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S1 Introduction

This document provides supplemental information on the characteristics of newly devel-
oped statistical proxy system models (PSMs) for tree ring width proxies, and on additional
verification results of the updated paleoclimate reconstructions performed within the Last
Millennium Reanalysis (LMR) framework.

S2 Proxy seasonal responses

An important update to the LMR proxy modeling capabilities is the introduction of PSMs
that include a representation of proxy seasonality. Two methods for defining proxy seasonal-
ity are considered: use of the seasonal response information included in the proxy metadata,
and objectively determining the seasonal period that leads the best linear fit to the proxy
data as part of the PSM calibration procedure. Here we examine the differences between
seasonality information from these two approaches. The comparison focuses on PSMs de-
veloped for tree ring width (TRW) records as seasonality is particularly important for these
proxies (Briffa et al., 2002, 2004). TRW chronologies in our proxy database originate from
two distinct data sources, the PAGES 2k Consortium (2017) community-curated collection
and records discussed in Breitenmoser et al. (2014), as processed by Anderson et al. (2019).
The metadata describing the records in PAGES 2k Consortium (2017), including seasonality,
have been established by community experts, whereas TRW seasonality annotating the Bre-
itenmoser et al. (2014) records was defined using a simple latitude dependency (Anderson
et al., 2019). Objective seasonality is described in section 2.4 of the main text.

Figure S1 shows the overall distributions of months defining seasonal temperature re-
sponses, compiled across all TRW records and centered on the annual period the proxy
data describes. Distributions corresponding to metadata and objectively-derived seasonality
information are shown for both TRW data sets. For tree ring records in PAGES 2k Consor-
tium (2017), seasonality metadata information (Figure S1a) shows records are predominantly
characterized by a June–August (JJA), i.e. boreal summer, response to temperature, in ad-
dition to a significant proportion of trees with an annual seasonality as indicated by the
flat distribution outside of the JJA maximum. The distribution describing the Breiten-
moser et al. (2014) records (Figure S1c) reflects the simple latitude-dependent approach to
define seasonality. Responses are limited to JJA for northern hemispheric (NH) trees and
December–February (DJF) for trees located in the southern hemisphere (SH). The small
number of trees with an annual response correspond to the tropical records present in the
dataset.

With seasonality information determined objectively during PSM calibration (Figs. S1b
and d), a greater diversity in seasonal responses is obtained. This is most striking with the
Breitenmoser et al. (2014) chronologies. Responses remain dominated by the NH summer
season, however with less emphasis on annual records as evidenced by a slightly increased
representation of the boreal spring and austral summer months for NH trees and SH trees
respectively. We also note the greater consistency of seasonal responses to temperature
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between PAGES 2k Consortium (2017) and Breitenmoser et al. (2014) TRW records.
Figure S2 presents the results with respect to temperature and precipitation seasonal

responses associated with the bivariate PSMs. Distributions describing temperature season-
ality are very similar to those of the univariate models shown in Fig. S1. More importantly,
the distributions of the seasonal responses to precipitation shows that objectively-derived
responses are significantly different than those from proxy metadata (assumed identical to
temperature responses). Distributions show a number of records with sensitivity to precipi-
tation during the nominal growing seasons (boreal summer for NH trees and austral summer
for SH trees). A noteworthy feature is the maximum in the distribution shifted toward the
boreal winter season in Figs. S2d and h, consistent with tree ring growth sensitivity to pre-
cipitation occurring during the cool season preceding the growth period (St. George et al.,
2010; St. George, 2014). Note that the local maximum in the austral winter in Fig. S2d cor-
respond to SH trees. As with the temperature responses, we also note the greater consistency
between responses to precipitation for PAGES 2k Consortium (2017) and Breitenmoser et al.
(2014) TRW records.

S3 Independent calibration-validation

Verification statistics from a series of reconstruction experiments similar to those in sec-
tion 4 of the main text are presented for independent calibration and validation data dur-
ing the instrumental period. Specifically, temperature reconstructions are performed using
regression-based PSMs calibrated with data covering the 1920–2015 period, instead of the
entire instrumental era (i.e. 1880–2015) as in the main text. To gain a perspective on re-
construction skill which is independent from calibration, verification is performed over the
40-year period of the instrumental era not considered in PSM calibration (i.e. 1880–1919).
As in experiments reported in section 4.1 of the paper, only proxies from the PAGES 2k
Consortium (2017) data set are assimilated.

A summary of verification skill metrics is shown in Fig. S3. We first look at the trend in
the global mean temperature (GMT) characterizing the 40-yr verification period. The GMT
trend during the validation period in the instrumental analyses (i.e. GISTEMP, Berkeley
Earth, HadCRUT4 and MLOST), is itself found to have a large uncertainty. Values among
all products range from slightly positive to about -0.35 K per 100 years (see the gray shading
in Fig. S3). Despite this uncertainty, instrumental era observations indicate a cooling trend
characterizing the verification period, with a consensus (average of all products) value of
-0.2 K per 100 years. Comparing trends in reconstructions generated using the various PSM
configurations, we see that all reconstructions are characterized by global cooling, with the
trend underestimated with the univariate annual PSMs, and generally overestimated with the
seasonal univariate models. The best agreement with the consensus trend is obtained when
bilinear seasonal PSMs are used, along with objectively-derived proxy seasonal responses for
tree-ring-width proxies. We wish to underline here LMR’s ability to recover the GMT cooling
during the 1880-1919 period, distinct from the 1920–2015 PSM calibration period, which is
characterized by a warming trend. This result supports the fact that reconstructions with
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LMR are not directly tied to, or limited by, the climate states and their evolution represented
in the calibration data set, especially since the inputs to these PSMs come from climate model
priors from a different time period.

With respect to the other metrics considered in evaluating the reconstructed detrended
GMT and spatial temperature patterns, the skill over the 40-year verification period is
generally less than the entire instrumental era (reported in the main text). A comparison
of verification statistics from the 1880–1919 and 1880–2000 periods from the same series of
experiments (using PSM calibrated over the complete instrumental-era data) (not shown)
confirm that the decrease in skill is a characteristic of the shorter calibration period rather
than related to PSMs calibrated over a particular subset of the available calibration data.

Comparing verification metrics for different PSM configurations, skill in the detrended
GMT is maximized for PSMs formulated with seasonal responses from proxy metadata,
particularly when tree ring width proxies are modeled with a bilinear formulation on tem-
perature and moisture. The skill from PSMs based on objectively-derived seasonal responses
are generally lower, but remains similar to results obtained with other PSMs. Skill in the
representation of spatial patterns, as summarized with the global mean of the CE values
calculated at every reanalysis grid points, is less skillful in reconstructions using annual uni-
variate PSMs. The most skillful reconstruction, as indicated by the least negative mean of
the gridded CE, is obtained with seasonal objective PSMs, with a bilinear formulation to
model tree ring width proxies.

The independent calibration–validation results reported here are therefore generally con-
sistent with the findings presented in the main text. In particular, the least accurate recon-
structions are obtained with univariate annual PSMs, whereas reconstructions using seasonal
PSMs with objectively-derived seasonal responses, along with a bivariate temperature and
moisture formulation for tree ring width proxies, are found to be more skillful. Contrasts
in skill are notable for GMT trends and the representation of temperature spatial pat-
terns. Therefore, despite the decrease in the robustness of statistics inherent to verification
performed over a shorter time period, the independent calibration–validation experiments
support the selection of the PSM configuration reported in section 3 of the main text.

S4 Moisture variable in tree-ring-width PSMs

In the modeling of moisture-sensitive tree-ring width chronologies, soil moisture is recognized
as the preferred response variable. However, a regression-based approach to proxy modeling
relies on the availability of a calibration dataset. The absence, to our knowledge, of a reli-
able century-long soil moisture dataset is therefore an important limiting factor. The more
traditional approach consists of using Palmer Severity Drought Index (PDSI) data instead
of soil moisture (e.g. Steiger et al., 2018). Here we use the Dai et al. (2004) PDSI dataset
to calibrate univariate “temperature or moisture” (“TorM”) PSMs, instead of precipitation
data from the GPCC (Schneider et al., 2014) dataset as in reconstructions discussed in the
main text. With univariate “TorM” PSMs, decisions are made whether each tree-ring record
is moisture sensitive or temperature sensitive by comparing moisture calibrations (with PDSI
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or precipitation) and temperature calibrations (using GISTEMP calibration). The regres-
sion providing the better fit to proxy data is used to forward model the proxy record. A
reconstruction using PDSI-calibrated PSMs to model the tree-rint width proxies is compared
to a reconstruction using “TorM” PSMs calibrated on precipitation (results presented in the
main text). All proxies other than tree-ring widths are modeled with univariate temperature
PSMs. All other reconstruction parameters are the same as experiments described in the
main text (100 ensemble members, CCSM4 as the prior model, 51 Monte-Carlo realizations
with 75% of proxies assimilated). Covariance localization is not applied in the compared
experiments.

Temperature reconstructions from both experiments are verified against instrumental-
era analyses and against independent (withheld from assimilation) proxies. Results are
compared in Tables S1 and S2. Verification results for the reconstruction using bivariate
PSMs calibrated on temperature and precipitation, already described in main text, are in-
cluded for comparison. The reconstruction skill obtained over the instrumental-era with the
univariate PSMs are similar, whether PDSI or precipitation data are used for calibration. In
comparison, the skill scores obtained with bivariate PSMs are more clearly superior to the
univariate PSMs, particularly with the sensitive CE metric. Proxy-based verification results
(Table S2) do not distinguish well between experiments, likely due to the noisy nature of
the proxies used in the verification reference. Nonetheless, the balance of evidence is that
bivariate temperature/precipitation PSMs are superior to the univariate “TorM” models,
even when the latter are calibrated using PDSI.

S5 Covariance localization function

Spatial covariance localization is applied to manage sampling error in the LMR paleoclimate
ensemble data assimilation system. It is applied to minimize the adverse impact of spurious
covariances at large distances from a proxy location, which results from sample error in finite
ensembles. We use the Gaspari-Cohn (Gaspari and Cohn, 1999) fifth-order polynomial with
a specified cut-off radius for the localization function. Localization is applied to ensemble
covariances through the wloc terms shown in Eqs. 4 in the main text. To illustrate how the
localization function modulates the ensemble covariances as a function of distance, we show
the wloc weights calculated with two localization radii (5000 and 25000 km) for a proxy site
located in the Sierra Nevada mountains in California, United States (cf. Fig. S4). For the
shortest localization radius considered in the paper (5000 km), we see that the assimilation
of observations from this proxy site will at most influence other analysis gridpoints in North
America and the easternmost part of the midlatitude Pacific Ocean. However, most of the
influence is limited to western United States , as the wloc is small at distances characterizing
regions such as the eastern United States and Alaska for example. For a cut-off localization
radius of 25000 km, the value used in the updated LMR, assimilated proxies may contribute
in the updated of state elements at points across the globe as the wloc weights do not decrease
to zero in this case. However this influence is minimal for far away regions (ex. Indian Ocean
may only be slightly influenced by the Sierra Nevada proxy). With this localization length
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scale, largest proxy influence is confined to distances roughly correspondnig to continental
scales.
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Table S1: Summary of instrumental–era verification results for reconstructions performed
with various tree-ring width PSM configurations (see main text, section 2.4.2 for PSM de-
tails). Verification scores shown are correlation (r) and coefficient of efficiency (CE) for the
annual global mean temperature (GMT) and detrended GMT verified against the consen-
sus of instrumental–era analyses, the global mean of gridpoint r and CE characterizing the
spatially reconstructed temperature, verified against the Berkeley Earth analysis.

PSM configuration
Annual GMT Detrended GMT Spatial temperature

r CE r CE r CE

Univariate “TorM” (PDSI) 0.92 0.79 0.72 0.46 0.52 0.17

Univariate “TorM” (precip.) 0.93 0.77 0.74 0.48 0.53 0.17

Bivariate 0.93 0.86 0.77 0.54 0.53 0.20

Table S2: Verification of reconstructions against independent (withheld from assimilation)
proxies, for experiments using various PSM configurations to model tree-ring width proxies.
Skill scores shown are the median of distributions for correlation (r), the fraction of proxy
records characterized by a positive ∆CE (%+CE), and the median of the ∆CE distribution.
Statistics are compiled over 51 Monte-Carlo realizations, for two distinct periods: 1880–2000
(PSM calibration period) and 0–1879 (pre-calibration period).

PSM configuration
1880–2000 0–1879

r %+CE ∆CE ECR r %+CE ∆CE ECR

Univariate “TorM” (PDSI) 0.34 80.0 0.09 0.94 0.21 70.4 0.05 1.06

Univariate “TorM” (precip.) 0.33 77.6 0.08 0.93 0.19 66.3 0.04 1.06

Bivariate 0.36 78.9 0.11 0.93 0.22 66.0 0.06 1.08
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Figure S1: Distributions of months of the year included in proxy seasonal responses for
tree ring records in (a) and (b) PAGES 2k Consortium (2017), (c) and (d) Breitenmoser
et al. (2014) data sets. For each proxy set, histograms are shown describing the seasonality
information contained in (a) and (c) the proxy metadata, and (b) and (d) objectively-derived
during PSM calibration using a goodness-of-fit approach. Vertical dashed red lines delineate
the annual period of the modeled proxy. PSM calibration is performed with respect to
temperature, using the GISTEMP v4 dataset.
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Figure S2: As in Fig. S1, but for seasonal responses of temperature and precipitation used
in the bivariate TRW PSMs, for tree ring records in (a)–(d) PAGES 2k Consortium (2017),
(e)–(h) Breitenmoser et al. (2014) data sets. For each proxy set, histograms are shown
describing the seasonality information contained in (a), (b), (e) and (f) the proxy metadata,
and (c), (d), (g) and (h) objectively-derived using a goodness-of-fit approach during PSM
calibration. Distributions for temperature are shown in the left panels, and for precipitation
in the right panels. Bivariate PSM calibration is performed with respect to temperature and
precipitation, using the GISTEMP v4 and GPCC v6 datasets.
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Figure S3: Summary skill metrics of LMR temperature reconstructions against the consen-
sus of instrumental era temperature data sets ( GISTEMP, MLOST, Berkeley Earth, Had-
CRUT4) over the 1880–1919 period. Reconstruction experiments are performed with PSMs
calibrated on data covering the 1920–2015 period (excluding the verification period) with
the following PSM configurations: univariate on annual temperature (light blue), univariate
on seasonal (metadata) temperature (blue), univariate seasonal models with objectively-
derived seasonality (dark blue), seasonal (metadata) univariate “temperature or moisture”
for tree ring widths and temperature only for all other proxies (light green), same as previous
but with objectively-derived seasonality (dark green), bivariate seasonal (metadata) models
for tree ring widths and univariate on temperature for all other proxies (red) and same as
previous but with objectively-derived seasonality (dark red). Metrics shown are the 20th
century trend in the global mean temperature (GMT), correlation and coefficient of effi-
ciency (CE) for the detrended GMT, mean of anomaly correlations against the instrumental
data sets, and global mean of gridpoint CE averaged across the same verification data sets.
The GMT trend from consensus of instrumental-era products is shown by the arrow and
dashed black line, along with the range defined by the individual instrumental-era products
shown by the gray-shaded area. Error bars are the 5-95% bootstrap confidence intervals on
the corresponding skill metric.
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Figure S4: Gaspari-Cohn localization function (wloc in Eqs. 4 in the main text) corresponding
to a proxy site located in the Sierra Nevada mountains in California, calculated using two
cut-off distances: 5000 km (upper frame) and 25000 km (lower frame). Areas shaded in gray
indicate regions where wloc is zero.
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