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Abstract. Marine sediments have greatly improved our un-
derstanding of the climate system, but their interpretation of-
ten assumes that certain climate mechanisms operate consis-
tently over all timescales of interest and that variability at
one or a few sample sites is representative of an oceano-
graphic province. In this study, we test these assumptions
using modern observations in an idealized manner mimick-
ing paleo-reconstruction to investigate whether sea surface
temperature and productivity proxy records in the Southern
California Current System can be used to reconstruct Ekman
upwelling. The method uses extended empirical orthogonal
function (EEOF) analysis of the covariation of alongshore
wind stress, chlorophyll, and sea surface temperature as mea-
sured by satellites from 2002 to 2009. We find that EEOF1
does not reflect an Ekman upwelling pattern but instead
much broader California Current processes. EEOF2 and 3
reflect upwelling patterns, but these patterns are timescale
dependent and regional. Thus, the skill of using one site to
reconstruct the large-scale dominant patterns is spatially de-
pendent. Lastly, we show that using multiple sites and/or
multiple variables generally improves field reconstruction.
These results together suggest that caution is needed when
attempting to extrapolate mechanisms that may be important
on seasonal timescales (e.g., Ekman upwelling) to deeper
time but also the advantage of having multiple proxy records.

1 Introduction

The climate system varies across multiple timescales and is
driven by both stochastic processes and deterministic forc-
ings (Huybers and Curry, 2006). Paleoclimate records help
us understand mechanisms of climate variability and change

over long timescales by extending instrumental records be-
yond the historical period. Numerous studies have used pa-
leoclimate records to understand climate system responses
to different external forcings (e.g., Shakun et al., 2012),
have put recent climate change into a long-term context
(e.g., Abram et al., 2016; PAGES2k Consortium, 2013), and
have helped benchmark climate models (e.g., Harrison et al.,
2015).

Marine sediment is one of the most widely used archives
for paleoclimate studies. Using marine sediments for pale-
oclimate inference usually involves multiple steps, whereby
one first measures multiple sensors, frequently proxies for
sea surface temperature (SST) and productivity, from a sin-
gle site. Then, one compares them with other nearby lo-
cal records, hemispheric reconstructions, and forcing recon-
structions. Lastly, one applies modern large-scale climatol-
ogy to explain changes observed in paleoclimate records
(e.g., Abram et al., 2016; Goni et al., 2006; Leduc et al.,
2010a; MARGO, 2009; McGregor et al., 2007; Vargas et al.,
2007). While these comparisons have improved our under-
standing about paleoclimate significantly, uncertainties and
oversimplifications may often result in overly broad interpre-
tations and assertions. Notably, this approach typically as-
sumes that (1) certain climate mechanisms always operate
over the past at all timescales of interest, and (2) large-scale
phenomena can be linked to variability at one or a few sam-
ple sites (i.e., a paleoclimate record location). In actuality,
some have found a substantial difference in SST reconstruc-
tion at nearby sites (e.g., Leduc et al., 2010b, and references
therein).

This paper illustrates an approach to test commonly as-
serted interpretations of SST and productivity proxy records
by using observational data to analyze a region where
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a known mechanism drives a large fraction of the vari-
ability and with well-preserved high-resolution sedimen-
tary records: the southern California region, an example
of an eastern boundary upwelling system (EBUS). There
are strong scientific and societal interests in understanding
EBUSs because physical and biogeochemical changes in
these regions are known to have significant impacts on re-
gional climate (Snyder et al., 2003; Ravelo et al., 2004; Jacox
et al., 2014) and the global fishery industry (Ryther, 1969;
Pauly and Christensen, 1995; Ware and Thomson, 2005). Un-
fortunately, it remains uncertain how EBUSs will change on
decadal to centennial timescales in the future (Bakun et al.,
2015; Di Lorenzo, 2015; Garcia-Reyes et al., 2015, and ref-
erences therein). Nevertheless, underlying sediments in these
regions often accumulate rapidly and contain a wealth of pa-
leoclimate information, in particular organic biomarkers and
associated proxies. Thus, this has allowed for high-resolution
(subdecadal timescale) and high-quality paleoclimate recon-
structions along many EBUSs, which provide additional con-
straints on past and future changes in EBUSs (e.g., Leduc
et al., 2010a; McGregor et al., 2007; Vargas et al., 2007).

Variability in SST and productivity reconstructions along
EBUSs are often regarded as a response to Ekman pump-
ing (e.g., Leduc et al., 2010a; McGregor et al., 2007; Var-
gas et al., 2007; MARGO, 2009). However, many other pro-
cesses are also at play in EBUSs and can drive SST and pro-
ductivity changes (e.g., eddies, zonal advection, surface heat
flux variations, changes in nutrient sources and concentra-
tion forced by subsurface processes, and large-scale climate
variability that affects the stratification) (Di Lorenzo et al.,
2005; Chhak and Di Lorenzo, 2007; Gruber et al., 2011; Ja-
cox et al., 2016; Rykaczewski and Dunne, 2010; Xiu et al.,
2018). Depending on spatial and temporal timescales, these
processes can overwhelm the Ekman signal in SST and pro-
ductivity changes recorded by proxy records.

Here we use high-resolution modern observations avail-
able during the satellite era to probe the spatial and tem-
poral influence of Ekman pumping on environmental pa-
rameters of interest (e.g., SST and productivity). We ap-
ply the extended empirical orthogonal function (EEOF) ap-
proach (Chen and Harr, 1993) to analyze covariation be-
tween sea surface temperature, productivity, and alongshore
wind stress in the Southern California Current System us-
ing high-resolution satellite data. We test the hypotheses that
(1) the dominant covarying EEOF pattern resembles region-
wide Ekman upwelling, (2) Ekman upwelling patterns, and
thus the wind stress magnitude, can be recovered using time-
averaged proxies, and (3) large-scale changes are not the
dominant drivers of variability at a single paleoclimate site.
We also assess the benefits of using multiple proxy records
from multiple sites to better understand the climate variabil-
ity of the past in EBUS regions.

2 California Current System

The availability of numerous high-resolution spatiotempo-
ral data (e.g., repeated hydrography, gliders, satellites) and
advances in modeling have allowed us to better understand
the variability of the California Current System (CCS) on
multiple timescales. The CCS is made up of the Califor-
nia Current, California Undercurrent, and upwelling zones,
which interact with a variety of local topographic features
and estuaries. On 1st order, the CCS as a whole is driven by
large-scale climate forcing. Changes in atmospheric pressure
systems (subtropical high, Aleutian low) alter wind strength
and direction, which in turn affect current direction, strength,
and upwelling variability. The stratification in the region is
set by large-scale features and forcing of the North Pacific.
Variations in topographic features, wind forcing, freshwater
inputs, and submesoscale–mesoscale features across spatial
scales also play important roles in determining the spatiotem-
poral characteristics of the CCS. Lynn and Simpson (1987),
Checkley and Barth (2009), and Capet et al. (2008) provide
overviews on the dynamics of the CCS and drivers of SST,
chlorophyll, and wind forcing variability.

The optimal marine sediments to reconstruct subdecadal
climate variability require a high sedimentation rate with
minimal bioturbation and hence anoxic depositional envi-
ronments. Along the CCS, these conditions mostly occur
south of 24◦ N with the exception of silled basins (e.g.,
Santa Barbara Basin) (van Geen et al., 2003). As a result,
previous high-resolution (subdecadal) paleoclimate studies
were mostly done in the southern part of the CCS (SCCS;
Fig. 1) (e.g., Goni et al., 2006; Abella-Gutiérrez and Her-
guera, 2016; Zhao et al., 2000).

3 Data and methods

This study made use of high-spatiotemporal-resolution es-
timates of sea surface temperature (SST), chlorophyll a
(CHL), and alongshore wind stress (TAU) from satellite mea-
surements to assess the role of Ekman pumping in driving
SST and productivity changes along the SCCS. We used
an extended empirical orthogonal function (EEOF) to assess
the covariation between these variables because they are ex-
pected to be correlated spatially and temporally if Ekman
theory is indeed the primary mechanism driving changes in
the region. EEOF analysis decomposes the dataset into dif-
ferent covarying patterns that are orthogonal to each other.
Each covarying pattern is accompanied by a time series that
represents the time evolution of the covarying pattern. These
patterns do not necessarily correspond to dynamical modes,
but they are suggestive of physical processes that are present
in the system (Monahan et al., 2009). Thus, analysis of EEOF
patterns allows us to make inferences about the potential un-
derlying dynamics. In addition, we assessed the effects of
time averaging and spatial subsampling on the ability to re-
cover dominant patterns within the spatial window analyzed.
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Figure 1. (a) Winter (December, January, February) sea surface temperature average and wind pattern; (b) winter chlorophyll monthly
average and wind pattern; (c) summer (June, July, August) sea surface temperature average and wind pattern; (d) summer chlorophyll
monthly average and wind pattern. The basins highlighted are where high-resolution (subdecadal) sediment cores were previously retrieved
and analyzed.

Such an assessment allows us to determine the fidelity of us-
ing proxies, which are time averaged and undersampled spa-
tially, to understand Ekman pumping in the SCCS. Details of
the data and method used can be found in Sect. 3.1 and 3.2.

3.1 Data

We used sea surface temperature (SST) from the Geosta-
tionary Environmental Satellite (GOES) system, chlorophyll
a (CHL) from MODIS, and alongshore wind stress (TAU)
observations from QuikSCAT that span from July 2002 to
November 2009. Although CHL does not equate precisely
to primary productivity and also differs from productivity
inferred from proxy records, CHL provides a 1st-order es-
timate of productivity (Henson et al., 2010). All data were
derived and are available from the National Aeronautics and
Space Administration Jet Propulsion Laboratory PO.DAAC
and ocean color data server. We did not use the Califor-
nia Cooperative Oceanic Fisheries Investigations dataset be-
cause sampling resolution is low and the spatial extent is
small when compared to satellite images. Reanalysis prod-
ucts (e.g., SODA) were also not chosen because even though
they may span a longer period of time, there are many un-
certainties associated with these products, for instance initial
conditions, boundary forcings, model physics, and resolu-
tion (approximately 25 km horizontal) (Carton et al., 2018).
Furthermore, Capet et al. (2008) show that submesoscale-

permitting resolution (750 m horizontal) is needed in order
to accurately simulate this upwelling system.

For TAU calculation, we used the descending pass of level
3 gridded Jet Propulsion Laboratory v2 QuikSCAT surface
wind observations (SeaPAC, 2006). The QuikSCAT satellite
is equipped with the SeaWinds scatterometer, a microwave
radar that measures ocean radar backscatter over a cross sec-
tion, which varies with satellite parameters and surface ge-
ometry (Freilich et al., 1994; Chelton and Freilich, 2005).
Surface wind vectors can be estimated using model func-
tions to estimate the relationship between wind and radar
backscatter over the cross section. Level 3 data were derived
using the direction interval retrieval with threshold nudging
wind vector solutions based on level 2B data, which used
the QSCAT-1B geophysical model function (Perry, 2001).
Level 3 QuikSCAT data provide 0.25◦×0.25◦ spatial resolu-
tion on a daily timescale. The QuikSCAT accuracy is about
0.75 ms−1 in the along-wind component and about 1.5 ms−1

in the crosswind component (Chelton and Freilich, 2005).
We utilized SST observations from the Geostationary En-

vironmental Satellite (GOES) system. GOES provides near-
time SST measurements along the west coast of North Amer-
ica. We used level 3 gridded GOES 6 km near-real-time SST
daily data after 12 May 2003 (NOAA/NESDIS, 2003b) and
averaged hourly SST data to daily mean resolution prior to
12 May 2003 (NOAA/NESDIS, 2003a). Level 3 GOES SST
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data provide 0.05◦×0.05◦ spatial resolution with better than
1K SST accuracy (Wick et al., 2002).

For CHL concentrations, we used ocean color from the
Moderate Resolution Imaging Spectroradiometer on the
Aqua satellite (MODIS Aqua) (Hu et al., 2012). MODIS
Aqua is sun synchronous and measures 36 spectral bands.
We used level 3 standard mapped image CHL measurements
from MODIS Aqua v2018.0 (NASA Goddard Space Flight
Center, 2018). Level 3 CHL data provide 0.041◦× 0.041◦

spatial resolution on a near-daily timescale with an accuracy
of approximately ±35% (Dall’Olmo et al., 2005).

3.2 Method

3.2.1 Observation preprocessing

To allow for comparison between SST, CHL, and TAU, CHL
and SST were regridded to 0.25◦× 0.25◦ spatial resolution.
This was done by bounding the datasets to 15–45◦ N, 130–
100◦W and then calculating the area-weighted CHL and SST
value over each new grid cell. We further restricted our lati-
tudinal extent to 15–35◦ N to make the analysis more compu-
tationally efficient. Repeated analysis using different spatial
domains (case 1: only east of 125◦W; case 2: only north of
20◦ N) suggests that our conclusions are insensitive to the
spatial extent selected for analysis (not shown).

Since the primary interest is Ekman-driven upwelling
along the coast, we computed the TAU by using Eq. (1):

τ = ρCDU |U |, (1)

where τ is alongshore wind stress, ρ is air density, CD is
the drag coefficient, U is wind speed, and |U | is the along-
shore wind vector. |U |was calculated by summing the along-
shore component of zonal and meridional wind vectors such
that −|U | and |U | represent equatorward and poleward wind
stress, respectively. We used constant values for the coeffi-
cients, where ρ = 1.2 kg m−3 and CD = 1.2× 10−3 (Large
and Pond, 1981).

Linear interpolation of all of the near-daily datasets tempo-
rally ensured a uniform daily sampling rate data at each grid
cell. The logarithm of CHL data was taken after regridding
but before EEOF analysis because CHL exhibits a nearly log-
normal distribution (Campbell, 1995). Before EEOF anal-
ysis, each variable was normalized by dividing the dataset
by its domain-wide and all-time standard deviation, which
makes the anomaly variations in each variable comparable to
each other in terms of occurrence likelihood (assuming ap-
proximately Gaussian distributions).

To follow the logic of analyzing fields that would resemble
proxy records, no removal of mean or climatological states or
seasonality from the satellite records was performed. Thus,
the EEOF analysis is performed on the total fields rather than
the anomaly fields.

3.2.2 Extended empirical orthogonal function

Extended empirical orthogonal function (EEOF) decompo-
sition analysis was used to extract dominant patterns with
covariation in SST, CHL, and TAU. EEOF is a variant of
empirical orthogonal function (EOF) analysis, a method that
extracts coherent, orthogonal patterns by optimizing variance
into multiple orthogonal functions in time and space. Multi-
ple variants of the EOF exist, which all involve taking into
account temporal correlations of a variable or correlations
between variables (e.g., Bretherton et al., 1992; Hannachi
et al., 2007, and references therein). Examining multiple time
snapshots as a single field allows EOF-based analysis to ex-
tract propagating patterns (e.g., Chen and Harr, 1993) and
covarying patterns (Kutzbach, 1967). Figures 2 and 3 show
examples of three different EOF-based methods that are fun-
damental to the analysis herein (EOF, EEOF with temporal
correlation, EEOF with multiple variables).

The EEOF method used in this study involved extract-
ing dominant covarying patterns by taking into account
both temporal correlation within the same variable (sym-
metric lead–lag relationships) and correlation between vari-
ables. We employed the singular value decomposition (SVD)
method (Bretherton et al., 1992) to decompose the covarying
pattern of SST, CHL, and TAU into the relevant EEOF ob-
jects.

To consider the time correlation of a variable X for EEOF
analysis, we form the following data matrix:

X =

 x1,1 · · · x1+k,1 · · · x1+2k,1 · · · x1+2k,j
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

xm−2k,1 · · · xm−2k+1,j · · · xm,1 · · · xm,j

, (2)

where xt,i is a data point at a certain time snapshot t and
space grid point i, t = 1,2, . . .,m, i = 1,2, . . ., j , k is the time
unit of lead and lag included, m is the temporal length of the
dataset, and j is the total number of total spatial grid points
covered. Thus, X is the concatenation of multiple reproduc-
tions of xt,i , with each column featuring x evaluated at se-
quential times and each row representing every spatial value
of x, concatenated with spatial maps that are displaced in
time to provide lead and lag information. Similarly, the data
matrix, M , with three variables can be written as follows:

M =
(
SST | CHL | TAU

)
, (3)

where SST, CHL, and TAU are submatrices with a structure
similar to matrix X. Note that each row of M is a complete
spatiotemporal set of each variable, including every spatial
location and lead and lag times for each variable, so that M
is effectively the concatenation of three X matrices, one for
each variable. Then, using SVD, we can decompose Eq. (3)
into

M = USV T , (4)
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Figure 2. Example of decomposing sea surface temperature into different modes by using an (a, d) empirical orthogonal function, (b, e) an
extended empirical orthogonal function with 1 d lead and lag, and (c, f) an extended empirical orthogonal function with chlorophyll included.

Figure 3. Example of decomposing chlorophyll into different modes by using an (a, d) empirical orthogonal function, (b, e) an extended
empirical orthogonal function with 1 d lead and lag, and (c, f) an extended empirical orthogonal function with sea surface temperature
included.

where U is a matrix of left-orthogonal singular vectors
as columns with temporal information of the M matrix
(principal components – PCs), S represents singular val-
ues, and V is a matrix of right-orthogonal singular vectors
as columns with spatial information (extended empirical or-
thogonal functions – EEOFs) of the M matrix. Note that the
SVD method arrives at a basis of eigenvectors of the co-
variance matrices MTM , i.e., MTMV = S2V , and MMT ,
i.e.,MMTU = S2U , so this approach is equivalent (although
slightly different algorithmically) to generating EEOFs by
eigenvalue decomposition.

Since proxy records reflect time-averaged environmental
information (usually monthly or longer), daily satellite infor-
mation for analysis does not accurately depict the temporal

smoothing characteristics in proxies. Hence, we performed
EEOF analysis independently on daily data after averaging
it into 30 d (∼ monthly) and 365 d (∼ annual) with non-
overlapping means. The relatively short span of satellite ob-
servations does not allow us to extend our analysis to longer
time periods that might also be of interest.

3.2.3 Determining the significance of modes and
lead–lag

Based on singular values, EEOF1 explains ∼ 85% of the to-
tal variance, and EEOF2 and 3 each explain ∼ 5% of the
total variance. Instead of using singular values to determine
the significance of each mode, we selected the number of
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modes and lead–lags to retain by evaluating the skill to recon-
struct TAU. This approach was motivated by the interest of
this study to detect Ekman upwelling, which involves covari-
ation of SST, CHL, and TAU and our inability to reconstruct
TAU directly using proxies. Reconstruction of TAU (TAUrec)
was carried out as follows:

M0 =
(
SST | CHL | TAU(0)

)
, (5)

where TAU(0) represents the columns for TAU in the original
data matrix that were replaced with zeros. Then,

Mrec = rM0VnV
T
n , (6)

Mrec =
(
SSTrec | CHLrec | TAUrec

)
, (7)

where r is a rescaling factor calculated by std(SST|CHL)
std(SSTrec|CHLrec) ,

and Vn is spatial information obtained from decomposing M
(Eq. 4) with n numbers of modes retained, where n= 1. . .5.
Note that as n is much smaller than the rank ofMrec, VnV Tn is
not the identity matrix but is better thought of as the projec-
tion ofM0 onto the leading modes ofM . As zero wind stress
is inconsistent with any of the modes Vn, multiplying M0
by this factor adds TAU variability back into the zeroed val-
ues that is more consistent with the observed SST and CHL,
which is Mrec.

We used root mean square error (RMSE) as a metric to
measure agreement between reconstructed TAU and actual
TAU:

RMSE=
√

(TAUrec−TAU)2, (8)

where [·] represents the mean of the data.
Our analysis shows that reconstruction using three modes

with no lead–lag information included provides the most sta-
ble result in predicting TAU from SST and CHL regardless
of the averaging timescale (Fig. 4). This result, and similar
results of convergence accuracy by adding more modes, sug-
gests that the first three modes (n= 3) are reliable in this and
other analyses, which will be used for the remainder of this
paper.

3.2.4 Reconstruction of principal components

We determined how well proxy records could represent
large-scale circulation patterns by means of signal recon-
struction. We focused specifically on three sites with previ-
ously published high-resolution paleoclimate records – Santa
Barbara Basin, San Lazaro Basin, and Guaymas Basin – and
two environmental variables, SST and productivity (Goni
et al., 2006; Abella-Gutiérrez and Herguera, 2016; Zhao
et al., 2000). We carried out three different kinds of recon-
structions to address the following questions: (1) how well
does a single site or proxy record represent large-scale cir-
culation? (2) Does increasing the number of proxy records

and/or sites improve the skill to represent modes extracted
from EEOF analysis? (3) Does increasing the number of
proxy records and/or sites improve the skill to reconstruct
the original dataset? This was achieved by first only retain-
ing the target time series (i.e., those proxy records that are to
be included) from the location in Mtar:

Mtar =

0 · · · · · · tar1,j · · · 0
...

. . .
...

...
. . .

...

0 · · · · · · tarm,j · · · 0

 . (9)

We reconstructed the temporal evolution of each mode by
Eq. (10) using only the targeted proxy records and n EEOF
modes:

Urec = rsMtar(SnV Tn )−1. (10)

We reconstructed the dataset with Eq. (11):

Mrec = rsMtarVnV
T
n = UrecSnV

T
n VnV

T
n , (11)

where Urec represents reconstructed PCs, rs is the ratio be-
tween the standard deviation of time series from target site(s)
and the standard deviation of the reconstructed time series
from target site(s), Sn and Vn were derived from Eq. (4), and
n is the number of modes retained for analyses. In this sce-
nario, only the parts of Vn associated with the target location
were retained for reconstruction. The pseudo-inversion of
the matrix SnV Tn was done using a Moore–Penrose pseudo-
inverse, which amounts to inverting only the non-singular de-
grees of freedom, while zeroing out the remaining modes.
Similarly, the multiplication ofMtar by VnV Tn considers only
the projection of Mtar onto the n retained modes (VV T is
the identity matrix, but if only some modes are retained,
then only V Tn Vn is an identity but over the smaller dimen-
sional space spanned by the retained modes). By retaining
one mode (n= 1) and limiting the proxy record used in Mtar
to one, Eqs. (10) and (11) can be used to addressed the ability
of using a proxy record at a single location to represent large-
scale circulation, which is represented by EEOF1. Similarly,
by retaining three modes (n= 3), Eqs. (10) and (11) can be
used to evaluate the effects of increasing the number of proxy
records to reconstruct modes extracted from EEOF analysis
and the original dataset.

4 Results and discussion

4.1 Does the dominant covarying pattern reflect Ekman
upwelling?

EEOF analysis of daily-resolution data displays spatial pat-
terns that are distinct from what would be expected from Ek-
man upwelling. By computing cross-shore (the difference di-
vided by its arc length at locations 25.375◦ N, 112.875◦W
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Figure 4. Root mean square error of reconstructed wind stress with respect to actual wind stress using (a) daily data, (b) 7 d averaged data,
(c) 30 d averaged data, (d) 90 d averaged data, and (e) 365 d averaged data.

and 22.875◦ N, 120.625◦W) and meridional gradients (the
difference divided by its arc length at locations 34.375◦ N,
120.625◦W and 22.875◦ N, 120.625◦W) and comparing
them, we find the TAU and CHL display a weak cross-shore
gradient compared to their own respective meridional gradi-
ent. On the other hand, SST exhibits a meridional gradient
that is stronger than its cross-shore gradient (Fig. 5). These
patterns remain dominant when 30 and 365 d averaged data
were used.

The fact that EEOF1 does not resemble an Ekman up-
welling pattern has two major implications. First, this implies
that wind stress is not the only forcing that drives CHL and
SST changes along EBUSs. Previous studies have reported
different mechanisms that could control changes in CHL
or SST along EBUSs on various timescales. For instance,
changes in subsurface nutrient concentration and sources
have been shown to alter primary productivity (Chhak and
Di Lorenzo, 2007; Rykaczewski and Dunne, 2010), whereas
surface heat flux has been shown to exert a dominant control
on sea surface temperature in the California Current System
(Di Lorenzo et al., 2005). Our study confirms these results
and further iterates the importance of considering different
factors that could affect CHL and SST along EBUSs, which
are often used as indicators for changes in Ekman-driven up-
welling. Second, paleoclimate reconstructions in the SCCS
will be unlikely to reflect Ekman upwelling, in contrast to the
common paradigm in the field, and couplings observed be-
tween proxy reconstructions of SST and productivity likely
capture other processes.

4.2 Can time-averaged proxies be used to reconstruct
Ekman upwelling?

Even though the dominant covarying pattern does not reflect
Ekman upwelling, the EEOF method allows us to decompose
multiple covarying patterns for analysis. Our results suggest
that EEOF2 and EEOF3 resemble an Ekman upwelling pat-
tern on daily timescales, but they reflect upwelling at dif-
ferent locations (Figs. 6–7). Specifically, EEOF2 depicts up-
welling conditions off Baja California, whereas EEOF3 re-
flects upwelling or other rapid changes in conditions at the
Sea of Cortez. This presents an opportunity to understand
whether time-averaged proxies can be used to reconstruct
Ekman upwelling given optimal site selection.

Visual comparison of EEOF2 and EEOF3 patterns across
different averaging windows suggests that these patterns
change with respect to the averaging window. For both EE-
OFs, their patterns resemble Ekman upwelling when data
with daily resolution are used. These Ekman-upwelling-like
patterns disappear when 365 d averaged data are used instead
and only spatially incoherent structures are retained (bottom
rows in Figs. 6i–l and 7i–l). The disappearance of an Ekman
upwelling pattern suggests that either Ekman upwelling is
a subannual process and/or that this process is not a domi-
nant feature on an annual timescale. We further analyze the
changes in temporal scale by comparing 30 and 365 d av-
erages of the principal component derived using daily data
with principal components derived from 30 and 365 d aver-
age data. The averages of the principal component derived
using daily data represent the assumption that the same dy-
namical process happen at all timescales, whereas the princi-
pal components derived from averaged data represent the ac-
tual covarying pattern on the timescale of interest. Our results
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Figure 5. EEOF1 spatial and temporal patterns of TAU, CHL, and SST using (a–d) daily, (e–h) 30 d averaged, and (i–l) 365 d averaged data.
Stars in the spatial pattern plots indicate locations where the differences were taken to compute cross-shore and meridional gradients. 30 d
mean (green) and 365 d mean (purple) time series were derived from averaging 1 d average PC1. The correlation coefficient indicates how
well the time mean of 1 d average PC tracks the PC of the time-averaged data.

Figure 6. EEOF2 spatial and temporal patterns of TAU, CHL, and SST using (a–d) daily, (e–h) 30 d averaged, and (i–l) 365 d averaged data.
Stars in the spatial pattern plots indicate locations where the differences were taken to compute cross-shore and meridional gradients. 30 d
mean (green) and 365 d mean (purple) time series were derived from averaging 1 d average PC2. The correlation coefficient indicates how
well the time mean of 1 d average PC tracks the PC of the time-averaged data.
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Figure 7. EEOF3 spatial and temporal patterns of TAU, CHL, and SST using (a–d) daily, (e–h) 30 d averaged, and (i–l) 365 d averaged data.
Stars in the spatial pattern plots indicate locations where the differences were taken to compute cross-shore and meridional gradients. 30 d
mean (green) and 365 d mean (purple) time series were derived from averaging 1 d average PC3. The correlation coefficient indicates how
well the time mean of 1 d average PC tracks the PC of the time-averaged data.

show that the 30 and 365 d means of PC2 and PC3 derived
from daily data do not always track the principal compo-
nents derived from time-averaged data (Figs. 6h, l and 7h, l).
While it is not possible to diagnose the underlying cause us-
ing our method, these results imply that marine sedimentary
records, which generally integrate over the annual cycle, can-
not capture Ekman upwelling variations in this region. Fur-
thermore, these results highlight the importance of consider-
ing what timescales are reflected in the proxy record. On the
assumption that some proxies are seasonally biased (e.g., “in-
tegrated production temperature” applied to the interpreta-
tion of alkenone paleotemperature estimates by Conte et al.,
1992) we add a sine-weighting function (maximum in March
and minimum in September) to the 30 d averaged dataset and
reanalyze the resulting EEOF pattern. We find that the pattern
is similar to the one without weighting (not shown). This sug-
gests that the seasonal cycle does not dominate the resulting
EEOF patterns over this spatial and temporal domain.

4.3 Are there benefits to analyzing records from multiple
sites?

Since an upwelling pattern is only observed in the analysis
using daily and 30 d averaged data, we focus on assessing
the potential benefits of analyzing records from multiple sites
on 30 d (∼ monthly) data. We acknowledge that most sed-
imentary records integrate over an annual cycle. However,

since we cannot recover the upwelling pattern in the first
three modes when using 365 d averaged data, we consider an
idealized situation instead in which proxy records integrate
climate information on an approximately monthly timescale.

With only a single proxy-type measurement from one site,
one can only assume it reflects the dominant large-scale cir-
culation pattern of that area (represented by EEOF1–PC1 in
this case). However, comparisons between PC1 and recon-
structed PC1s based on a variable from one site show that the
ability to recover the dominant pattern depends on the loca-
tion and variable (Fig. 8). This varying relationship suggests
that small-scale processes can drive variability at a proxy site,
which can lead to behavior that is different from large-scale
circulation. Therefore, caution is needed when trying to ex-
trapolate variability in a single proxy record from one pale-
oclimate site to infer large-scale circulation changes. Never-
theless, in the absence of additional sites available to recover
sediment cores, we find that measuring multiple variables of-
ten leads to better constraint of large-scale climate variability
(Fig. 9a).

Multiple drilling expeditions in the SCCS have recovered
cores from different locations, which allows us to determine
whether there are benefits to analyzing records from multiple
sites. With multiple sites available, we can potentially recon-
struct different patterns of large-scale variability (Figs. 5–7).
In the case of 30 d averaged data, a multiple-site-based re-
construction allows us to reconstruct spatiotemporal patterns
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Figure 8. (a–d) Best, (e–h) median, and (i–l) worst PC1 reconstruction spatial RMSE and time series using only one variable from one site.
The white marker indicates the site used in that reconstruction, with the circle indicating SST and the square indicating CHL. The means of
both time series were removed for visualization purposes.

that are associated with Ekman-driven upwelling (Fig. 9).
There is also a tendency of increasing reconstruction skill
when more sites and proxies are used. Therefore, there is po-
tential to recover multiple covarying patterns that are driven
by different dynamics.

Adding reconstruction sites and variables analyzed can
also potentially improve the ability to reconstruct spatiotem-
poral variability in the spatial domain analyzed. This has
been shown in other pseudo-proxy experiments that con-
cern hemispheric reconstruction (e.g., Wang et al., 2014).
Although our reconstruction technique is rather simple com-
pared to commonly used climate field reconstruction tech-
niques in pseudo-proxy experiments and other reconstruc-
tions (e.g., Wang et al., 2014), we show that similar results
emerge, wherein an increasing number of sites and/or vari-
ables can help better reconstruct full field data that contain
multiple variables (Fig. 10; Eq. 3). Therefore, these results
together argue for the notion of using multiple sites and prox-
ies for paleoclimate reconstruction.

4.4 Implications

While this study only focuses on the case of Ekman up-
welling in the SCCS, it has general implications for paleocli-
mate studies. First, our analysis provides empirical evidence
that it is important to consider the spatial representativeness

of a proxy record. This calls for careful interpretation in each
proxy record developed in order to avoid over simplifica-
tion and over-interpretation of the climate system. Second,
we demonstrate that depending on time averaging and the
timescale of interest, mechanisms such as Ekman upwelling
might or might not be an important process that drives vari-
ability in proxy records. Therefore, it is also important to
understand whether the proxies applied and the record are
able to resolve the timescales at which the mechanism of in-
terest dominates (e.g., El Niño–Southern Oscillation on in-
terannual timescale). Third, we show that analyzing differ-
ent proxy records from multiple sites can help us reconstruct
multiple covarying patterns and improve climate field recon-
struction. Last, we propose and demonstrate a multivariate
method that allows us to test the assumptions regarding spa-
tial and temporal sampling. We expect that this method can
also be easily applied to other regions to provide a 1st-order
constraint on how the proxy records can be interpreted.

4.5 Limitations

There are multiple limitations that have to be taken into ac-
count when applying the results from this analysis to a paleo-
climate context. Firstly, our analysis is only based on 7 years
of instrumental data. It is possible that the patterns estab-
lished in this study are only applicable to the years analyzed
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Figure 9. Correlation coefficient between reconstructed and actual (a) PC1, (b) PC2, and (c) PC3 temporal pattern using 30 d averaged
data with varying numbers of time series from the target sites. Also shown are the best, median, worst, and original temporal pattern
reconstructions (ranked by correlation with the original PC) of (d) PC1, (e) PC2, and (f) PC3.

Figure 10. Full data reconstruction RMSE using different numbers
of time series as input for reconstruction.

due to potential nonstationary covarying relationships be-
tween the variables analyzed. Furthermore, the short length
of the instrumental records does not allow us to assess the
impacts of basin-scale low-frequency climate variability.

Secondly, our analysis assumes that signals from proxy
records can capture surface ocean conditions perfectly and
are free from other noise. This assumption is certainly vi-
olated, with multiple studies pointing to different sources of
uncertainties in sedimentary records (e.g., Dolman and Laep-
ple, 2018). Nevertheless, our analysis provides an idealized
scenario to understand assumptions associated with spatial

and temporal sampling and marks an important step toward
better interpreting paleoclimate records.

Thirdly, the utilization of a chlorophyll satellite product
assumes that chlorophyll is related to primary productiv-
ity, which in turn is related to export productivity, a vari-
able that is believed to be captured by proxies. While the
first assumption that chlorophyll and primary productivity
are related is probably accurate on 1st order (Henson et al.,
2010), the relationship between primary productivity and ex-
port productivity is less trivial. Previous studies have identi-
fied a general relationship between export productivity, ma-
rine productivity, and sea surface temperature (Dunne et al.,
2005; Laws et al., 2011). Sediment trap studies done in the
Santa Barbara and Guaymas basins generally show a sim-
ilar pattern (Thunell et al., 1994; Thunell, 1998), with ex-
port production correlated positively with primary produc-
tivity (organic carbon and opal in the Santa Barbara Basin;
opal in the Guaymas Basin). However, a discontinuous sedi-
ment trap study done in the San Lazaro Basin suggested pro-
ductivity driven by remineralization during El Niño, which
resulted low export productivity despite high productivity
(Silverberg et al., 2004). This highlights the potential com-
plexity in plankton communities along a continental margin,
which can experience both eutrophic and oligotrophic condi-
tions. In fact, Dunne et al. (2005) examined the proposed pa-
rameterization by synthesizing different sediment trap sites
and showed that the positive relationship between primary
productivity and export productivity works in a global sense
but not small scales. Furthermore, many studies have high-
lighted other factors to consider when considering export
production, for instance particle size, ballasting effects, rem-
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ineralization, eddy subduction, and mixed layer pumping
(Lam and Marchal, 2015; Boyd et al., 2019, and references
therein). Hence, more dedicated experiments are needed in
order to establish a quantitative relationship between the
chlorophyll data used here and paleo-productivity records.

Fourthly, we assume that each statistical mode retrieved
in this study is tied to a dynamical mechanism. However,
previous studies have cautioned against such interpretations
(e.g., Hannachi et al., 2007). Nevertheless, our study does
not aim to diagnose Ekman upwelling processes but simply
aims to determine whether it is possible to recover Ekman-
upwelling-related patterns in proxy records. Hence, we argue
that the distinction between a dynamical mode and statistical
mode does not undermine our results.

Lastly, our multiple-record analysis assumes that proxy
records contain perfect age models. In most cases, this as-
sumption is also invalid. It is inevitable that each sedimen-
tary record contains absolute age uncertainties. Therefore,
using marine sedimentary records for a multi-site proxy re-
construction with a high temporal resolution is more chal-
lenging and might yield a different conclusion than ours.

5 Conclusions

This study aimed to evaluate assumptions commonly made
in paleoclimate studies: (1) a certain mechanism operates
in the past on all timescales of interest, and (2) large-scale
phenomena can explain the most variance in a small lo-
cation (i.e., a paleoclimate site). We tested these assump-
tions by focusing on the Southern California Current Sys-
tem and used observational records to understand whether
it is possible to reconstruct Ekman upwelling using multi-
ple sedimentary records. We introduced an extended empiri-
cal orthogonal function framework and applied it to satellite
records to make inferences about paleoclimate records. Our
results indicate that the dominant TAU, CHL, and SST co-
varying pattern does not resemble Ekman upwelling. In ad-
dition, the relationship between these variables appears to
depend on timescales and spatial scales. A positive result
is that our analysis suggests that a few sediment sites can
monitor large-scale fields associated with the Southern Cali-
fornia Current. Lastly, we highlight the potential benefits of
using multiple proxy records to understand different large-
scale covarying patterns. Our study suggests that instrumen-
tal records are helpful for testing assumptions in paleoclima-
tology and the associated spatial- and temporal-scale extrap-
olations made based on paleoclimate reconstructions. Test-
ing these assumptions might help us better interpret proxy
records and understand past climate changes.
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