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Supplementary Information text

Todine post-depositional processes in Renland snow and ice.
Certain post-depositional remobilization of iodine trapped in snow and ice is expected to occur in
ReCAP site since this element can be photo-activated and released from the snowpack in polar
regions (e.g. Frief et al., 2010; Spolaor et al, 2014, 2019). Therefore, an adequate characterization
of all the post-depositional effects affecting the downcore iodine trend in ReCAP ice core is needed.
Laboratory experiments have shown two photo-induced mechanisms for the release of
inorganic iodine from the surface snow to the atmosphere; i) production of I, and tri-iodide (I3")
through the photo-oxidation of iodide (Kim et al., 2016), and ii) the heterogeneous photo-reduction
of iodate and subsequent release of a gas phase photofragment (Gdlvez et al., 2016). Field studies
addressing iodine remobilization after snow deposition has been conducted in Antarctica (FrieB et
al. 2000; Spolaor et al. 2014), Europe (Legrand et al., 2018) and in the Arctic (Spolaor et al.,
2019). According to these field experiments iodine recycling in surface snow depends on the season
and amount of incoming radiation. Maximum iodine levels in ice are found in winter due to limited
biological production and the absence of photochemistry (Frieb et al., 2010; Spolaor et al., 2014)
although night-time radical activation could also occur (Saiz-Lopez et al., 2016). A very recent field
experiment on the diurnal cycle of iodine in surface snow in the Arctic has revealed for the first
time the behaviour of iodine in the upper snow layers (0-3 cm) under different light and atmospheric
conditions (Spolaor et al., 2019). lodine is found to be very active in the upper snow layer with the
highest iodine concentration measured at night and the lowest during the day (Spolaor et al., 2019).
Daytime iodine snow-re-emissions would rapidly form reservoir species (HOI, IONO2, HI)
redepositing back to snow once photochemistry ceases during the night-time. Therefore, the
recycling of iodine on ice and snow surfaces on a daily to seasonal scale only represents an offset
change affecting the effective atmospheric lifetime of iodine against deposition (Saiz-Lopez et al.,

2014) which would not affect the net iodine depositional fluxes and concentrations at decadal to
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millennial time scales. In Greenland, solar irradiation maxima is found during the HTM (Laskar et
al. 2004) (Fig. 2) that would result in higher re-emission of surface snow iodine to the atmosphere
during that period. Thus, the highest iodine values measured in this period suggest that iodine loss
is not a major driver for the recorded iodine variability. Additionally, neither the iodine trend during
the HTM nor the abrupt changes in iodine concentration and fluxes found during the
HTM/Neoglacial transitions follows the solar irradiance evolution throughout the Holocene (Fig.
2) suggesting that long-term solar irradiance have not controlled the Holocene iodine
concentrations in RECAP ice core.

Iodine release from the snow-pack in Greenland is particularly higher at low snow
accumulation sites, where iodine loss from the surface snow could be one order of magnitude higher
(Maselli et al., 2017, Legrand et al., 2018). Losses of volatile iodine species would be strongly
reduced in areas with high annual snow accumulation rates such as the Renland peninsula (annual
snow accumulation rates ca. 500 kg m™ yr''; Fig. S2). Thus, the high accumulation rates found in
ReCAP (Fig. 2) may limit the post-depositional remobilization of high volatile iodine species
throughout the Holocene. In the ReCAP ice core, the reconstructed accumulation rates shown in
Figure S2 shows reasonably stable levels for the last 8000 years, suggesting relatively constant
snowfall and surface conditions. The absence of any significant correlation between the
accumulation rates and the concentration of impurities such as iodine and sodium also indicate that
the Holocene iodine variability in ReCAP ice core is neither related to the effects of changing snow
deposition rates nor to meteorological conditions in Renland Peninsula. A systematic decrease in
iodine content has been recently reported in firn ice in different Greenland sites with density values
<0.83 g cm™ (Legrand et al., 2018) suggesting possible iodine volatilization during firn storage or
melting. Nevertheless, this study is based on dense ice with density values >0.89 g cm™ where the

air bubbles trapped are well sealed that minimize loss of iodine during analyses.
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Figure S1: Iodine intercalibration between the IDPA-CNR (Venice, Italy) and the CU (Perth,

Australia) systems performed on Greenland surface snow iodine measurements. The colored areas

reflect the average (£ 20) iodine concentrations detected in the RECAP ice core (EH: Early
Holocene; NG: Neoglacial Period; LH: Late Holocene).
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Figure S2. ReCAP ice core time series during the Holocene: Top: iodine concentration (1o,
experimental uncertainties). Middle: accumulation rates and associated uncertainties (16 band).
Bottom: iodine fluxes (1o, propagated from the concentration and accumulation rate uncertainties).
Iodine measurements are missing for the time intervals 275-320 yr BP and 3107-3476 yr BP due

to instrumental errors during the analyses. The brown inset area is shown in Fig S5.
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Figure S3. Diurnal variation of reactive iodine modelled by THAMO in different scenarios of
[Os3] and VSLs e missions fluxes (Table 1) from i) present day (top left) : [O3]= 30 ppbv and
present day VSL emission fluxes; ii) Holocene Thermal Maximum (top right): [O3] = 10 ppbv and
100% increase in present day VSL emission fluxes; iii) Late Holocene (bottom left): [O3] = 10ppbv
and 50% decrease in present day VSL emission fluxes; iv) Neoglacial (bottom right): [O3] = 10
ppbv and 87% decrease in present day emission fluxes. Iy comprises L+IO+HOI+HI+INO>+INO3
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Fig. S4: ReCAP ice core iodine to sodium concentration ratio during the Holocene
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Fig. S5: ReCAP ice core time series during the Late Holocene: Top: iodine concentration (1o,
experimental uncertainties). Middle: accumulation rates (and 1o uncertainties). Bottom: iodine

fluxes (1o, propagated from the concentration and accumulation rate uncertainties).
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Fig. S6: ReCAP ice core fluxes, primary productivity and sea-ice conditions in Eastern

Greenland during the Late Holocene: Bottom: I, 10-samples running average in ReCAP ice

core (red) and Brassicasterol in eastern Greenland coastal shelf (core PS2641-4,5) (black) (Kolling

etal.,2017). Top: eastern Greenland coastal shelf sea-ice extent proxy PglP»s (Kolling et al., 2017).

Color bars indicate the last millennium main climatic phases (LIA: Little Ice Age; MCA; Medieval

Climate Anomaly; IP: Industrial Period).
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Holocene Neoglacial Late HTM/
Thermal Holocene Neoglacial
Maximum transition
1] (ng/g) 0.034 0.009 0.018 277%
std 0.01 0.00 0.01
I fux (ug/m? yr) 14.75 3.97 8.02 271%
std 4.38 2.16 4.09
Planktic  foraminifera 6270 3653 5041 71.6%
(ind/cm? Kyr)
std 4066 1365 2173
Brassicasterol (ug/g OC) 36.43 31.85 36.74 14.4%
std 7.69 4.13 5.30
Dinosterol (%) 4.69 2.98 4.86 57.4%
std 2.40 0.67 1.58
T. Quinqueloba (%) 32.87 19.35 21.83 70%
std 13.87 6.44 9.64
Arctic SST (°C) 10.40 9.81 9.88 6%
std 0.77 0.39 0.30
PplIPs 0.09 0.19 0.30 -52.6%
std 0.05 0.02 0.08
IP3s 0.14 0.84 1.52 -83.3%
std 0.17 0.31 0.69
71°N July solar 519.17 493..69 487..57 5.2%
irradiance (W/m?)
std 3.28 3.93 5.24

Table S1: Mean values and standard deviations (1 std) of iodine levels (iodine concentration

and fluxes) in ReCAP ice core and mean values of environmental proxies reconstructed in

the Arctic during the main climatic periods discussed in the text (i.e. Holocene Thermal

Maximum, Neoglacial period and Late Holocene). From bottom to top: Iodine concentrations
[1]; Iodine fluxes (Inu); Planktic foraminifera (Telesinski et al., 2015; Werner et al., 2013);
Brassicasterol and dinosterol (Kolling et al., 2017; Miiller et al., 2012; Werner et al., 2016);

T. quinqueloba (Werner et al., 2013; Telesinski et al., 2015); Sea surface temperature (SST)
(Bendle and Rosell-Melé, 2004; Justwan and Kog, 2008; Justwan et al., 2008); Sea-ice cover
(PplPys and IPys) (Cabedo-Sanz et al., 2016; Werner et al., 2016; Xiao et al., 2017); i) 71°N July

solar irradiance (Laskar et al., 2004).
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A) Great Acceleration
(1950-Present-day)

[Na] [Ca]
(1] 0.252%*
Sig 0.026
N 78
B) Late Holocene (last
3.4 kyrs BP)
[Na] [Ca]
(1] 0.095%* 0.215%
Sig 0.011 0.030
N 717 102
C) Neoglacial (5.5-3.4 kyrs b2k)
1] -0.42%*
Sig 0.000
N 75
D) HTM (11.7-5.5 kyrs BP)
(1] -0.228 -0.009
Sig 0.062 0.943
N 68 68

(p=Pearson correlation coefficient, Sig=significance (*=significance<0.05, **=significance<0.01
highlighted in bold font)

Table S2. Great Acceleration, Late Holocene, Neoglacial and Holocene Thermal Maximum
Pearson (p) correlation coefficients between iodine concentrations [I] in the Renland ice core
and sodium [Na] and calcium [Ca] concentrations. [Ca] data are not available for the Great

Acceleration and the Neoglacial Period.
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