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Abstract. Previous studies show that the evolution of global
mean temperature forced by the total forcing is almost the
same as the sum of individual orbital, ice sheet, greenhouse
gas and meltwater single forcing runs in the last 12 000 years
in three independent climate models: Community Climate
System Model 3 (CCSM3), Fast Met Office/UK Universities
Simulator (FAMOUS) and Loch-Vecode-Ecbilt-Clio-Agism
Model (LOVECLIM). This validity of the linear response is
useful because it simplifies the interpretation of the climate
evolution. However, it has remained unclear if this linear re-
sponse is valid on other spatial and temporal scales and, if
valid, in what regions. Here, using a set of TraCE-21ka (Sim-
ulation of the Transient Climate of the Last 21,000 Years)
climate simulations, the spatial and temporal dependence of
the linear response of the surface temperature evolution in
the Holocene is assessed approximately using the correlation
coefficient and a linear error index. The results show that the
response of global mean temperature is almost linear on or-
bital, millennial and centennial scales in the Holocene but not
on a decadal scale. The linear response differs significantly
between the Northern Hemisphere (NH) and Southern Hemi-
sphere (SH). In the NH, the response is almost linear on a
millennial scale, while in the SH the response is almost linear
on an orbital scale. Furthermore, at regional scales, the lin-
ear responses differ substantially between the orbital, millen-

nial, centennial and decadal timescales. On an orbital scale,
the linear response is dominant for most regions, even in a
small area of a midsize country like Germany. On a millen-
nial scale, the response is still approximately linear in the NH
over many regions. Relatively, the linear response is degen-
erated somewhat over most regions in the SH. On the centen-
nial and decadal timescales, the response is no longer linear
in almost all the regions. The regions where the response is
linear on the millennial scale are mostly consistent with those
on the orbital scale, notably western Eurasian, North Africa,
subtropical North Pacific, the tropical Atlantic and the Indian
Ocean, likely causing a large signal-to-noise ratio over these
regions. This finding will be helpful for improving our under-
standing of the regional climate response to various climate
forcing factors in the Holocene, especially on orbital and mil-
lennial scales.

1 Introduction

Long-term temperature evolution in the Pleistocene is of-
ten believed to be, and therefore interpreted as being, driven
mainly by several external forcing factors, notably, orbital
forcing, greenhouse gases (GHGs), continental ice sheets and
meltwater flux forcing. (Here, we treat the coupled ocean–
atmosphere system as our climate system, such that Earth or-
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bital parameters, GHGs, meltwater discharge and continental
ice sheet are regarded as external forcing.) Implicit in this in-
terpretation is often an assumption that the response is almost
linear to the four forcing factors, that is, the temperature evo-
lution forced by the total forcing combined is approximately
the same as the sum of the temperature responses forced in-
dividually by the four forcing factors. This linear response,
if valid, simplifies the interpretation of the climate evolution
dramatically because each feature of the climate evolution
can now be attributed to those on different forcing factors.
One example is the global mean temperature evolution of
the last 21 000 years (COHMAP members, 1988; Liu et al.,
2014). It has been shown that the global mean temperature
response is almost linear to the four forcing factors above
in three independent climate models (Community Climate
System Model 3 (CCSM3), Fast Met Office/UK Universities
Simulator (FAMOUS) and Loch-Vecode-Ecbilt-Clio-Agism
Model (LOVECLIM); Fig. 2 of Liu et al., 2014) with the
temperature evolution forced by the total forcing almost the
same as the sum of those individually forced by each forc-
ing factor. Furthermore, this deglacial warming response is
forced predominantly by the increase in GHGs, with sig-
nificant contribution from the ice sheet retreat. This linear
response, however, has not been assessed quantitatively for
the climate evolution in the Holocene. The Holocene period
poses a more stringent and interesting test of the linear re-
sponse, as it removes the deglacial global warming response
that is dominated by that to increased CO2 and ice sheet re-
treating (Fig. 2a of Liu et al., 2014). An even more interesting
and practical question here is, besides the global mean tem-
perature response to the slow orbital timescale, how linear
is the response at shorter temporal scales and smaller spatial
scales, throughout the Holocene?

In general, the assessment of the linear response, in prin-
ciple, can be done in a climate model using a set of exper-
iments that are forced by the combined forcing as well as
each individual forcing. Furthermore, each forcing experi-
ment has to consist of a large number of ensemble mem-
bers. This follows because a single realization of a coupled
ocean–atmosphere model could contain strong internal cli-
mate variability on a wide range of timescales (Laepple and
Huybers, 2014), from daily variability of synoptic weather
storms (Hasselmann, 1976) to interannual variability of El
Niño (Cobb et al., 2013) and interdecadal climate variability
(Delworth and Mann, 2000), all the way to millennial cli-
mate variability (Bond et al., 1997). The ensemble mean is
therefore necessary to suppress internal variability and then
generate the truly forced response to each forcing. The good-
ness of the linear response can therefore be assessed by com-
paring the response to the total forcing with the sum of the
individual responses. One practical problem with this ensem-
ble approach is, however, the extraordinary computing costs,
especially for long experiments in more realistic, fully cou-
pled general circulation models. A more practical question
is therefore: is it possible to obtain a meaningful assessment

of the linear response using only a single realization of each
forced experiment for the Holocene, such as those in TraCE-
21ka (Simulation of the Transient Climate of the Last 21,000
Years) experiments (Liu et al., 2014).

Strictly speaking, it is impossible to disentangle the forced
response from internal variability in a single realization. This
would make the assessment of the linear response difficult.
However, it is conceivable that, if our interest is the slow
climate evolution of millennial or longer timescales in re-
sponse to the slow forcing factors such as the orbital forc-
ing, ice sheet forcing, GHGs and meltwater flux, the as-
sessment is still possible, albeit approximately, at least for
very large-scale variability. This follows because these forc-
ing factors are of long timescales and of large spatial scales;
the forced response signal should therefore also be on long
timescales and large spatial scales if the response is approx-
imately linear. An extreme example is the almost linear re-
sponse in the global temperature of the last 21 000 years
as discussed by Liu et al. (2014). In contrast, internal vari-
ability in the coupled ocean–atmosphere system tends to be
of shorter timescales (decadal to centennial) and of smaller
spatial scales, at least in the current generation of coupled
ocean–atmosphere models. This naturally leads to two ques-
tions. First, how linear is the climate response at different
spatial and temporal scales, quantitatively? Second, in what
regions does the linear response tend to dominate? The an-
swer to these questions should help improve our understand-
ing of regional climate response during the Holocene. A fur-
ther question is as follows: if the linear approximation is
valid, what is the contribution of each forcing factor in dif-
ferent regions and at different timescales. This question will
be addressed in a follow-up paper (Wan et al., 2019).

In this paper, we assess the linear response for the
Holocene temperature evolution quantitatively, using five
forced climate simulations in CCSM3 (Liu et al., 2014), with
the focus on the spatial and temporal dependence of the lin-
ear response. We will assess the linearity response to or-
bital, millennial, centennial and decadal timescales and on
global, hemispheric and regional spatial scales. The data and
methodology are given in Sect. 2. The dependence of the
linear response to spatial and temporal scales is analyzed
in Sect. 3. A summary and further discussions are given in
Sect. 4.

2 Data and methods

2.1 Data

The data are from TraCE-21ka (Liu et al., 2009, 2014),
which consists of a set of five synchronously coupled
atmosphere-ocean general circulation model simulations for
the last 21 000 years. The simulations are completed us-
ing the CCSM3 (Community Climate System Model ver-
sion 3). The simulation forced by the total forcing (experi-
ment ALL) is forced by realistic continental ice sheets, the
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Table 1. TraCE-21ka simulation experiments.

No. Experiment Forcing Time Resolution (lat× long.)

1 ORB Orbital forcing 11 000 48× 96
2 GHG GHG forcing 11 000 48× 96
3 ICE Ice sheets forcing 11 000 48× 96
4 MWF Meltwater forcing 11 000 48× 96
5 ALL Orbital + GHG + ICE sheet + meltwater forcing 11 000 48× 96

GHGs, orbital forcing and meltwater fluxes. The ice sheet is
changed approximately once every 500 years, according to
the ICE-5G reconstruction (Peltier, 2004). The atmospheric
GHG concentration is derived from the reconstruction of
Joos and Spahni (2008). The orbital forcing follows that of
Berger (1978). The coastlines at the LGM (Last Glacial Max-
imum) were also taken from the ICE-5G reconstruction and
were modified at 13.1, 12.9, 7.6 and 6.2 ka, after which the
transient simulation adopted the present-day coastlines. The
meltwater flux follows largely the reconstructed sea level and
other paleoclimate information and, in the meantime, recon-
ciles the response of Greenland temperature and AMOC (At-
lantic Meridional Overturning Circulation) strength in com-
parison with reconstructions. More information on the de-
tails of the experiment and forcing can be seen in He (2011)
or on the TraCE-21ka website http://www.cgd.ucar.edu/ccr/
TraCE/ (last access: 11 July 2019).

The transient simulation under the total climate forcing re-
produces many large-scale features of the deglacial climate
evolution consistent with the observations (Shakun et al.,
2012; Marsicek et al., 2018), suggesting a potentially reason-
able climate sensitivity in CCSM3, at global and continental
scales. In addition to the all-forcing run (ALL), there are four
individual forcing runs forced by the orbital forcing (ORB),
the continental ice sheets (ICE), the GHGs (GHG) and melt-
water forcing (MWF) (Liu et al., 2014; Table 1). In these four
experiments, only one forcing varies the same as in experi-
ment ALL, while other forcings/conditions remain the same
as at 19 ka. Therefore, this set of experiments can be used to
study the linear response of the climate to the four forcing
factors. Here, we will only examine the surface temperature
response in the Holocene (last 11 000 years).

2.2 Assessment strategy

We will use correlation and normalized root means square er-
ror (RMSE) to assess the linear response (see next subsection
for details). We note, however, that our assessment of the lin-
ear response is approximate. Before introducing the details of
the assessment method, it is useful here to make some gen-
eral comments on the linear response assessment. As pointed
out by one reviewer, strictly speaking, the assessment of the
linear response requires one to answer two questions.

Q1 How linear is the response to external forcing?

Q2 What is the relative importance of external forcing vs.
internal variability, assuming the response were linear?

Specifically, for Q1, if we denote the temperature response
to the full external forcing by TR (Fall(t)), the response to the
individual forcings by TR (Fi(t)) (with i = 1, . . .,4), and the
internal temperature variability of the five model simulations
by TI,all, TI,1, TI,2, TI,3 and TI,4, the linearity of the response
could be defined by the extent to which the total forced re-
sponse equals the sum of the individual responses or

TR(Fall(t))=
4∑
i=1

TR(Fi(t)). (1)

In our case, we only have a single member for each experi-
ment as

Tall(t)= TR (Fall(t))+ TI,all(t)

and

Ti(t)= TR (Fi(t))+ TI,i(t),

and the linearity is assessed from the correlation (and nor-
malized RMSE) between the sum of the individual exper-

iments
4∑
i=1
Ti(t) and the total forcing experiment Tall(t).

Therefore, our linearity assessment is contaminated by the
noise of internal variability. This can be seen, for example, in
the correlation as[

cor

〈
Tall(t),

4∑
i=1

〉]2

=

[〈
Tall(t),

4∑
i=1
Ti(t)

〉]2

〈Tall(t),Tall(t)〉

〈
4∑
i=1
Ti(t),

4∑
i=1
Ti(t)

〉

=

[〈
TR (Fall(t)) ,

4∑
i=1
TR (Fi (t))

〉]2

{
Var[TR (Fall(t))]+Var

[
TI,all(t)

]} { 4∑
i=1

Var[TR (Fi (t))]+
4∑
i=1

Var
[
TI,i (t)

]} .
(2)
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Here, 〈 〉 indicates covariance, and we have assumed that
the forced response TR (F∗(t)) and internal variability TI,∗
(where ∗ = all, 1, 2, 3, 4) are independent of each other;
in addition, the time series is sufficiently long, so sampling
errors are negligible. The correlation therefore depends on
the signal-to-noise ratio. If the noise (internal variability) is
large, the correlation will be much smaller than 1 even if
the response is purely linear as in Eq. (1). The only way to
suppress internal variability is to perform a large number of
ensemble simulations for each experiment. Given only one
member for each experiment, we have to be content that our
linear assessment using Eq. (2) is approximate, depending
on the signal-to-noise ratio. Related to this problem of sin-
gle member experiments, since we cannot distinguish inter-
nal variability from forced response clearly, Q2 cannot be
assessed exactly either.

In spite of these potential issues, with a single member for
each experiment, useful information can still be extracted on
linear response. Our general hypothesis is that the slow (or-
bital and millennial) and large (continental and basin) vari-
ability is composed mostly of forced signal and the faster
(centennial and shorter) and smaller variability is mostly as-
sociated with internal variability of noise. In other words, in
our set of single member of simulations, the signal-to-noise
ratio is large for slow variability but small for faster variabil-
ity. Qualitatively, this hypothesis seems reasonable. First, all
the four external forcing factors are of slow timescales and
large spatial scales; additionally, internal variability is usu-
ally weak in the coupled ocean–atmosphere system at slow
timescales and large spatial scales. Our focus is indeed the
slow variability and large scale here, so we can roughly treat
the slow and large variability in the single realization as the
signal and the linearity of the response may be assessed us-
ing Eq. (2). Second, again, because our forcing factors are of
slow timescales and large spatial scales, higher-frequency or
small-scale variability in the model should not be dominated
by the forced variability (unless the response is highly non-
linear). Therefore, high-frequency or small-scale variability
can be treated roughly as “noise”. This is consistent with the
later assessment that slow variability seems to be an approx-
imately linear response while high-frequency variability not.
Based on this hypothesis, the signal-to-noise ratio is also es-
timated using the variance of slow variability as the signal
and high-frequency variability as the noise (as in late Fig. 7).
It should be noted however that this hypothesis is qualitative
in nature. One major purpose of this paper is to give a some-
what more quantitative assessment on this hypothesis. How
slow, how large and how good will the linear response be?

Our experimental design is proper for linear response as-
sessment here. Alternatively, in another experimental setting,
individual forcing experiments are often superimposed se-
quentially one by one: for example, first the ice sheet, second
the ice sheet plus orbital forcing, third the ice sheet, orbital
and GHGs, and finally, applying all four forcings of ice sheet,
orbital, GHGs and meltwater. In this experimental design, the

full forcing response is by default the response of the sum
response after adding the four forcing factors together, and
therefore it cannot be used to assess the linearity of the re-
sponse. Nevertheless, it should be kept in mind that our four
individual forcing experiments are not designed optimally for
the study of the linear response in the Holocene. This is be-
cause, except for the variable forcing, all the other three forc-
ing factors are fixed at the 19 ka condition. As such, the mean
state is perturbed from the glacial state, instead of a Holocene
state. This may have contributed to some unknown deteriora-
tion on the linear response discussed later. Nevertheless, we
believe, our major conclusion should hold reasonably well.
This is because, partly, the response is indeed almost linear
for orbital and millennial variability as will be shown later.

2.3 Methods

We use two indices to evaluate the linear response: the tem-
poral correlation coefficient r and a normalized linear error
index Le. The correlation coefficient is calculated as

r =

n∑
t=1

(
St−St

)
×
(
Tt−Tt

)
n√

n∑
t=1

(
St−St

)2
n

√
n∑
t=1

(
Tt−Tt

)2
n

=
cov(St ,Tt )
σ (St )σ (Tt )

. (3)

Here, St =
4∑
i=1
Ti/4 is the linear sum of the temperature time

series Ti of the four single forcing experiments, Tt is the full
temperature time series in the ALL run (both at time t) and
n is the length of the time series. The overbar represents the
time mean. The correlation coefficient represents the similar-
ity of the temporal evolution between the sum response and
the ALL response. However, the correlation does not address
the magnitude of the response. Indeed, even if St and Tt has
a perfect correlation r = 1, the two time series can still dif-
fer by an arbitrary constant in their magnitudes. Therefore,
we will also use a normalized linear error index Le to evalu-
ate the magnitude of the linear response. Here, Le is defined
as the RMSE of the sum temperature response from the full
temperature response divided by the standard deviation of the
full temperature response in the ALL run:

Le =
RMSE

SD
=

√
n∑
t=1
[
(
St−St

)
−
(
Tt−Tt

)
]2

n√
n∑
t=1
[
(
Tt−Tt

)
]2

n

=
σ (St − Tt )
σ (Tt )

. (4)

In general, a large r (close to 1) and a smaller Le (close to
0) represents a better linear approximation, with r = 1 and
Le = 0 as a perfect linear response. Therefore, if r is close to
1 and Le is close to 0, we can conclude that the response is
close to linear. As noted above, with a single realization here,
our assessment of the linear response has limitations. First, if
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r is sufficiently small and Le is sufficiently large, we cannot
confirm the response is either linear or nonlinear because the
small r or large Le can also be contributed by strong inter-
nal variability. Second, if the forcing is dominated by shorter
timescale variability, say interannual to interdecadal variabil-
ity, as in the case of volcanic forcing or solar variability, it
will be difficult to assess the linear response. This because
the timescales of the forced response now overlap heavily
with strong internal climate variability in the coupled sys-
tem, and it will be difficult to separate the forced response
from internal variability without an ensemble mean.

But how to assess the goodness of the linear response from
the value of r and Le? We can test the goodness of the linear
response statistically on r and Le.

The statistical significance of r for a particular timescale
is tested using the Monte Carlo method (Kroese, 2011, 2014;
Kastner, 2010; Binder, 1997) with 1 000 000 realizations on
the corresponding red noise in the AR(1) model (autoregres-
sive model of order 1) which uses the AR(1) coefficient de-
rived from the model to generate time series. The fit uses the
lag-1 auto-correlation coefficient.

The statistical significance of the Le of a particular
timescale is tested using a bootstrap method (Efron, 1979,
1993) with 1 000 000 realizations on the corresponding time
series. Specifically, the bootstrap is done as follows, taking
the global mean temperature as example. First, we will derive
the Le from one random realization on the temperature of the
ALL run of the 100 binned data (110 points of data, each
representing a 100-year bin). For this random realization, the
order of the original temperature time series is swapped ran-
domly. Then, this realization is used as a new ALL response
for comparison with the sum response of the four individ-
ual experiments to derive a Le in Eq. (2). Since the random
realization distorts the serial correlation time with the sum
response, one should usually expect a large error Le. Sec-
ond, we repeat this process for 1 000 000 times on 1 000 000
random realizations; this will produce 1 000 000 random val-
ues of Le, forming the PDF of the Le. Third, the minimum
5 % level is then used as the 95 % confidence level.

The dependence of the linear response on spatial and tem-
poral scales will be studied by filtering the time series on
different scales. For the spatial scale, we will divide the
globe into nine successive cases, denoted by nine division
factors: f = 0, 1, 2, 3, 4, 6, 8, 12 and 24 from the largest
global scale to the smallest model grid scale. The f = 0
case is for the global average, while the f = 1 case is for
the hemispheric average in the Northern Hemisphere (NH)
and Southern Hemisphere (SH). Further division will be
done within each hemisphere. Note that each hemisphere has
96 (long.)× 24 (lat) grid boxes, with a ratio of 4 : 1 between
longitude span and latitude span. We divide each hemisphere
into f×f sections of equal latitude and longitude spans, with
each area containing the same number of (96/f )× (24/f )
grid boxes, maintaining the ratio of 4 : 1 between longitude
span and latitude span. For example, f = 2 is for the 2×2 di-

vision, with each area containing 48×12 grid boxes; f = 24
is for the 24× 24 division with each area containing 4× 1
grid boxes, about the size of 15◦(long.)× 3.75◦(lat), like the
size of a midsize country such as Spain or Germany in the
midlatitudes.

On the timescale, we decompose a full 11 000-year annual
temperature time series (from 11 to 0 ka) in 100-year bins (a
total of 110 data bins or points, each representing a 100-year
mean) into three components. The three components are to
represent the variability of, roughly, orbital, millennial and
centennial timescales. Following Marsicek et al. (2018), we
derive the orbital and millennial variability using a low-pass
filter called the locally weighted regression fits (Loess fits)
(Cleveland, 1979). First, the orbital variability is derived by
applying a 6500-year Loess fit low-pass filter to the temper-
ature time series, and it therefore contains the trend and the
slow evolution longer than∼ 6500 years. Second, we apply a
2500-year Loess fit low-pass filter onto the temperature time
series; then, we derive the millennial variability using this
2500-year low-pass data subtracting the 6500-year low-pass
data. Finally, centennial variability is derived as the differ-
ence between the 100-year binned temperature time series
and the 2500-year low-pass time series. In addition, we also
derive a decadal variability time series. First, we compile the
10-year bin time series from the original 11 000-year annual
time series (of a total of 1100 data points, each representing
a 10-year mean). Second, we apply a 100-year running mean
low-pass filter to the time series of the 10-year binned data.
Finally, decadal variability is derived by using the 10-year
binned time series minus its 100-year running mean time se-
ries.

Given the different degrees of freedom especially among
the filtered variability of different timescales, it is important
to test the goodness of the linear response statistically on r
and Le on different timescales differently. As a reference,
the significance level is tested against the global mean tem-
perature series in the ALL run. For the total, orbital, millen-
nial, centennial and decadal temperature time series, the 95 %
confidence levels are found to be 0.72 (with the AR(1) coef-
ficient 0.96), 0.76 (0.97), 0.65 (0.95), 0.21 (0.31) and 0.19
(0.06), respectively.

In this paper, this AR(1) test for global mean temperature
is also used as the common significant test for different spa-
tial scales and in different regions as well. This use of a com-
mon significance level is for simplicity here. First, the use
of different regional AR(1) coefficients for different regions
will make the comparison of the linear responses among dif-
ferent spatial scales (e.g., Figs. 3 and 4) and different re-
gions (Figs. 5 and 6) difficult. Second, except for the orbital
timescale, the AR(1) coefficient for the global mean tempera-
ture is larger than most of the regional AR(1) coefficients (not
shown), likely caused by the further suppression of internal
variability in the global mean. As a result, the global mean
AR(1) test actually serves as a more stringent test than the
local AR(1) test. At the orbital scale, the global mean AR(1)
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Figure 1. The global annual mean surface temperature time series derived from the ALL run (black) and the SUM (the sum of four single
forcing runs, red). In (a), the thin line is the 100-year binned time series; the thick line is 2500-year Loess-fitted time series. The orbital-scale
variability (b) is represented by the 6500-year Loess-fitted series. The millennial variability (c) is represented by the 2500-year Loess-fitted
data subtracting the 6500-year Loess-fitted data. The centennial variability (d) is represented by the 100-year binned data subtracting the
2500-year Loess-fitted data. The decadal variability (e) is represented by the 10-year binned origin time series subtracting its 100-year
running mean. The correlation coefficient (r) is given at the upper left corner and the linear error (Le) is given at the lower left corner of each
panel. The x axis is year (ka, 0 is 1950 CE), and the y axis is temperature anomaly (◦C, relative to 11–0 ka).

coefficient is in about the middle of the regional AR(1) co-
efficients. The uncertainly of using the global mean AR(1)
coefficient is therefore about the average of those of regional
AR(1) coefficients. Third, and, most importantly, as our first
study here, our focus is on the global features of the linear re-
sponse. The difference among the AR(1) coefficients among
different spatial scales and different regions is much smaller
than that between different timescales here. Therefore, the
global mean AR(1) can still provide an approximate guide-
line for the proper significant test at different timescales. In
later studies, if one’s focus is on a specific spatial scale and
on a specific region, the regional AR(1) should be used to
reexamine the significance test.

As a reference, the significance level ofLe is tested against
the global mean temperature series in the ALL run. For the
total, orbital, millennial, centennial and decadal temperature
time series, the 95 % confidence levels are found to be 1.23,
1.23, 1.21, 1.24 and 1.36, respectively. This suggests that
when the RMSE is less than about 1.2–1.3 times of the to-

tal response, the linear sum is not significantly different from
the total response at the 95 % confidence level. As for the Le
test, since our focus here is on the global feature of the linear
response, for simplicity, the significance level derived from
the global mean temperature is used as the common confi-
dence level for all regional scales.

3 Results

3.1 Linear responses at different temporal scales

The global mean temperature provides a useful example to
start the discussion of the dependence of the linear response
on timescales. We first examine the linear response of the
global mean temperature based on its components of orbital,
millennial, centennial and decadal variability (Fig. 1). Fig-
ure 1a is the total variability of global surface temperature
derived from the ALL run and the sum of the four individ-
ual forcing experiments. The global temperature response is
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almost linear on the orbital and millennial scales through-
out the Holocene (Fig. 1b and c). The orbital-scale evolu-
tion is characterized by a warming trend of about 1◦ from
11 ka to ∼ 4.5 ka before decreasing slightly afterwards. This
feature is captured in the linear sum, albeit with a slightly
smaller magnitude and an additional local minimum around
3 ka (Fig. 1b). The total variability is very similar to the or-
bital variability (r = 0.99, Fig. 1a vs. Fig. 1b). The millennial
variability shows five major peaks around∼ 9.8, 7.8, 4.7, 3.7
and 1.8 ka. All these peaks seem to be captured in the sum
response, albeit with a slightly larger amplitude (Fig. 1c).
For orbital and millennial variability, the correlation coeffi-
cients between the sum and the full responses are r = 0.83
and 0.71, respectively, both significant at the 95 % confidence
level and explaining over 50 % of the variance; the linear er-
rors are Le = 0.63 and 0.92, respectively, also significant at
the 95 % confidence level. It should be noted, however, that
the goodness of the linear response is based on the entire
period and is meant for the response of the timescale to be
studied. Therefore, even for a good linear response at long
timescales, the sum response may still differ from the to-
tal response significant at some particular time. For exam-
ple, for the orbital-scale response in Fig. 1b, even though
the linear response is good in terms of r and Le, there is a
1 ◦C difference between the sum and total responses at 11
and 3 ka. Therefore, for the orbital-scale response, the linear
response mainly refers to the trend-like slow response of the
comparable timescale of the orbital scale instead of some re-
sponse features of shorter timescales. Further down the scale,
at a centennial timescale, the global centennial variability
appears also to exhibit a modest linear response (Fig. 1d),
with r = 0.44 and Le = 1.21. But the linear response of the
decadal variability becomes poor (Fig. 1e), with r =−0.02
and Le = 1.99, which is not statistically significant at the
95 % confidence level. The result of the analysis of global
mean temperature is qualitatively consistent with the previ-
ous hypothesis that the linear response tends to degenerate
at a shorter temporal scale because of the smaller forced re-
sponse signal and the presence of strong internal variabil-
ity. It shows that, for global temperature, the response is ap-
proximately linear at orbital and millennial timescales but be-
comes much less so at centennial scales and fails completely
at decadal scales.

3.2 Linear responses at different spatial scales

In order to assess the linear response at different spatial
scales, we first analyze the linear response to the hemisphere
scale for the NH and SH (f = 1). It is interesting that the
linear response significantly differs between the NH and SH
(Fig. 2). Figure 2a and f are the total variability of hemi-
spheric surface temperature of the ALL response and sum
response for the NH and SH, respectively. Their components
on the four timescales (i.e., orbital, millennial, centennial
and decadal) are shown in Fig. 2b–e and 2g–j, respectively.

In the NH, the response is almost linear at the millennial
scale (r = 0.82, Le = 1.01, Fig. 2c) but not so strong on or-
bital (r = 0.55, Le = 0.84, Fig. 2b) and centennial (r = 0.32,
Le = 2.29, Fig. 2d) scales, while only Le is significant on the
orbital scale, and only r is significant on the centennial scale.
At the decadal scale, the linear response fails completely
(r =−0.04, Le = 1.99, Fig. 2e). In comparison, in the SH,
the linear response is dominant at the orbital scale (r = 0.92,
Le = 0.43, Fig. 2g) but poor on all other timescales, in-
cluding millennial (r =−0.12, Le = 2.32, Fig. 2h), centen-
nial (r = 0.14, Le = 3.19, Fig. 2i) and decadal (r = 0.03,
Le = 2.07, Fig. 2j) scales. The linear response of the global
mean temperature discussed in Fig. 1 therefore seems to be
dominated by the SH response to the orbital scale but by the
NH response to the millennial scale. This suggests that the
goodness of the linear response depends on both the region
and timescale, highlighting the need to study the linear re-
sponse at regional scales.

The linear response at different spatial scales and on the
orbital, millennial, centennial and decadal timescales is sum-
marized in Figs. 3 and 4 in the correlation coefficient and
linear error index, respectively. Figure 3a shows the correla-
tion coefficients of the orbital variability in each region for
the nine division factors. The cases of global mean (f = 0)
and hemispheric mean (f = 1) have been discussed in detail
before. The correlation coefficients for succeeding division
factors (f = 2,3, . . .,24) show several features. First, as ex-
pected, the correlation coefficient tends to decrease towards
smaller areas (larger f ). Quantitatively, however, the corre-
lation coefficient does not decrease much, such that even in
the smallest area (f = 24), the correlation in most regions
is still above 0.8, statistically significant at the 95 % con-
fidence level. This suggests that the response at the orbital
scale is almost linear over most regions, even at the small-
est scale of about a midsize country like Germany (f = 24,
15◦(long.)× 3.75◦(lat)). Second, the linear response in the
NH is slightly better than SH (for f ≥ 3), a topic to be re-
turned to later. Third, subareas in both hemispheres show a
comparable linear response across all the spatial scales, with
the median correlations all above ∼ 0.8, except that of the
NH mean temperature (f = 1). The linear response of NH is
not better than those of regional variability at smaller spatial
scales (f ≥ 2). This is opposite to the expectation that the
linear response becomes more distinct for a larger area be-
cause the average over a larger area tends to suppress internal
variability more. This case, however, seems to be a special
feature and should be treated with caution. The correlation
coefficient therefore shows that, for orbital-scale evolution,
the temperature response is dominated by the linear response
over most of the globe, even at regional scales. These features
are also consistent with the linear error analysis in Fig. 4a.

Millennial variability also shows a weaker linear response
for smaller scales, in both the correlation (Fig. 3b) and linear
error (Fig. 4b). Quantitatively, for millennial variability, the
response is still approximately linear in the NH over many re-
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Figure 2. The surface temperature time series derived from the ALL run (black) and the SUM (red). Panels (a–e) are similar to Fig. 1a–e but
for NH, and (f–j) are similar to Fig. 1a–e but for SH. The x axis is year (ka, 0 is 1950 CE), and the y axis is the temperature anomaly (◦C,
relative to 11–0 ka).

gions, albeit less so than at the orbital scale. The correlation
coefficients remain above 0.6 across most regions even at the
smallest division area (f = 24), contributing to ∼ 40 % of
the variance. In contrast to orbital variability, where regions
in both hemispheres show a comparable linear response, mil-
lennial variability shows that the response cannot be con-
firmed as linear in most regions in the SH, with the median
no longer significant at the 95 % confidence level. Similar to
the orbital variability, nevertheless, the responses are more
linear in the NH than SH on all the spatial scales.

In contrast to orbital and millennial variability, almost no
response can be confirmed as linear for centennial variabil-
ity. The median linear response is no longer significant on
the centennial timescale in either hemisphere across spatial

scales (f > 3, Figs. 3c and 4c), with few correlation coeffi-
cients larger than 0.3 and contributing less than 10 % of the
variance. Finally, decadal variability exhibits absolutely no
linear response over any spatial scales in either the NH or
SH (Figs. 3d and 4d).

The approximate linear response at the orbital and millen-
nial scales suggests that these two groups of variability are
generated predominantly by the external forcing. In contrast,
the poor linear response of centennial and decadal variabil-
ity suggests that these two groups of variability are caused
mainly by the internal coupled ocean–atmosphere processes.
This is largely consistent with our original hypothesis. It
should be kept in mind that, in our single realization here,
the poor linear response to centennial and decadal variabil-
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Figure 3. Correlation coefficient of mean surface temperature between the ALL and SUM outputs in different spatial timescales. (a) Orbital;
(b) millennial; (c) centennial; (d) decadal. The blue dots for NH, cyan dots for SH and red dots for all the correlation coefficient median on
the same global spatial scale (i.e., factor). The red line connects the median dots at all division factors. The blue (cyan) line connects the
median of all blue (cyan) dots at all division factors. The black thick dashed line is the 95 % confidence level. The black thin solid line is 0.
The x axis is division factor, and the y axis is the correlation coefficient. There are only about 10 points with the correlation coefficient lower
than −0.5 so they are ignored in (a–c).

ity may also be contributed by nonlinear responses of the
climate system. But, given the almost complete absence of
forcing variability at this short timescale in our experiments,
we do not think that the nonlinear response is the major cause
of the poor linear response here.

3.3 Pattern of the linear responses

We now further study the pattern of the linear response. Fig-
ure 5 shows the spatial patterns of the correlation coefficients
at orbital (Fig. 5a1–a3) and millennial (Fig. 5b1–b3) scales
for three representative spatial scales: f = 3, 6 and 24 (the
other factors are not shown because they are similar to the
abovementioned three representative spatial scales). For or-
bital variability (Fig. 5a1–a3), the response is almost lin-

ear in most regions in the NH on all three spatial scales,
with the correlation coefficients above 0.8. In the SH, the re-
sponse is also almost linear over the continents, except for
over Australia but is not linear over the ocean. This leads to
the significantly reduced linear response in the SH as dis-
cussed in Figs. 3a–4a. This suggests that orbital variability
is likely forced predominantly by external forcing over con-
tinents. The overall poorer linear response over ocean than
land, however, is puzzling. The orbital timescale is so long
that one would expect a similar quasi-equilibrium response
over both land and ocean surface. This issue deserves fur-
ther study in the future. More specifically, at the regional
scales, e.g., f = 6 and 24 (Fig. 5a2 and a3), the response is
almost linear over the western half of the Eurasian continent,
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Figure 4. Same as Fig. 3 but for linear error (Le, y axis). The black thick dashed line is 95 % confidence level of Le. There are only about
10 points with the Le larger than 6, so they are ignored in (a–c).

North Africa, Central and South America, most NH oceans
and SH tropical oceans, and the Antarctic continent, as seen
in Fig. 5a2 and a3 (only significant correlation coefficients
are shown). But the linear response is poor over the North
America continent and the eastern Eurasian continent, and
the entire Southern Ocean. Similar features can also be seen
in the map of linear error (not shown).

For millennial variability, in the NH, the linear response
shows a similar feature to that of orbital variability, but the
linear response is poor over almost all the SH. Figure 5b1–b3
show that the response is almost linear in most regions in the
NH at the three spatial scales, with the correlation coefficient
above 0.6. At the regional scale, e.g., f = 6 and 24 (Fig. 5b2
and b3), the response is almost linear over the northwest-

ern Eurasian continent, North Africa, northern North Amer-
ica, the northern Pacific Ocean, the southern North Atlantic
Ocean and the western Arctic Ocean, as seen in Fig. 5b2
and b3 (only significant correlation coefficients are shown).
But the linear response is poor over southern North America
and the eastern and southern Eurasian continent. While in the
SH, the linear relationship is poor over almost the entire SH
as seen in the correlation map (Fig. 5b1–b3). Interestingly,
over the NH, the regions of the linear response for millen-
nial variability are mostly consistent with the regions of the
linear response for orbital variability, notably western Eura-
sia, North Africa, the subtropical North Pacific, the tropical
Atlantic and the Indian Ocean. These preferred region of the
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Figure 5. Correlation coefficient of mean surface temperature between the ALL and SUM outputs of the two timescales (a1–a3, orbital;
b1–b3, millennial) for three representative spatial scales: f = 3, 6 and 24 (the other factors are not shown because they are similar to the
abovementioned three representative spatial scales). Only those regions significant at the 95 % confidence level are shaded in colors.

linear response potentially suggests some common mecha-
nisms of the climate response in these regions, in this model.

In order to understand the cause of the preferred regions of
the linear response, we examine the signal-to-noise ratio. As
discussed in Sect. 2.2, our forcing factors are on millennial
and orbital timescales, and the linear response is also largely
valid for orbital and millennial variability. We will therefore
use the variance of the orbital and millennial variability as a
crude estimate of the linear response signal. Similarly, since
there is no centennial and decadal forcing in our model and
the response of centennial and decadal variability is not a lin-
ear response, we use the variance of the sum of the centen-
nial and decadal variability as a rough estimate for internal
variability as the linear noise. Admittedly, this estimation is
crude, limited by the single realization here. This signal-to-
noise ratio does not directly address Q2 in Sect. 2.2 because
the timescales of the signal and noise are different. Instead,

it is used as a rough estimation of the relative magnitude of
the signal-to-noise ratio between different regions, with the
assumption that the relative noise level between different re-
gions may be not too sensitive to the timescales. Indeed, the
use of the signal-to-noise ratio here is to shed some light on
the regional preference of the linear response. Figure 6 shows
the signal-to-noise ratio for orbital and millennial variability
for the three representative spatial scales (f = 3, 6 and 24).
For orbital variability (Fig. 6a1–a3), the signal-to-noise ratio
is large (above 10(0.6), the log base 10 is taken on the signal-
to-noise ratios) in most regions in the NH. In the SH, the
signal-to-noise ratio is also large over the continents, but is
small over the ocean. At different regional scales, e.g., f = 6
and 24 (Fig. 6a2 and a3), the signal-to-noise ratio is large
over the western half of the Eurasian continent, North Africa,
Central and South America, most NH oceans and SH tropical
oceans, and the Antarctic Continent. But the signal-to-noise
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Figure 6. The signal-to-noise ratios on the orbital (a1–a3) and millennial (b1–b3) timescales derived from the ALL run. Here the signal is
used by the orbital (millennial) variability variance, and the noise is used by the sum of the centennial and decadal variabilities variance. The
numbers of 1, 2 and 3 are for the three representative spatial scales: f = 3, 6 and 24, respectively. In order to show the signal clearly, the log
base 10 is taken on the signal-to-noise ratios.

ratio is small over Canada and the eastern Eurasian conti-
nent, and the entire Southern Ocean. These spatial features
of signal-to-noise ratio on the orbital scale (Fig. 6a1–a3) are
similar to those in the correlation map (Fig. 5a1–a3). The
spatial correlation between the map of the signal-to-noise ra-
tio in Fig. 6 and the corresponding correlation coefficient in
Fig. 5 is 0.53, 0.58 and 0.49 for f = 3, 6 and 24, respectively,
as seen in the scatter diagram in Fig. 7, all significant at the
95 % confidence level.

For millennial variability, the signal-to-noise ratio also
shows a similar feature to that of orbital variability although
overall somewhat smaller (note the different color scales).
Figure 6b1–b3 show that the signal-to-noise ratio is large in
most regions in the NH in all three spatial scales, with the

signal-to-noise ratio above 10(−1) (the log base 10 is taken on
the signal-to-noise ratios). At the regional scale, e.g., f = 6
and 24 (Fig. 6b2 and b3), the signal-to-noise ratio is large
over the northwestern Eurasian continent, North Africa, cen-
tral North America, the northern North Pacific Ocean, the
North Atlantic Ocean and the Arctic Ocean. But the signal-
to-noise ratio is small over the North American continent
outside the central North America, South America, and the
eastern and southern Eurasian continent. While the signal-
to-noise ratio is small over almost the entire SH. Over the
NH, interestingly, the regions of large signal-to-noise ra-
tio for millennial variability are mostly consistent with the
regions of large signal-to-noise ratio for orbital variability,
notably northwestern Eurasia, North Africa, the subtropical
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Figure 7. Scatter diagram of the correlation coefficient and the signal-to-noise ratio (variance ratio) on the orbital (a) and millennial (b)
timescale. The log base 10 is taken on the variance ratio, as indicated in Fig. 6. Only the three representative spatial factors (f = 3, 6 and 24)
are shown in the panels. The blue stars and linear fitting line are for factor 3; the red circles and linear fitting line are for factor 6; the green
dots and linear fitting line are for factor 24. The fitting coefficients are listed in the brackets at the upper left corners of (a) in the lower left
corner of (b).

North Pacific, the North Atlantic and the tropical north Indian
Ocean. These features of the spatial pattern of signal-to-noise
ratio on the millennial scale (Fig. 6b1–b3) are similar to those
in the correlation map (Fig. 5b1–b3). The correlation coeffi-
cient between the maps of signal-to-noise ratio and correla-
tion is 0.65, 0.51 and 0.45 for f = 3, 6 and 24, respectively
(Fig. 7), again all significant at the 95 % confidence level.

4 Summary and discussions

In this paper, the linear response is assessed for the surface
temperature response to orbital forcing, GHGs, meltwater
discharge and continental ice sheet throughout the Holocene
in a coupled GCM (general circulation model; CCSM3). The
global mean temperature response is almost linear on the or-
bital, millennial and even centennial scales throughout the
Holocene but not for decadal variability (Fig. 1). Further-
more, the sum response accounts for over 50 % of the to-
tal response variance for orbital and millennial variability.
Further analysis on the regional scale suggests that the re-
sponse is approximately linear on the orbital and millennial
scales for most continental regions over the NH and SH, with
the sum response explaining over about 50 % of the total re-
sponse variance. However, the linear response is not signif-
icant over much of the ocean, especially over the ocean in
the SH. There are specific regions where the linear response
tends to be dominant, notably the western Eurasian conti-
nent, North Africa, central and South America, the Antarctic
continent, and the North Pacific. The strong linear response
is interpreted as the region of large signal-to-noise ratio. That

is, in these regions, either the orbital and millennial response
signal is large or the influence of the centennial and decadal
variability noise is small or both. This suggests that the or-
bital and millennial variability in these regions is relatively
easy to understand. This finding lays a foundation for our fur-
ther understanding of the impacts of different climate forc-
ing factors on the temperature evolution in the Holocene of
orbital and millennial timescales. This understanding is our
original motivation for this work. Further work is underway
in understanding the contribution of different forcing factors
on the temperature evolution (Wan et al., 2019).

It should be kept in mind that since there is only one mem-
ber for each experiment, we cannot separate the forced re-
sponse signal from the internal variability of noise clearly
at each timescale. Therefore, we cannot address Q1 and
Q2 raised in Sect. 2.2 accurately. Instead, our assessment is
likely contaminated by internal variability (see discussions in
Sects. 1 and 2). In particular, for smaller-scale variability, of
which internal variability is likely to be strong and the forced
signal is likely to be weak, our correlation may underesti-
mate the linearity of the response (see Eq. 2). Nevertheless,
we speculate that our results on large-scale variability still
remain robust. Furthermore, at regional scales, although the
absolute value of the linear correlation of the forced response
may be underestimated, it is possible that relative between
different regions, the linear assessment may still be some-
what valid. These speculations, however, require much fur-
ther study, especially with ensemble experiments. In spite of
its limitation, our study represents the first systematic assess-
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ment of the linear response for the Holocene and can serve
as a starting point for further studies in the future.

There are many further issues that need to be studied. Our
study here is carried out for a single variable (surface tem-
perature) in a single model (CCSM3) for the Holocene. Yet,
the linear response could differ for different variables, in dif-
ferent models, for different periods and for different sets of
forcing factors. For example, if we evaluate the precipitation
response in the Holocene in CCSM3, the response is less lin-
ear than temperature (not shown); this is expected because
the precipitation response contains more internal variability
and exhibits more nonlinear behavior than temperature. The
assessment will be also different if a different period is as-
sessed, e.g., the last 21 000 years; with a large amplitude of
climate forcing, the linear response may degenerate in the
21 000-year period. In addition, the assessment of the linear
response using only one realization will be difficult to per-
form for volcanic forcing and solar variability forcing; these
forcing factors have short timescales and therefore their im-
pacts will be difficult to separate from internal variability
without ensemble experiments. Finally, it is also important
to repeat the same assessment here in different models and to
establish the robustness of the assessment. It should also be
kept in mind that our assessment is implicitly related to the
assumption that, at millennial and orbital timescales, inter-
nal variability is not strong relative to the forced responses.
Although this seems to be consistent in our model, there is a
possibility that internal variability is severely underestimated
in the model compared to the real world (Laepple and Huy-
bers, 2014). If true, the relevance of our model assessment to
the real world will be limited. It should also be kept in mind
that, if the response is dominated by that to a single forcing,
the assessment of the linear response here becomes one that
is more relevant to the question of the forced response vs. in-
ternal variability, as discussed in Q2 in Sect. 2.2. As a further
step, though, one can examine if the magnitude of the total
response responds to the magnitude of this single forcing lin-
early.

Even in the context of this model assessment, much fur-
ther work remains. Most importantly, the purpose of testing
the linear response is for a better understanding of the physi-
cal mechanism of the climate response. It is highly desirable
to understand why the response tends to be linear in some re-
gions but not in others. In particular, it is unclear why the
linear response is preferred over land than over ocean for
orbital and millennial variability. At such a long timescale,
one would expect that the upper-ocean response has reached
quasi-equilibrium and therefore the surface temperature re-
sponse over land and over ocean should not be too different.
Ultimately, we would like to assess and understand the phys-
ical mechanism of the climate evolution in different regions.
This work is underway (Wan et al., 2019).
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