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Abstract. Data assimilation has been adapted in paleoclima-
tology to reconstruct past climate states. A key component
of some assimilation systems is the background-error covari-
ance matrix, which controls how the information from ob-
servations spreads into the model space. In ensemble-based
approaches, the background-error covariance matrix can be
estimated from the ensemble. Due to the usually limited en-
semble size, the background-error covariance matrix is sub-
ject to the so-called sampling error. We test different meth-
ods to reduce the effect of sampling error in a published
paleoclimate data assimilation setup. For this purpose, we
conduct a set of experiments, where we assimilate early in-
strumental data and proxy records stored in trees, to inves-
tigate the effect of (1) the applied localization function and
localization length scale; (2) multiplicative and additive in-
flation techniques; (3) temporal localization of monthly data,
which applies if several time steps are estimated together in
the same assimilation window. We find that the estimation
of the background-error covariance matrix can be improved
by additive inflation where the background-error covariance
matrix is not only calculated from the sample covariance but
blended with a climatological covariance matrix. Implement-
ing a temporal localization for monthly resolved data also led
to a better reconstruction.

1 Introduction

Estimating the state of the atmosphere in the past is im-
portant to enhance our understanding of the natural cli-
mate variability, the underlying mechanisms of past climate

changes and their impacts. To infer past climate states, two
basic sources of information are available: observations and
numerical models. Climate models constrained with real-
istic, time-dependent external forcings provide fields that
are consistent with these forcings and the model physics.
Observations can be instrumental meteorological measure-
ments, which are mainly available from the mid-19th century.
Prior to this time, information from proxies stored in natu-
ral archives (like trees, speleothems, marine sediments, ice
cores) or documentary data can be exploited. Observations
provide important local information; however, their spatial
and temporal coverage is sparse.

In recent years, a novel technique, the data assimilation
(DA) approach, has been adapted for paleoclimatological
research. DA creates a framework to combine information
from different sources. If information from observations is
optimally blended with climate model simulations, the re-
sult is the best estimate of the climatic state, given the ob-
servations, given the external forcings and given the known
climate physics. The field of paleoclimate data assimilation
(PDA) has undergone profound developments, and many DA
techniques have been implemented to reconstruct past cli-
mate states, such as forcing singular vectors and pattern
nudging (Widmann et al., 2010), selection of ensemble mem-
bers (Goosse et al., 2006; Matsikaris et al., 2015), particle fil-
ters (e.g., Goosse et al., 2010), the variation approach (Geb-
hardt et al., 2008), the Kalman filter and its modifications
(e.g., Bhend et al., 2012; Hakim et al., 2016; Franke et al.,
2017a; Steiger et al., 2018). However, there are still unre-
solved problems and thus a need for improvements of how to
best combine observations with climate model simulations.
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One popular DA method is the Kalman filter (KF; Kalman,
1960). In standard applications, the processes of the KF can
be summarized in two main steps (Ide et al., 1997). In the
update step, the background state and the uncertainty of the
background state provided by the model simulation are ad-
justed by assimilating new observations. In the forecast step,
the updated state, called the analysis, and the uncertainty of
the analysis are propagated forward in time. These processes
are repeated when new observations become available. How-
ever, in PDA, the forecast step is usually neglected; that is,
the filter is used offline (e.g., Franke et al., 2017a). Because
the process is not cycled, the background state is obtained
from a precomputed model simulation. In some previous
PDA studies, the background state is constructed once from
the model simulation, and later, the same state is used in ev-
ery assimilation window (Steiger et al., 2018, and references
therein); we refer to them as stationary (forcing-independent)
offline DA methods. In other PDA studies, the background
state is specific for the current assimilation window; that is,
the state changes in each assimilation window according to
the forcings (Bhend et al., 2012; Franke et al., 2017a); we
call them transient (forcing-dependent) offline DA methods.

An essential component of the KF is the uncertainty of
the background state. In ensemble-based approaches, an
ensemble of the background state provides estimation of
the truth, represented by the ensemble mean, and the per-
turbations from the mean are used to estimate the uncer-
tainty, represented by the background-error covariance ma-
trix. Ensemble-based KFs are approximations of the KF, be-
cause the true state is usually sampled with a few tens to a
few hundreds of ensemble members. The limited ensemble
size leads to errors in the estimation of the background-error
covariance matrix. This effect is known as the sampling error.

Two methods are commonly used in online ensemble-
based KF approaches to reduce the negative effect of sam-
pling error: inflation (e.g., Anderson and Anderson, 1999)
and localization (e.g., Hamill et al., 2001) of the background-
error covariance matrix. A simple inflation technique is
the multiplicative inflation (Anderson and Anderson, 1999),
which compensates for potential underestimation of the anal-
ysis error. Multiplicative inflation helps to maintain a more
realistic distribution of the ensemble members by increas-
ing the deviation of the members from the ensemble mean
at each DA cycle (Anderson and Anderson, 1999). However,
the underestimation of the analysis error is of minor impor-
tance in offline approaches, because the ensemble members
are not propagated forward in time. Covariance inflation, be-
sides reducing the sampling error, can also account for under-
estimated model error. In the additive inflation technique, the
covariances are inflated by, e.g., adding an additional error
term to the background-error covariances (Houtekamer et al.,
2005). Covariance localization removes long-range spurious
covariances in the background-error covariance matrix that
occur by chance due to a limited sample size. Several local-
ization techniques have been proposed, from a simple cut-off

radius approach (Houtekamer and Mitchell, 1998) to more
sophisticated ones (Houtekamer and Mitchell, 2001; Hamill
et al., 2001). By applying covariance localization methods,
the elements of the background-error covariance matrix are
modified, and in the standard approach the covariances are
forced to approach zero at a certain separation length from
the location of the observation. This is achieved by multi-
plying the background-error covariance matrix element-wise
with a distance-dependent function. In practice, this function
is often estimated by a Gaussian localization function, rec-
ommended by Gaspari and Cohn (1999).

In stationary offline PDA studies, the time-dependent
background-error covariance matrix is replaced by a constant
covariance matrix (e.g., Steiger et al., 2014). By using a con-
stant background-error covariance matrix in the update step,
the dependence on the climate state is lost. However, it is pos-
sible to estimate the covariance matrix from a much larger
ensemble size, which reduces the sampling error. If the con-
stant covariance matrix is built from a large enough sample
size, representing different climate states, it can be success-
fully used in the assimilation process (Steiger et al., 2014).

Covariance inflation and localization techniques are used
and under improvement in weather forecasting (e.g., Bowler
et al., 2017), but have not yet been sufficiently explored
for PDA. In this paper, we discuss three possibilities to im-
prove the estimates of background error, relevant to our PDA
method:

– The first possibility involves using a two-dimensional
multivariate Gaussian function as a horizontal localiza-
tion function to test the hypothesis of longer correlation
length scales in zonal than meridional direction.

– The second method is by applying covariance infla-
tion techniques. In the multiplicative inflation tech-
nique, a constant factor is used to inflate the deviations
from the ensemble mean. In the additive method, the
background-error covariance matrix is calculated as the
sum of the sample covariance matrix plus a climatolog-
ical background matrix, where the climatological back-
ground is based on all ensemble members of multiple
years. This larger sample size decreases the chances of
spurious correlations.

– The third possibility is adding temporal localization to
the background-error covariance matrix. Multiple time
steps are combined in one assimilation window to ef-
ficiently assimilate seasonal paleoclimate data. In the
case of monthly observations, covariances between the
months have been used to update all 6 months (Franke
et al., 2017a).

This paper is structured as follows: an overview of our
PDA approach, introducing the model, the observational net-
work and the offline DA technique is given in Sect. 2. Sec-
tion 3 describes the experimental framework. In Sect. 4, the
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results are presented and each experiment followed directly
by a discussion. We summarize our experiments in Sect. 5.

2 Ensemble Kalman fitting framework

2.1 Model simulation: CCC400

We start from an existing DA system, which is described
in Bhend et al. (2012) and Franke et al. (2017a). We use
the same atmospheric model simulation as in the previous
studies. The model simulation, termed as Chemical Climate
Change over the Past 400 years (CCC400), has 30 ensemble
members that are used as background to reconstruct monthly
climate states between 1600 and 2005. Simulations were per-
formed with the ECHAM5.4 climate model (Roeckner et al.,
2003) at a resolution of T63 with 31 levels in the vertical. The
30 ensemble members were forced and driven with the same
external forcings and with the same boundary conditions. For
sea-surface temperatures (SSTs), which have a particularly
large effect on the simulations, the reconstruction by Mann
et al. (2009) was used. At the time when the model simula-
tion was run, this was the only available global gridded SST
reconstruction that dated back until 1600. The surface tem-
perature reconstruction by Mann et al. (2009) is based on
a multiproxy network and was produced by a climate field
reconstruction method. The SST reconstruction by design
captures interdecadal variations (Mann et al., 2009); hence,
intra-annual variability dependent on a El Niño–Southern
Oscillation reconstructions (Cook et al., 2008) was added to
the SST fields. Further forcings include solar irradiance, vol-
canic activity and greenhouse gas concentrations (for more
details, see Bhend et al., 2012; Franke et al., 2017a). The
land-use reconstruction by Pongratz et al. (2008) was used
to derive the land-surface parameters. The 6-hourly output
fields provided by the model were transformed to monthly
means. To reduce the computational burden, only every sec-
ond grid point in latitude and longitude was selected. We
limit the analysis in this study to 2 m temperature, precipi-
tation and sea-level pressure.

2.2 Observational network

In this study, we use the same observational network of tree-
ring proxies, documentary data and early instrumental mea-
surements as described in Franke et al. (2017a) (Fig. 1), but
we only assimilate tree-ring proxies and instrumental data.
The temporal resolution of the instrumental air temperature
and sea-level pressure measurements is monthly. The tree-
ring proxy records have annual resolution. Trees respond to
a locally varying growing seasons. We consider temperature
from May to August and precipitation from April to June to
possibly affect tree-ring width data. The maximum latewood
density proxies were considered to be affected by temper-
ature over May until August. The observations were qual-
ity checked before the assimilation, and outliers which were

more than 5 standard deviations away from the calculated 71-
year running mean were discarded, both for instrumental and
proxy data.

2.3 Assimilation method

In our paleoclimate reconstruction, we combine the CCC400
model simulation with the observations as described above
by implementing a modified version of the ensemble square
root filter (EnSRF; Whitaker and Hamill, 2002). This
ensemble-based DA method is called ensemble Kalman fit-
ting (EKF; Franke et al., 2017a). In fact, the EKF is an of-
fline version of the EnSRF, and the update step of the EKF
remains the same as of the EnSRF. EKF is described in more
detail in Bhend et al. (2012) and Franke et al. (2017a). Here,
we shortly highlight the most important aspects of the EKF.
The update step in the EnSRF scheme has two parts: updat-
ing the mean (x), and for each member, the deviation from
the mean (x′). They are calculated as

xa
= xb

+K
(
y−Hxb

)
(1)

x′a = x′b+ K̃
(

Hx′b
)
, (2)

where K and K̃ are

K= PbHT
(

HPbHT
+R

)−1
(3)

K̃= PbHT

((√
HPbHT +R

)−1
)T

×

(√
HPbHT +R+

√
R
)−1

. (4)

The background state vector (xb) contains the variables of in-
terest from CCC400 (Table 1). In the EKF, the length of the
assimilation window is 6 months (October–March and April–
September), which was adapted to the Southern and North-
ern Hemisphere growing seasons to effectively incorporate
the proxy records stored in trees. Due to the 6-monthly as-
similation window, xb contains the variables of 6 months. xa

stands for the analysis state vector. H is the forward operator
that maps the model state to the observation space (here, it is
linear). H differs depending on the type of observation being
assimilated. In the case of tree-ring width data, H extracts
temperature between May and August and precipitation be-
tween April and June from the model; these fields are trans-
formed to observational space by using a multiple regression
approach (for more details, see Franke et al., 2017a). y repre-
sents the observations. K is the Kalman gain matrix, and K̃ is
the reduced Kalman gain matrix. Pb is the background-error
covariance matrix, estimated from the 30 ensemble mem-
bers. A common assumption is to treat the observation-error
covariance matrix (R) as a diagonal matrix: it is presumed
that the elements of R are uncorrelated. Therefore, the ob-
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Figure 1. The observational network in 1904, before the quality check.

Table 1. Defined localization length scale parameters.

Variable Localization length scale (km)

Temperature (2 m) 1500
Precipitation 450
Sea-level pressure 2700

servations can be processed serially. We set the error vari-
ances of instrumental temperature observations to 0.9 K2 and
of instrumental pressure data to 10 hPa2. The error variances
are rough estimates that include, for instance, measurement
uncertainties, temporal inhomogeneities and the fact that a
station is not representative for a grid cell (see Frei, 2014;
Franke et al., 2017a). The errors of tree-ring proxy data are
calculated as the variance of the multiple regression residu-
als of the H operator. The assimilation is conducted on the
anomaly level: we subtract both from model and from obser-
vational data their 71-year running mean in order to deal with
the biases related to systematic model errors and inconsistent
low-frequency variability in the paleoclimate data.

The use of DA in an offline manner is typical in paleo-
climate reconstructions (e.g., Dee et al., 2016). Bhend et al.
(2012) argue that the assimilation step is too long for ini-
tial conditions to matter, whereas there is some predictabil-
ity from the boundary conditions. In addition, Matsikaris
et al. (2015) found that both online and offline DA methods
perform similarly in their paleoclimate reconstruction setup.
Furthermore, the offline DA is advantageous as it allows us-
ing the precomputed simulations. In our case, we can use
CCC400 (Bhend et al., 2012) and test the method without
having to repeat the simulations.

2.4 Spatial localization

As R is a diagonal matrix, the EKF can be used to assimilate
the observations one by one; that is, after the first observation
is assimilated and the analysis is obtained, this analysis field
becomes the background state for the next observation (see
the arrow pointing from xa to xb on Fig. 2). This serial imple-
mentation makes the calculation of Pb simpler. H becomes a
vector (not a matrix) of the same length as xb. It is zero ev-
erywhere except for a few elements (those required to model
the observation). This translates to only a few columns of
Pb that are actually required. HPbHT and R are then scalars
(Whitaker and Hamill, 2002). This procedure also makes the
localization simpler, as it needs to be applied only to those
columns. In the original setup, the elements of Pb were mul-
tiplied (Schur product) with a distance-dependent function
(see Eq. 7 in Franke et al., 2017a). For all the variables in the
state vector, the same Gaussian function was used but with
different localization length scale parameters (Table 1). The
localization length scale parameters are defined based on the
spatial correlation of the variables in the monthly CCC400
model simulation fields. For the cross-covariances between
two variables, the smaller localization length scale of the two
variables is applied. With the serial implementation, the cal-
culation and localization of Pb is significantly simplified.

3 Experiment design

Franke et al. (2017a) produced a monthly global paleoclima-
tological data set by using the EKF method. We leave most
of the original setup unchanged and mainly focus on the es-
timation of Pb. To investigate the performance of the EKF,
some aspects involving localization and estimation of the Pb

were tested. An overview of all experiments conducted in
this study is given in Table 2. The results of the various ex-
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Figure 2. The main steps of the blending experiment in one assim-
ilation window. The blended covariance matrix Pblend is calculated
as a linear combination from the year specific and climatological
covariance matrices. The calculation of the Kalman gain (K) and
reduced Kalman gain (K̃) matrices is the same as in Eqs. (3) and (4)
except the covariance matrix is replaced with Pblend. The observa-
tion is assimilated to both state vectors and these analysis become
to the starting point for assimilating the next observation.

periments are evaluated in terms of performance measures,
which then compared to those obtained with the original
setup.

3.1 Spatial localization

In most of the studies, the localization function is imple-
mented in an isotropic manner. In the original setup, the same
horizontally isotropic localization function was used with
different localization parameters. However, such spatial sym-
metries may not be realistic. In the real atmosphere, correla-
tion lengths might be longer in the zonal than in the merid-
ional direction, due to the prevailing winds and the weaker
large-scale temperature gradients in this direction. On multi-
annual to multi-decadal timescales, multiple processes act in
the meridional direction, e.g., a widening/shrinking of the
Hadley cell, shifts of the Intertropical Convergence Zone
or changes in atmospheric modes like the Atlantic Multi-
Decadal Oscillation or the North Atlantic Oscillation. These
can shift the zonal circulation northward or southward, but
the zonal coherence will be less effected. Hence, instead of
using a circular Gaussian function, we conducted an experi-
ment with a spatially anisotropic localization function

C = exp

(
−

1
2

(
d2
z

L2
z
+
d2
m

L2
m

))
, (5)

where dz and dm are the distances from the selected grid box
in the zonal and meridional directions, respectively. Lz and
Lm are the length scale parameters used for localization in
the zonal and meridional directions, respectively. As a first
experiment, we tested a 2 : 1 ratio for Lz : Lm. We used the
values from Table 1 in the meridional direction and doubled
them in the zonal direction. Thus, the resulting localization
function has an elliptical shape.

3.2 Inflation techniques

Covariance inflation techniques are another possible method
to compensate for errors in the DA system (Whitaker et al.,
2008). The multiplicative inflation technique uses a small
factor γ (γ > 1) with which the x′b is multiplied (Anderson
and Anderson, 1999). This type of covariance inflation ac-
counts for filter divergence due to sampling error (Whitaker
and Hamill, 2002) but can be also applied to take into ac-
count system errors (Whitaker et al., 2008). We conducted
some experiments using multiplicative inflation, although in
our offline approach, filter divergence is not the main concern
as ensemble members are not propagated in time.

The other methodology that we adapt shows similarities
with the additive inflation technique (e.g., Houtekamer and
Mitchell, 2005) and with the hybrid DA scheme (e.g., Clay-
ton et al., 2013). In both methods, Pb is modified by either
adding model error (Houtekamer and Mitchell, 2005) or a
so-called climatological covariance matrix (Clayton et al.,
2013) to Pb. This has given rise to the idea of generating
a climatological ensemble in order to alleviate the effect of
the small ensemble size. In the original setup, Pb is approx-
imated from only 30 members. Here, we additionally build
a climatological state vector (xclim) from randomly selected
ensemble members from our 400-year long model simula-
tion. The number of ensemble members should be higher
than the original ensemble size, but still computationally af-
fordable. The climatological state vector is created as fol-
lows: (1) define the ensemble size (n) of xclim; (2) select n
random years between 1601 and 2005; (3) every year has 30
members from which one member is randomly selected and
kept; (4) the chosen members are combined in xclim. xclim

is randomly resampled after every second assimilation cycle.
Using xclim in the assimilation leads to increased computa-
tional cost, which partly comes from the creation of xclim.
The other time-consuming part comes from the updating of
the climatological part after each observation is assimilated
(the standard way when observations are assimilated seri-
ally). We tested numbers between 100 and 500. From xclim,
a climatological background-error covariance matrix (Pclim)
can be obtained by using the ensemble perturbations. The
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Table 2. Summary of the experiments carried out in this study. The names of the experiments indicate which settings were used in the
assimilation. Localization refers to the shape of the localization function applied on P b. γ is the multiplicative inflation factor. xclim indicates
from how many ensemble members the climatological state vector was constructed. xclimconst stands for keeping the climatological part in
the blending experiment unchanged in one October–September time window. P bloc indicates the localization length scale parameter applied
for localizing P b. β2 refers to the weight given to P clim. P climloc indicates the localization length scale parameter applied for localizing
P clim. i and p stand for instrumental-only and proxy-only observation experiments, respectively.

Name Localization γ Blending Temporal localization Obs. type

xclim xclimconst P bloc β2 (%) P climloc

original iso no no i, p
aniso aniso no no i, p
mul1.02 iso 1.02 no i
mul1.12 iso 1.12 no i
25c_PbL_PcL iso no 250 no L 25 L no i, p
50c_PbL_PcnoL iso no 250 no L 50 no no i
50c_PbL_PcL iso no 250 no L 50 L no i, p
50c_PbL_Pc2L_100m iso no 100 no L 50 2L no i
50c_PbL_Pc2L iso no 250 no L 50 2L no i, p
50c_PbL_Pc2L_500m iso no 500 no L 50 2L no i
50c_Pb1.5L_Pc1.5L iso no 250 no 1.5L 50 1.5L no i, p
50c_Pb2L_Pc2L iso no 250 no 2L 50 2L no i, p
75c_PbL_PcL iso no 250 no L 75 L no i, p
75c_PbL_Pc2L iso no 250 no L 75 2L no i, p
75c_PbL_constPc2L iso no 250 yes L 75 2L no i
100c_PcL iso no 250 no 100 L no i, p
100c_constPcL iso no 250 yes 100 L no i
temp_loc iso no yes i

background-error covariance matrix used in the blending ex-
periments (Pblend) is built as a linear combination of the sam-
ple covariance matrix (Pb) and the climatological covariance
matrix (Pclim):

Pblend
= β1Pb

+β2Pclim, (6)

where β1, β2 are the weights given to the covariance matri-
ces. The sum of the weights is unity.

Figure 2 shows the main steps of the blending assimilation
process. First, the covariance matrices were localized sepa-
rately; then, we blended them according to the given weights.
We conducted several experiments to tune the ratio between
the two covariance matrices while using different localiza-
tion length scale parameters (L) (Table 2). We used the same
L values for localizing Pb in most of our experiments to eval-
uate improvements in comparison with the original setup. For
this study, we calculated the latitudinal dependency of cor-
relation of the state variables from a bigger ensemble of the
model than in Franke et al. (2017a). The result suggested that
longer L values can be applied in the tropics and the L of
precipitation is probably too strict. Based on the rather strict
L values in the previous study and the assumption that the
covariances can be better estimated from a bigger ensemble,
we used doubled length scale parameters (2L) in some of the
experiments for localizing the climatological covariances. In
this case, the L for temperature is 3000 km, which means

that the correlation is decreased close to zero approximately
6000 km away from the observation.

Since observations are assimilated serially, we also up-
date xclim after an observation is assimilated with the same
Kalman gain matrices as xb. Thus, in the assimilation pro-
cess, we update 30+ n ensemble members.

3.3 Temporal localization

Localizing observations in time is a special feature of the
EKF due to its 6-month assimilation window. Having the
state vector in half-year format, every month within the
October–March or April–September time window is updated
by each single observation. To test whether the covariances
between a single observation and the multivariate climate
fields are correctly captured, we ran an instrumental-only ex-
periment with temporal localization. We set covariances be-
tween different months to zero.

3.4 Skill scores

The EKF method is tested with different localization func-
tions and with a set of mixed background-error covariance
matrices as described above. We have performed the experi-
ments by assimilating either only proxy records (proxy-only
experiment) or only instrumental data (instrumental-only ex-
periment). The proxy-only experiments were carried out be-
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tween 1902 and 1959, because many proxy records already
end in the 1960s, while the instrumental-only experiments
were tested over the 1902–2002 period. We separated the dif-
ferent observation types to see whether different settings per-
form better depending on the type of data being assimilated.
We do not compare proxy-only results with instrumental-
only results; hence, the difference in time periods used does
not matter; we simply use the longest possible time period.
To evaluate the reconstructions, we examined two verifica-
tion measures: correlation coefficient and reduction of error
(RE) skill score (Cook et al., 1994). We use the Climate Re-
search Unit (CRU) TS 3.10 dataset (Harris et al., 2014) for
reference in the validation process. The presented verifica-
tion measures are functions of time. Correlation is calcu-
lated between the absolute values of the ensemble mean of
the analysis and the reference series at each grid point. The
RE compares, in our case, the reconstruction with the model
simulation, both expressed as deviations from a reference.

RE= 1−
∑

(xu
i − xref

i )2∑
(xf
i − xref

i )2
, (7)

where xu is the ensemble mean of the analysis, xf is the en-
semble mean of the model background state, xref is the ref-
erence dataset, and i refers to the time step. The RE skill
scores are computed based on anomalies with respect to the
71-year running climatologies. Note that xf comes from a
forced model simulation; therefore, it already has skill com-
pared with a climatological state vector. The RE is 1 if the xu

is equal to xref. Negative RE values indicate that the back-
ground state is closer to the reference series than the analysis.

To test which experiments have significantly different skill
compared with the original skill, we carried out a permuta-
tion test following the method described in DelSole and Tip-
pett (2014). Permutation was performed 10 000 times. If the
difference between the median of the experiment and the me-
dian of the original data falls outside of the 95 % confidence
level of the interval calculated from permuted data, then the
experiment is significantly different from the original data.

In the next section, we will focus on analyzing the result
of the experiments mainly over the extratropical Northern
Hemisphere (ENH), because most of the data are located in
this region. The skill scores refer to seasonal averages of the
ensemble mean.

4 Results and discussions

4.1 Localization function

4.1.1 Results

We compared the original setup applying an isotropic local-
ization function and the experiment in which an anisotropic
localization function was used, to test whether we can obtain
a more skillful reconstruction by implementing anisotropic

localization method. As an example of the spatial reconstruc-
tion skill, we show the RE values of temperature (Fig. 3).
The figures reveal that the type of localization function only
resulted in small differences in both experiments. Nonethe-
less, there are larger areas of negative RE values (Green-
land, Siberia) with the anisotropic localization function in
the proxy-only experiment (Fig. 3). In the instrumental-only
experiment, the decrease of RE values occur in the north-
ern high latitudes and in the Tibetan Plateau in both sea-
sons (Fig. 3). To have a better overview of how the skill
scores changed, we summarize their distributions with the
help of box plots. Figure 4 shows the differences of skill
scores between the aniso experiment and the original skill for
the three variables (temperature, precipitation and sea-level
pressure) in the ENH region. In the instrumental-only exper-
iment, correlation values of temperature and sea-level pres-
sure decreased in both seasons, while for precipitation they
remained mostly unchanged. The RE values show that the
experiments with anisotropic localization function reduced
the skill of the reconstructions, but the extent of the reduction
varies with the variables and with the seasons (Fig. 4). In gen-
eral, the same holds for the proxy-only experiment (Fig. 4).

4.1.2 Discussion

In a previous ozone reconstruction study, a seasonally and
latitudinally varying localization method was tested which
mostly positively affected the analysis (Brönnimann et al.,
2013). Here, we increased the zonal distances to see if we
can use the information of the observations for a larger re-
gion. However, the verification measures are shifted more to
the negative direction. We assume that the degraded skill of
the reconstruction is due to the choice of too-long Lz; hence,
spurious correlations were not removed. Using anisotropic
localization (doubling the L values only in the zonal direc-
tion) consistently makes the reconstruction worse.

4.2 Inflation experiments

4.2.1 Results

The main problem of ensemble-based DA techniques is the
computationally affordable limited ensemble size. Due to the
finite ensemble size, the estimation of Pb suffers from sam-
pling error. Applying inflation techniques is one method to
mitigate its effect (see Sect. 3.2).

Using the multiplicative inflation method, the deviations
from the ensemble mean are multiplied with a small factor
(γ ). To find the optimal γ , a set of experiment runs is re-
quired. We used γ = 1.02 and γ = 1.12 in our experiments,
where only instrumental data were assimilated. We chose γ
from a range that was previously tested by Whitaker and
Hamill (2002). Multiplying the deviations from the ensem-
ble mean with γ = 1.02 in the assimilation process hardly
affected the skill of the reconstruction over the ENH region
(not shown). When we increased the value of γ to 1.12, the
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Figure 3. Spatial skill of temperature reconstruction presented by RE values, assimilating only instrumental data (a, b, d, e) and only
proxy records (c, f). Comparing the skill of the reconstruction using isotropic localization function (a–c) versus an anisotropic localization
function (d–f). Skill in the winter season (a, d) and in the summer season (b, e, c, f) are shown.

Figure 4. Difference between the aniso experiment and the original setup in terms of skill scores over the ENH region. Distributions of
correlation values and of RE values are on the left and right figures, respectively. Distribution of temperature (a, b), precipitation (c, d) and
sea-level pressure (e, f) are shown. Blue color indicates the instrumental-only experiment and yellow indicates the proxy-only experiment.
The midline of the box is the median. The lower (upper) border of the box is the first (third) quartile. The whiskers extend up to 1.5 times the
interquartile range; beyond these distances, the number of outliers is given under the box plots. The grid boxes were not area weighted. The
asterisk above the box indicates significant differences between the median of the experiment and the original setup.
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Figure 5. Distribution of correlation coefficients differences between the mixed background-error covariance matrix experiments and the
original setup over the ENH region. Panels (a), (d) and (g) show the skill of the reconstruction in the winter seasons, while panels (b), (c),
(e), (f), (h) and (i) show it for the summer season. The labels on the x axis indicate the experiments. Box plot, color, number and asterisk are
the same as in Fig. 4.

RE values slightly decreased (not shown). We did not carry
out further experiments since, based on the results, randomly
increasing the error in background field did not lead to im-
provement.

In the other set of experiments, we used Pblend in the up-
date equation (Eq. 6). The experiments were run with using
β2 equal to 0.25, 0.50, 0.75 and 1 to estimate the Pblend (de-
noted 25c, 50c, etc.). Besides the varying weight given to
Pclim, the applied L values on Pb and Pclim differed as well.
Three L values were used: no localization (termed “no”), ap-
plyingL values as in Table 1 (L) and doubling these numbers
(2L). Different combinations of the fraction of Pclim and L
values were termed accordingly (e.g., 50c_PbL_Pc2L).

We expect that estimating the covariances from a bigger
ensemble size (n= 100–500) instead of 30 members leads

to a more accurate background matrix. In most of our ex-
periment, n is 250. Hence, Pclim is likely less affected by
the sampling error implying that long-range spurious cor-
relations are less prominent, which makes localization less
needed. We presume that using Pblend helps to better recon-
struct areas which were characterized with lower skill score
values in the original setup and to improve the estimation of
unobserved climate variables. The reconstruction skill of the
blending experiments is always calculated from xa (Fig. 2).

For the ENH region, we present how the verification mea-
sures changed by replacing Pb with Pblend in the assimila-
tion process. We conducted an experiment without localizing
Pclim and using L values from Table 1 on Pb in the construc-
tion of Pblend. However, the skill of the reconstruction was
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Figure 6. Distribution of RE value differences between the mixed background-error covariance matrix experiments and the original setup
over the ENH region; otherwise, it is the same as in Fig. 5.

largely reduced, implying that 250 members are not enough
to avoid localization altogether (not shown).

Figures 5 and 6 show the distribution of the differences
of the skill scores between the experiments and the original
analysis for correlation coefficients and RE values, respec-
tively. Depending on the variables and the data type being
assimilated, different setups perform better. In the case of as-
similating only instrumental data, one of the largest increases
of median for temperature reconstruction was obtained from
the 100c_PcL experiment in both seasons (Figs. 5, 6). Pre-
cipitation records were not assimilated; thus, a reasonable
estimation of the cross-variable covariances is essential. The
skill of the precipitation reconstruction with the original
setup, in terms of correlation, is better than the forced simu-
lation (not shown); however, the RE values are negative over
large regions in the ENH (Fig. 7). Using Pblend in the as-
similation, with, e.g., the settings of 50c_PbL_Pc2L experi-

ment, led to more positive RE skill (Fig. 7). The biggest im-
provement, in terms of RE skill score, was found in Europe
(Fig. 7). The 50c_PbL_Pc2L analysis also has higher skill
in North-America, especially in the summer season (Fig. 7).
The skill of the sea-level pressure reconstruction also im-
proved in the 50c_PbL_Pc2L experiment (Figs. 5, 6). In the
proxy-only experiments, 75c_PbL_Pc2L is among the best
performing experiments for all the variables (Figs. 5, 6).

We also investigated the effect of the ensemble size in the
estimation of Pclim. To test whether further improvements
can be achieved by doubling the ensemble size of xclim, we
ran an experiment with the following setup: β1 and β2 are
equally weighted, and L and 2L are applied on Pb and Pclim,
respectively (Table 2). In the experiment, we assimilated only
instrumental data. The skill scores of xa (corr, RE) from the
500-ensemble-member experiment showed no marked im-
provement compared with the same experiment with 250 en-
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Figure 7. Spatial reconstruction skill of precipitation in terms of RE values, assimilating only instrumental data. Panels (a) and (b) show the
skill of the original setup, and (c) and (d) show the result of the 50c_PbL_Pc2L experiment. The skill in the winter season is presented in
panels (a) and (c), and for the summer season in panels (b) and (d).

semble members. An additional experiment was carried out
with the same setup but using only 100 ensemble members
in the construction of xclim. The verification measures of the
50c_PbL_Pc2L_100m experiment are higher than the origi-
nal one, and the distribution of the skill scores over the ENH
region is very similar to what we obtain by using 250 mem-
bers in Pclim for temperature and precipitation. However, the
sea-level pressure fields from the 50c_PbL_Pc2L experiment
have higher skill than those in the 50c_PbL_Pc2L_100m ex-
periment (not shown).

Furthermore, we conducted two experiments in which
only xb was updated after an observation was assimilated,
and xclim was kept constant in the assimilation window.
However, the ensemble members of xclim were randomly re-
selected for each year (October–September). The advantage
of this setup compared to the setup described in Sect. 3.2 is
that it is computationally less demanding since only the orig-
inal 30 members keep being updated with the observations.
In the first test, we give β2 = 0.75 weight to Pclim with 2L
values. In the second test, β2 = 1; that is, only Pclim used for
updating xb and the L values in Table 1 were applied for
the localization. By comparing the skill of the reconstruc-
tions without and with updating the climatological part, we
see that the skill scores are higher when the climatological
part is also updated with the information from the observa-
tions (Fig. 8). The only exception is the correlation values
of sea-level pressure: when keeping the climatological part
constant, they are slightly higher in both seasons (Fig. 8).
Nonetheless, by keeping the climatological part static in one
assimilation window, the experiments still outperform the
original reconstruction (Fig. 8).

4.2.2 Discussion

We have tested a number of configurations of the mixed co-
variance matrix Pblend to evaluate the effect of the sampling
error. In numerical weather predication (NWP) applications,
various methods have been designed to better estimate the
errors of the background state. In hybrid DA systems, the
advantages of variational and ensemble Kalman filter tech-
niques are combined (Hamill and Snyder, 2000; Lorenc,
2003). In another method, the background-error covariances
are obtained from an ensemble of assimilation experiments
performed by a variational assimilation system (Pereira and
Berre, 2006). In an additive inflation experiment, a term is
added to the xa to account for the errors of the DA system
(Whitaker et al., 2008).

In our implementation, Pblend is calculated from xb and
xclim. Using Pblend in the assimilation process improved on
the reconstruction performed with the original setup. The
skill scores show the largest improvement in the sea-level
pressure reconstruction. Moreover, the skill of the precipita-
tion reconstruction also improved, indicating that Pclim helps
to better estimate the cross-covariances of the background er-
rors between the variables. In general, increasing the weight
of Pclim in forming Pblend positively affected the skill of the
analysis. The 100c_PcL experiment, in which Pblend is equal
to Pclim, is similar to the DA technique used in the last millen-
nium climate reanalysis (LMR) project (Hakim et al., 2016).
In the LMR, 100 randomly chosen ensemble members form a
climatological state vector, which is used in each assimilation
window and is updated with the observations. In this study,
xclim is randomly resampled every year and primarily used in
the estimation of Pblend. The settings used in the 100c_PcL
experiment led to one of the largest increases in the me-
dian for temperature reconstruction when only instrumen-
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Figure 8. Distribution of skill scores over the ENH region. The skill of the original setup is compared with experiment 75c_PbL_constPc2L,
75c_PbL_Pc2L, 100c_constPcL and 100c_PcL. Distribution of correlation coefficients in the winter (left column) and in the summer (right
column) seasons. Distribution of RE values in the winter (left column) and in the summer (right column) seasons.

Clim. Past, 15, 1427–1441, 2019 www.clim-past.net/15/1427/2019/



V. Valler et al.: Impact of different estimations of the background-error covariance matrix 1439

Figure 9. Difference of the RE skill between the temporally localized experiment and the original setup, when only instrumental data are
assimilated. Temperature (a, b) and precipitation (c, d) differences are shown in the winter (a, c) and in the summer (b, d) seasons. The black
dots indicate the negative RE values in the temporally localized experiment.

tal measurements are assimilated. However, other settings
resulted in larger increase of median for different variables
and observation types. By applying no localization on Pclim

in the 50c_PbL_PcnoL experiment, we obtained a less skill-
ful reconstruction than by using the other two localization
schemes. The skills reduced especially over the areas where
no local observations were assimilated. Using 2L values for
localizing the covariances of Pclim in the instrumental-only
experiments resulted in higher correlation values of sea-level
pressure (50c_PbL_Pc2L) and helped to obtain higher corre-
lation scores of precipitation in summer. Among the proxy-
only experiments, 75c_PbL_Pc2L shows the largest increase
of median for pressure reconstruction. Here, pressure data
are not assimilated, and the result suggests that by applying
longer L values, the cross-variable covariances are treated
better. We tested whether the skill of the experiments per-
formed with various settings is significantly different from
the skill of the original analysis. We compared the median
value of the skill scores from the experiments and the origi-
nal data, and with most of the settings a significant difference
was obtained for all the variables. The results of the experi-
ments show that with a mixed covariance matrix implemen-
tation, a major drawback of the ensemble-based DA system,
due to the limited ensemble size, can be improved.

4.3 Localization in time

4.3.1 Results

Since 6-monthly time steps were combined in one state vec-
tor (one assimilation window), covariances between differ-

ent months also need to be considered. An additional exper-
iment was conducted in which the (localized) Pb was multi-
plied with a temporal localization function when instrumen-
tal data were assimilated. This is a specific experiment due
to the structure of EKF. The assimilation window in the EKF
is 6 months; hence, a single observation is enabled to ad-
just all the meteorological variables in xb in a half-year time
window. In the temporal localization experiment, the infor-
mation from a given observation can only modify the differ-
ent climate fields in its current month, while leaving all other
fields of the 5 months unchanged (Table 2). In general, the
skill scores indicate an improvement. The differences of RE
values between the temp_loc and original experiments are
mostly positive over the northern high-latitude areas (Fig. 9).

4.3.2 Discussion

The higher skill scores with temporal localization (Fig. 9)
indicate that the cross-covariances in time were not correctly
represented by Pb. Hence, it is likely that in the original setup
some non-physical covariances were taken into account. Ap-
plying the same assimilation scheme to another problem (es-
timating the two-dimensional ozone distribution from an en-
semble of chemistry–climate models and historical observa-
tions), Brönnimann et al. (2013) used a localization timescale
of 3 months based on empirical studies. It may be worth
considering or allowing for temporal covariance in specific
cases (e.g., in the case of ozone concentrations) which vary
on longer timescales.
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5 Conclusions

In this study, a transient offline data assimilation ap-
proach was used to test the effect of the estimation of the
background-error covariance matrix in a climate reconstruc-
tion. Several experiments were evaluated with different val-
idation measures to see which background-error covariance
matrix estimation techniques improve the skill of the recon-
struction. The evaluation of the presented techniques sug-
gests the following: (1) applying an anisotropic localization
function on the sample covariance matrix did not improve
the reconstruction; (2) most of the settings, which make use
of covariance estimates from a larger climatological sample,
result in significantly improved skills compared to an esti-
mation from the 30-member ensemble; (3) assimilating early
instrumental data with temporal localization leads to a bet-
ter analysis. To which extent the different techniques helped
in the estimation of the background-error covariance matrix
varies geographically and also depends on the climate vari-
able being reconstructed. The cross-variable covariances of
the background-error covariance matrix can provide infor-
mation from unobserved climate variables. Including clima-
tological information in the estimation of precipitation has
led to a better reconstruction, especially in Europe. Estimat-
ing sea-level pressure with the blended Pblend matrix also
improved the skill of the reconstruction. For instance, the
50c_PbL_Pc2L experiment performs constantly better than
the original setup. This study shows that results can be im-
proved by better specifying the background-error covariance
matrix. In the future, we will combine all the techniques that
lead to more skillful analyses to produce a climate recon-
struction over the last 400 years.
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