modern boreal to tem-
perate forest transition zone within CLIM-LPJ, the vegeta-
tion in these regions is grouped into the mega-biome “boreal
forest”. In South America, tropical forest fraction is overesti-
mated by CLIM-LPJ, with values exceeding 80 % in most re-
gions of Brazil, precluding the savanna biome. Within north
Africa, CLIM-LPJ simulates hardly any regions with coex-
isting substantial forest and grass fractions. Either tropical
trees are clearly the dominant PFT (assigned to tropical for-
est) or forest fraction is too low (below 10 %) to be assigned
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Figure 13. Zonal sum of pre-industrial forest biome area per latitude (million km2 degree−1) in the reference (RF99), the climate-based
biomisation (blue) and the PFT-based biomisation (red) for each of the individual models. Due to the special land–sea mask in CLIMBER,
the values for this model have been scaled by a factor of 0.766, which is the quotient of the global land area in a Gaussian T31 grid and the
global land area in the CLIMBER grid (10◦× 10◦).

to savanna. The defined limits for savanna are only fulfilled
for very few grid cells.

For MPI-ESM-T31, the boreal forest biome is strongly un-
derestimated in the PFT-based biomisation. The BIOME1 re-
sults clearly relate this bias to a too-cold climate (GDD5 limit
is not reached in BIOME1), which also affects the simula-
tion of trees in JSBACH sharing the same bioclimate lim-
its. Therefore, forest fraction in MPI-ESM-T31 is underesti-
mated for the northern latitudes.

IPSL-ESM-T31 shows a dry bias in South America re-
sulting in a too-low tropical forest biome cover in both the
climate-based and the PFT-based biomisations. BIOME1 re-
veals another systematic bias for the MIROC-ESM biomisa-
tion indicating too much temperate forest in North America
at the expense of grassland and partly of boreal forests. This
overestimation of temperate forest is induced by a too-wet
climate favouring growing of trees and a rather too-warm cli-
mate in the high northern latitudes.

4.3 Evaluating the distribution of forest biomes

Due to the forest priority rule in the biomisation method, the
skill of representing the non-forested biomes depends on how
well the forest distribution can be reproduced. To further as-
sess the performance of the method with respect to the forest
biomisation, we analyse the pre-industrial zonal mean forest
fraction in the form of the zonal sum of forested area per
latitude to be independent of the different grid sizes used
for the individual simulations (Fig. 13). In nearly all PFT
biomisations, the zonal forest fraction is underestimated in
the high northern latitudes and the zonal maximum is shifted
southward, although the defined limit of minimum required
tree fraction is already quite low in the PFT method. This
bias is most obvious in the biomisation for MPI-ESM-T31
and IPSL-ESM-T63. While for MPI-ESM-T31, the coexis-
tence of the bias in both the climate-based and the PFT-based
biomisations underlines the effect of the too-cold climate
on the forest distribution, the strongly shifted high-latitude
forest maximum in the IPSL-ESM-T63 PFT biomisation is
probably not climate driven.
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Figure 14. Normalised Taylor diagram showing the agreement of
the simulated pre-industrial zonal sum of forest biome area per lat-
itude using BIOME1 (i.e. based on the simulated climate states;
crosses) or the PFT-based method (dots) for the individual mod-
els with the modern potential biome distributions according to Ra-
makutty and Foley (1999, RF99). Additionally shown is the agree-
ment of the CRU TS4-based biomisation with this RF99 reference
dataset.

In the tropical regions, the forest fraction tends to be un-
derestimated when using the climate-based method, whereas
forest fraction is often too high in the PFT-based biomisa-
tions, probably related to the low tree fraction limit needed
for forest assignment in the PFT method. The tropical for-
est fraction based on the simulated climate and PFT distribu-
tion by CLIMBER is strongly overestimated. This is at least
partly caused by the coarse grid and specific land–sea mask
used in the model.

To further quantify the biases in forest fraction, we com-
pare the centred root mean square error (cRMSE), the Pear-
son correlation coefficient (r) and the zonal variability be-
tween the biomisations of the ESM simulations and the RF99
reference, combined in a Taylor diagram (Fig. 14). Over-
all, the zonal forest fraction in the biomisations agrees well
with the reference. All biomisations show a good to nearly
perfect pattern correlation with values exceeding 0.77, inde-
pendent of the chosen method. For most models, the Pear-
son correlation coefficient even exceeds 0.9. The PFT-based
biomisation is worst for CLIMBER and MIROC-ESM, re-
vealing a too-large standard deviation and a cRMSE of 0.83
and 0.73, respectively. For MPI-ESM-T31, spatial variability
is slightly too low and the cRMSE is 0.61 using the PFT-
based method and 0.63 in the climate-based biomisation, re-
flecting the common underestimation of the boreal forest. As
expected, best performance can be observed for the biomi-
sations based on simulations with prescribed PFT coverage

(MPI-ESM-T63 and IPSL-ESM-T31), sharing a similar stan-
dard deviation with RF99, a pattern correlation coefficient of
0.98 and a cRMSE of 0.21, which is even better than the
biomisation of the CRU TS4 data (cRMSE of 0.28).

5 Summary and conclusion

Dynamic global vegetation models use different kinds and
numbers of plant functional types to represent the global veg-
etation. These PFT distributions can neither be directly com-
pared between different models nor between models and re-
constructions, which were hitherto mostly provided in the
form of biomes. We have therefore developed a method
for biomising simulated PFT distributions and have tested
this method for six state-of-the-art dynamic global vegeta-
tion models based on simulations for the pre-industrial, mid-
Holocene and Last Glacial Maximum time slices.

Overall, the method works well for all models and can
keep up with other biomisation techniques. The compari-
son with different reference datasets (i.e. pollen-based biome
reconstructions and estimates of the potential natural veg-
etation) reveals a similar agreement with the PFT-based
biomisation than with biome distributions inferred from the
biome model BIOME1 (Prentice, 1992) that has been forced
with the background climates. The comparable skill to the
BIOME1 model, which is tuned to represent the global vege-
tation as well as possible, is partly achieved by the use of bio-
climatic limits that are in line with the definitions in biome
models.

The skill of capturing the global biome distributions is in-
dependent of the spatial resolution and the complexity of the
vegetation models or the integration of land use. For models
just using two different PFTs (CLIMBER) the method per-
forms equally well as for models using 10 different PFTs
(e.g. IPSL-ESM). Only the very coarse resolution in the
CLIMBER model hampers the comparability with the single
point reconstructions, in particular for biomes with a very
limited number of available records. In addition, the quan-
titative comparison of the biomised vegetation distributions
among each other and with the gridded reference data is com-
plicated by the very different model resolutions.

In general, large biome belts (such as tropical forest) can
be captured best, while rather regionally confined biomes
such as savanna and warm–temperate forest are not as well
represented. This may at least partly be related to the fact
that these biomes cannot be defined clearly via PFT cover
fractions. Savannas are characterised by a distinct func-
tional ecology and cannot be differentiated from other trop-
ical biomes via plant composition or climatic tolerance. The
warm–temperate forest is rather defined by a coexistence
of PFTs and might overlap with other biomes. This may
lead to mismatches with the reconstructions. For the palaeo-
simulations, the agreement between the individual mega-
biome distributions derived by the PFT method and the
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biome reconstructions strongly depends on the number of
available records. The main vegetation differences between
the pre-industrial and mid-Holocene or Last Glacial Maxi-
mum time slices are captured by most models and are also
reflected in the PFT- and climate-based biomisations, indicat-
ing a reasonable sensitivity of the PFT method. In total, the
kappa statistic reveals only poor agreement between the PFT-
and climate-based biomisations and the reconstructions for
LGM, which might be related to the use of bioclimatic limits
inferred from modern observations that may not be valid for
climate states being totally different from the present day’s.

We have provided a simple but powerful method for the
biomisation of simulated plant functional type distributions
that requires only few input variables and can hence be ap-
plied to all kinds of dynamic global vegetation models. The
new method can keep up with the classical biomisation ap-
proach of forcing biome models with climate states. How-
ever, as the new biomisation of the simulated PFT frac-
tions indirectly accounts for all processes included in the dy-
namic vegetation models (e.g. ecophysiological response of
the plants to changes in the environment such as atmospheric
CO2 level), the new method is able to more directly repre-
sent the output of the vegetation modules of an Earth system
model. The biomisation of the simulated vegetation thus fa-
cilitates the direct comparison between different Earth sys-
tem models and between models and biome reconstructions.
It is therefore a powerful method for the evaluation of Earth
system models, particularly suitable for the assessment of re-
cent palaeo-vegetation changes.

Code availability. The PMIP3 simulations of MPI-ESM-T63,
ISPL-ESM-T31, MIROC-ESM and HadGEM2-ESM can be down-
loaded from the Earth System Grid Federation. Simulation IDs
are listed in Table 4. The tool for the biomisation of PFT
distribution, input data, other scripts used in the analysis and
supplementary information that may be useful in reproduc-
ing the authors’ work is archived by the Max Planck Insti-
tute for Meteorology and are accessible without any restric-
tions (http://hdl.handle.net/21.11116/0000-0001-B800-F, last ac-
cess: 8 February 2019). The BIOME6000 pollen-based biome re-
constructions (Harrison, 2017) can be downloaded from http://
researchdata.reading.ac.uk/99/ (last access: 26 October 2018); the
estimates of modern potential biome distributions by Ramankutty
and Foley (1999) are available at https://nelson.wisc.edu/sage/
data-and-models/global-potential-vegetation/index.php (last ac-
cess: 26 October 2018).
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Appendix A: Biomisation of the PFT distribution
using the example of VECODE (included in
CLIMBER-2)

Figure A1 shows the PFT-biomisation procedure based on
the VECODE model (include in CLIMBER-2). VECODE
includes only two PFTs; therefore, all rules defined in the
biomisation method are needed. For the other models using
more PFTs, the flow chart would look slightly different.

Figure A1. The PFT-biomisation procedure using the example of the VECODE model (included in CLIMBER-2), which has the fewest
PFTs. Shown are all decisions using assumptions on minimum coverage of the PFTs and bioclimatic limitations, i.e. growing degree days on
the basis of 0 and 5◦ (GDD0, GDD5), mean temperature of the coldest month (Tc) and annual mean 2 m temperature. Please note that this
chart looks different for every other model.
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Appendix B: Simulations

The MPI-ESM-P (Giorgetta et al., 2013) simulations have
been performed at the Max Planck Institute for Meteorol-
ogy and include the land model JSBACH with dynamic veg-
etation module (cf. Reick et al., 2013). In the pre-industrial
control simulation, vegetation pattern and land use were pre-
scribed. For the palaeo-simulations, we use the simulations
with interactive vegetation. The spatial resolution for the at-
mosphere and land is T63 (i.e. approximately 1.875◦ on a
Gaussian grid). These simulations are referred to as MPI-
ESM-T63 in the following. In a similar model setup, addi-
tional PMIP3-like experiments have been undertaken for PI
and LGM by Klockmann et al. (2016) in a coarser spatial
resolution (T31, i.e. approximately 3.75◦ on a Gaussian grid,
MPI-ESM-T31).

IPSL-CM5A-LR (Dufresne et al., 2013) is the low-
resolution CMIP5 model version of the Institute Pierre Si-
mon Laplace and contains the terrestrial biosphere model
ORCHIDEE (Krinner et al., 2005) that is run offline, forced
with climate input. In the PMIP3 simulations, vegetation and
land use were prescribed. For better comparison with the
gridded reference dataset (see next section), the climate and
PFT fields have been interpolated bilinearly to a Gaussian
T31 grid. Using the simulated LGM climate of the PMIP3
simulation, Zhu et al. (2018) performed additional experi-
ments for LGM with ORCHIDEE-MICT (Guimberteau et
al., 2018), a model version with an improved vegetation
dynamic in the high northern latitudes (Zhu et al., 2015).
The corresponding PI control simulation has been forced by
CRUNCEP v.5.3.2 data, which are a combination of obser-
vations (CRU data) and reanalysis data (NCEP). The simula-
tions have been interpolated to a Gaussian T63 grid.

HadGEM2-ESM (Collins et al., 2011) is the Earth system
model of the Met Office Hadley Centre and includes the veg-
etation model TRIFFID (Cox, 2001). In all simulations used
here, the model ran with interactive vegetation. The PI sim-
ulation (piControl) included land-use types. The simulations
have been remapped to a Gaussian T63 grid.

The dynamic vegetation LPJ model (Sitch et al., 2003)
is usually used for offline simulations, forced by climate
simulations or observations. The simulations used here have
been conducted in a similar model setup to that described in
Kleinen et al. (2010) but has been redone on a new computer
(Thomas Kleinen, personal communication, 2017), which
may lead to very small deviations from the original runs.
The PI simulation has been forced by observational datasets
(CRU TS3.1; Harris et al., 2014), the 6 ka simulation by
output from the CLIMBER-2 model. Both simulations have
been interpolated to a Gaussian T63 grid and are referred to
as CLIM-LPJ in the following text.

MIROC-ESM (Watanabe et al., 2011) is the Earth system
model of the Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research Institute (Uni-
versity of Tokyo) and the National Institute for Environmen-
tal Studies. It includes the SEIB dynamic vegetation model
(Sato et al., 2007). SEIB deviates from the other DGVMs
in this study as it does not use the tiling approach of cal-
culating PFT fractional coverage for each grid cell. It is a
so-called gap model, simulating the interactions among indi-
vidual trees that compete for light and space in arising gaps
(e.g. due to disturbances) within a spatially explicit virtual
forest. The model was built for capturing the vegetation dy-
namics on a local scale. The application of the model for
larger (e.g. global) scales is possible, but global simulations
partly disagreed with observations (Sato et al., 2007). The
PFT distribution used in this study has been calculated in
the post-processing for CMIP5 via the relative net primary
productivity of the vegetation categories; it was not explic-
itly calculated by the model, which may lead to additional
biases in the vegetation distribution. The simulation for PI
(piControl) includes land use. These simulations have been
remapped to a Gaussian T31 grid.

CLIMBER-2 (Petoukhov et al., 2000) is an Earth system
model of intermediate complexity and contains the vegeta-
tion module VECODE (Brovkin et al., 1997). The LGM
and PI simulations have been specifically undertaken for
this study (Thomas Kleinen, personal communication, 2017)
and are referred to as CLIMBER in the following. The
CLIMBER output has not been interpolated as the simula-
tion ran with a too-coarse resolution of 10◦ latitude× 51◦

longitude. To compare with the data and the other models,
the CLIMBER output was regridded to 10◦ × 10◦ grid with-
out interpolation.

The dynamic global vegetation model CLM-DGVM as
part of the Community Earth System Model (Hurrell et al.,
2013) is currently under redevelopment. No appropriate sim-
ulations could be provided.
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Appendix C: Preparing the reference datasets

Most biomes used in RF99 could directly be assigned to the
mega-biome types used in this study (Table C1). RF99 ad-
ditionally includes the biome “evergreen/deciduous mixed
forest/woodland”. Here, this biome is assigned to the mega-
biomes “temperate forest” in warm regions and “boreal for-
est” in colder regions via the modern growing degree day dis-
tribution (GDD5≥900 ◦C for warm regions, GDD5 < 900 ◦C
for cold regions; cf. Table 2), derived from observations
(University of East Anglia Climatic Research Unit Time Se-
ries 3.1, University of East Anglia, 2008). Likewise, the sa-
vanna biome had to be split up, as RF99 includes temper-
ate savanna which is explicitly excluded in the definition
of the savanna mega-biome used in this study. The thresh-
old for warm savanna is a mean temperature of the coldest
month exceeding 10 ◦C (limit for existence of C4 grass in
JSBACH). To compare RF99 with the different model simu-
lations, RF99 had to be remapped to the model grids. We de-
cided to use the spatial resolutions T31 and T63, and also pre-
pared a map for the downscaled CLIMBER output (10◦×10◦

grid). Within each of these model grid cells, the dominant
mega-biome type in the 5 min resolved RF99 data was taken
for covering the RF99 grid box in T31 or T63 or in the 10◦

grid. In more detail, each grid box on a T31 Gaussian grid
contains 45× 45 grid cells of the 5 min resolved RF99 data.
Within these 45× 45 grid boxes, the fractional coverage of
all mega-biomes is calculated and the biome with the highest
fraction is chosen for covering the T31 grid box. For T63,
arithmetically 22.5× 22.5 grid cells form one T63 grid cell.
Here, we take 23× 23 RF99 grid boxes with one grid-box
overlap to equally distribute the 5 min grid cells to the T63
grid. We are aware of the fact that the latitudes in the Gaus-
sian grids are actually not equidistant, so that the remapped
RF99 biome distributions are slightly stretched towards the
poles, but this effect is marginal and is not expected to shift
the main biome belts. To compare the equal number of grid
cells, the reference data are cut by the land–sea masks used
in the individual simulations to only include grid cells that
are on land in both datasets.

Table C1. Biome assignment of biome classes used in Ramankutty
and Foley (1999) to the mega-biomes used in this study.

Biomes in Ramankutty and
Foley (1999)

Mega-biomes

1. Tropical evergreen
forest/woodland

Tropical forest

2. Tropical deciduous
forest/woodland

3. Temperate broadleaf ever-
green forest/woodland

Warm–temperate forest

4. Temperate needleleaf ever-
green forest/woodland

Temperate forest

5. Temperate deciduous
forest/woodland

6. Boreal evergreen
forest/woodland

Boreal forest

7. Boreal deciduous
forest/woodland

8. Evergreen/deciduous
mixed forest/woodland

Temperate (GDD5 < 900 ◦C) or
boreal forest

9. Savanna Savanna and dry woodland,
partly temperate forest

10. Grassland/steppe Grassland and dry shrubland

11. Dense shrubland Savanna and dry woodland

12. Open shrubland Grassland and dry shrubland

13. Tundra Tundra

14. Desert (Warm) desert

15. Polar desert/rock/ice Polar desert/ice
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Appendix D: Simulated forest in South America

Table D1. Modern (PI) fraction of the biome “tropical forest” in
South America, given in percent of land area in the region of 57◦ S–
13◦ N, 33–81◦W. Listed are the reference forest fraction based on
RF99, which changes due to the interpolation to the different model
grids, the forest fraction based on the PFT biomisation and that
based on the classical approach using BIOME1 forced with the sim-
ulated climate fields.

Model acronym RF99 PFT-based Climate-based
method method

MPI-ESM-T63 56.85 57.72 27.53
MPI-ESM-T31 58.52 61.0 31.13
IPSL-ESM-T31 59.75 40.28 7.87
IPSL-ESM-T63 57.51 59.03 59.58
HadGEM2-ESM 58.03 64.95 42.72
CLIM-LPJ 57.41 61.72 57.16
MIROC-ESM 58.45 53.08 15.45
CLIMBER 75.45 59.73 59.73
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Appendix E: Comparison of the biomisation method
with the approach of Prentice et al. (2011)

Prentice et al. (2011) introduced a biomisation method (fur-
ther referred to as the FPC method) that is fundamentally
different from the method presented in this study. The as-
signment to the different biomes is controlled by the foliage
projective cover, the vegetation height and the PFT composi-
tion. Climatic limitations in the form of growing degree days
are only used to distinguish the tundra biomes.

Unfortunately, the foliage projective cover and the vege-
tation height are not included in the standard output of the
vegetation models and are therefore not available for the sim-
ulations used here.

To compare both methods, we therefore only use the sim-
ulations performed within IPSL-ESM-T63, which has been
biomised by Zhu et al. (2018) following the approach of
Prentice et al. (2011). The biome output has been grouped
into mega-biomes and remapped to a T63 grid in the same
way as the RF99 reference data were prepared.

Beside the savanna regions, the derived biome map resem-
bles the map resulting from the PFT-based method (Fig. E1).
Prentice et al. distinguish between temperate parkland, scle-
rophyll woodland and boreal parkland that all have been as-
signed to the mega-biome savanna, but savanna is only de-
fined as tropical savanna in our method. This complicates the
comparison of the biome maps and leads to strong differ-
ences in the savanna distribution between both methods and
between the biomisation using the FPC method and RF99,
although we leave the temperate savanna in RF99 for better
comparison.

Since boreal parkland is not included in RF99, the PFT
method introduced here yields better results for boreal forest
and savanna than the FPC method. Additionally, the warm–
temperate forest is more appropriately reproduced. In con-
trast, temperate forest and grassland are better represented
using the FPC method. All other biomes are equally well
simulated for the PI time slice.

Table E1. Metrics quantifying the agreement of the biomisations
for IPSL-ESM-T63 based on the FPC method (Prentice et al.,
2011) or the PFT-based method introduced in this study with
the modern potential biome distribution according to Ramakutty
and Foley (1999, RF99) or pollen-based biome reconstructions
(BIOME6000 database) for the pre-industrial (PI) and the Last
Glacial Maximum (LGM) time slices. Listed are the relative frac-
tional skill score (FSS), the kappa value (κ) and the best neighbour
score (BNS).

PI LGM

FPC PFT FPC PFT
method method method method

FSS (vs. RF99) 0.1 0.13 – –
κ (vs. RF99) 0.59 0.63 – –
κ (vs. records) 0.19 0.24 0.17 0.13
BNS (vs. records) 0.53 0.55 0.54 0.41

The FSS metric (Table E1) indicates that the PFT-based
method (0.13) agrees in total slightly better with the refer-
ence than the other approach (0.10). Overall, the biomisation
using the FPC method reaches a κ of 0.59 (vs. 0.63 for the
PFT-based method) compared to RF99 and 0.19 (vs. 0.24)
compared to the Biome6000 pollen data. BNS is 0.53 for the
FPC method and 0.55 for the PFT method.

The LGM biome distribution can be captured slightly bet-
ter using the FPC method (k = 0.17 vs. 0.13 and BNS= 0.54
vs. 0.41). Particularly the tropical forest, desert and savanna
biomes agree better with the biome reconstructions than
those for the PFT-based method, but at least for the latter
biomes, the record density is very low, which may distort the
results.
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Figure E1. Comparison between the biomisation method by Prentice et al. (2011, referred to as the FPC method) and the method introduced
in this study (PFT-based) based on the IPSL-ESM-T63 model. Shown are the biome distributions for the pre-industrial (PI) and Last Glacial
Maximum (LGM) time slices (a) and the BNS for all available sites showing the agreement of the reconstructed biomes (according to the
BIOME6000 database) and the simulated biome distributions in the neighbourhood of the sites (b), ranging from 0 (no grid cell in the
surrounding shows the same biome as reconstructed) to 1 (the grid cell locating the site and the record at the site indicate the same biome).
Please notice that the FPC method distinguishes temperate parkland, sclerophyll woodland and boreal parkland, which all have been assigned
to the mega-biome savanna, but savanna is only defined as tropical savanna in the PFT method.
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