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Abstract. Estimates of climate sensitivity from general
circulation model (GCM) simulations still present a large
spread despite the continued improvements in climate mod-
eling since the 1970s. This variability is partially caused by
the dependence of several long-term feedback mechanisms
on the reference climate state. Indeed, state-of-the-art GCMs
present a large spread of control climate states probably due
to the lack of a suitable reference for constraining the cli-
matology of preindustrial simulations. We assemble a new
gridded database of long-term ground surface temperatures
(LoST database) obtained from geothermal data over North
America, and we explore its use as a potential reference for
the evaluation of GCM preindustrial simulations. We com-
pare the LoST database with observations from the Climate
Research Unit (CRU) database, as well as with five past
millennium transient climate simulations and five preindus-
trial control simulations from the third phase of the Paleo-
climate Modelling Intercomparison Project (PMIP3) and the
fifth phase of the Coupled Model Intercomparison Project
(CMIPS). The database is consistent with meteorological ob-
servations as well as with both types of preindustrial simu-
lations, which suggests that LoST temperatures can be em-
ployed as a reference to narrow down the spread of surface
temperature climatologies on GCM preindustrial control and
past millennium simulations.

1 Introduction

General circulation model (GCM) simulations of the Earth’s
climate are sophisticated tools that reproduce many physi-
cal processes of the climate system, helping to understand
and characterize the dynamics of the climate system both at
global and regional scales, as well as from decadal to mil-
lennial timescales (Flato et al., 2013). Despite the large num-
ber of different GCMs developed and maintained by mod-
eling groups around the world, future projections of climate
change still present a large degree of uncertainty (Knutti and
Sedlacek, 2012), mainly due to the different climate sensitiv-
ity achieved by each model. The equilibrium climate sensi-
tivity (ECS) is typically defined as the change in equilibrium
temperature given a doubling of the atmospheric CO; con-
centration (Gregory et al., 2002), and it is considered to be
one of the most important metrics to understand the long-
term evolution of the climate system. Numerous studies have
unsuccessfully tried to narrow the uncertainty range of the
ECS using observations, simulations and paleoreconstruc-
tions; however, the best estimates of the ECS have remained
between 1.5 and 4.5 °C since the 1970s (Knutti et al., 2017).

The large uncertainty in ECS estimates is also present in
state-of-the-art GCMs (Andrews et al., 2012; Flato et al.,
2013; Forster et al., 2013; Knutti et al., 2017), mainly as a re-
sult of approximating the description of several climate phe-
nomena, tuning practices and the spread in control climate
states. Each GCM approximates and resolves the differen-
tial equations governing the evolution of the climate system
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using different numerical methods and algorithms, leading
to a diverse representation of the climate evolution within
the array of models (Dommenget, 2016). Additionally, each
GCM employs different parameterizations for approximat-
ing processes that cannot be resolved due to the lack of spa-
tial resolution or computational resources, such as radiative
transfer, convection or clouds (McFarlane, 2011; Sen Gupta
et al., 2013). All of these necessary approximations add in-
consistencies to simulations, affecting the simulated climate
state and trajectory. Parameterizations of radiative forcing by
CO; in climate models are of special importance, as they
are responsible for nearly 50 % of the uncertainties in the
estimated values of the ECS (Soden et al., 2018). Another
practice related to parameterizations that affects the simu-
lated ECS is model tuning (Mauritsen et al., 2012; Hourdin
et al., 2017; Schmidt et al., 2017). Tuning practices consist
of varying model parameters, for which the values are poorly
constrained by theory or observations or not constrained at
all, to obtain a simulated climate evolution compatible with
observations. Hence, the adjustment of this parameter affects
the representation of feedback mechanisms and other physi-
cal processes within the model, altering the response to ex-
ternal forcings (Mauritsen et al., 2012; Schmidt et al., 2017).

Furthermore, the magnitude of some important long-term
feedback mechanisms depends on the mean climate state —
i.e., the model response to external forcings is itself mean
state-dependent (Dommenget, 2016; Hu et al., 2017, and ref-
erences therein). Ice—albedo and water vapor feedbacks are
two important processes affected by the control climate state
(Hu et al., 2017). The strength of both feedbacks is associ-
ated with simulated absolute values of surface temperature,
as absolute temperature is the main factor governing water
phase changes on the Earth. Permafrost stability, and thus
permafrost—carbon feedback, also depends on the reference
climatology and the simulated climate trajectory (Slater and
Lawrence, 2013). Although many GCMs are still in the pro-
cess of implementing permafrost modules in their code, sev-
eral studies have suggested that the impact of the permafrost—
carbon feedback on climate evolution would be important
(e.g., Koven et al., 2011; MacDougall et al., 2012). There-
fore, a constrained preindustrial control simulation may im-
prove the representation of these feedbacks in transient cli-
mate experiments, reducing the uncertainty of ECS estimates
from model simulations, as well as reducing the spread in
projections of future climate change (Dommenget, 2016; Hu
et al., 2017). At this point, estimates of preindustrial long-
term surface temperatures from geothermal data may be a
useful reference for assessing whether the simulated surface
temperature climatology is realistic enough in preindustrial
climate simulations. Additionally, such preindustrial long-
term absolute temperatures may be employed to define a
preindustrial baseline from which to evaluate the tempera-
ture change due to the anthropogenic influence on climate
(Hawkins et al., 2017).
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Borehole temperature profile (BTP) measurements have
been employed to estimate both global and regional past
trends in surface temperature (e.g., Vasseur et al., 1983;
Huang et al., 2000; Harris and Chapman, 2001; Beltrami,
2002; Beltrami and Bourlon, 2004) and surface flux his-
tories over the last centuries (e.g., Wang and Bras, 1999;
Beltrami, 2002; Beltrami et al., 2002, 2006; Demezhko and
Gornostaeva, 2015a; Demezhko and Gornostaeva, 2015b).
Several studies have validated the borehole methodology us-
ing past millennium simulations from the ECHO-G GCM
(Gonzélez-Rouco et al., 2006, 2009) and the PMIP3/CMIP5
GCMs (Garcia-Garcia et al., 2016), reinforcing results re-
trieved from subsurface temperature. Reconstructions of sur-
face temperature and surface flux from borehole measure-
ments have been compared with ECHO-G millennial simula-
tions (Stevens et al., 2008; MacDougall et al., 2010), as well
as with estimates of continental heat storage from CMIP5
GCM simulations (Cuesta-Valero et al., 2016). All of these
direct comparisons between BTP estimates and GCM sim-
ulations have revealed several strengths and weaknesses of
GCM simulations, and have contributed to the improvement
of the represented physical processes relevant for the climate
evolution within land surface model components (e.g., Alex-
eev et al., 2007; MacDougall and Beltrami, 2017).

Here, we propose the use of long-term surface tempera-
tures estimated from BTP measurements as an additional tool
to better evaluate the realism of surface temperature clima-
tology within GCM preindustrial simulations, and, in turn,
to help improve the representation of mean state-dependent
feedbacks. These long-term surface temperatures are re-
trieved from the quasi-equilibrium state of the subsurface
thermal regime at the location of each BTP measurement.
This is estimated from the deepest section of the temperature
profile, which is the part least affected by the recent changes
in the surface energy balance. The subsurface temperature at
the bottom part of each temperature profile depends linearly
on depth, and the extrapolation of this linear behavior to the
surface is interpreted as the long-term mean surface tempera-
ture at each borehole site (e.g., Huang et al., 2000; Harris and
Chapman, 2001; Beltrami, 2002). Here, we present a gridded
Long-term Surface Temperature (LoST) database for most
of continental North America and three Caribbean islands
(Cuba, Hispaniola and Puerto Rico) using 514 BTP mea-
surements. This database is freely available for the scientific
community at https://figshare.com/s/f20d6002a57cf3279alc
(last access: 12 June 2019). The database is compared with
five past millennium and five preindustrial control simula-
tions from the PMIP3/CMIP5 archive to assess the realism
of the simulated preindustrial equilibrium state by the cur-
rent generation of global climate models.
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2 Data

2.1 Meteorological data: Climate Research Unit (CRU)
data

We employ surface air temperatures from the University of
East Anglia Climatic Research Unit’s (CRU) TS4.01 grid-
ded dataset (Harris et al., 2014) for evaluation purposes. This
dataset consists of a gridded set of climate variables derived
from worldwide meteorological observations. Sources of me-
teorological data include several national meteorological ser-
vices, CRU archives, the World Meteorological Organization
(WMO) and the National Oceanic and Atmospheric Admin-
istration (NOAA). Surface air temperatures are supplied at a
monthly resolution for continental areas except for Antarc-
tica from 1901 to 2016 of the Common Era (CE).

2.2 GCM data

We use five past millennium (PM) and five preindustrial con-
trol (piControl) GCM simulations (see Table 1 for refer-
ences) from the third phase of the Paleoclimate Modelling
Intercomparison Project and the fifth phase of the Coupled
Model Intercomparison Project (PMIP3/CMIP5) (Braconnot
et al., 2012; Taylor et al., 2011) to test the LoST database.
PM simulations (Past1000 experiment in the PMIP3/CMIP5
database) simulate the climate response to prescribed ex-
ternal forcings from Schmidt et al. (2011) for the period
from 850 to 1850 CE, including orbital variations, changes
in solar activity, greenhouse gas concentrations, volcanic
eruptions and changes in land use and land cover. Each
PMIP3/CMIP5 GCM also performs a piControl simulation
forced with agreed preindustrial forcings to provide a base-
line from which to start transient climate experiments. For
more details about the PMIP3/CMIPS control simulations
and initialization procedures see Sen Gupta et al. (2013) and
Séférian et al. (2016).

2.3 Borehole data

Here, we use estimates of long-term surface temperatures
from the database described in Jaume-Santero et al. (2016).
The BTP measurements of this database have been previ-
ously filtered excluding profiles with non-climatic signals
and artifacts, thus providing 514 BTPs suitable for climate
studies over North America. The standard methodology to
retrieve past temperature and flux histories from geother-
mal data assumes that each borehole temperature profile re-
sults from the superposition of a transient perturbation due
to the changes in the surface energy balance with time and
the quasi-steady state of the subsurface thermal regime (e.g.,
Huang et al., 2000; Harris and Chapman, 2001; Beltrami,
2002). Therefore, considering the subsurface as a half space
without heat production from radioactive decay or advection,
the solution of the heat diffusion equation for a temperature
profile can be approximated as follows (e.g., Jaume-Santero
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et al., 2016):
T(@)=To+qo-R(2)+Ti (), (1)

where T; is the surface transient perturbation, Ty is the long-
term surface temperature (7 temperature hereafter), go is
the subsurface flux at equilibrium and R(z) is the thermal
resistance (Bullard and Schonland, 1939). Estimates of ther-
mal resistance require measurements of thermal conductiv-
ity through the subsurface profile, but the majority of BTPs
available does not present such conductivity data. Thus, the
thermal conductivity is assumed to be constant and Eq. (1) is
rewritten as

T()=To+T -z+T: (1), ()

where I' is the subsurface thermal gradient at equilibrium.
The recorded surface transient perturbation (7;) can be re-
trieved from each temperature profile, once the subsurface
thermal equilibrium is estimated (for more details about the
borehole methodology, see Mareschal and Beltrami, 1992;
Bodri and Cermak, 2007; Jaume-Santero et al., 2016). As
the heat flux from the Earth’s interior remains stable at
timescales of millions of years and the deepest part of a BTP
is the least affected by the recent changes in the surface en-
ergy balance, the quasi-equilibrium state of the subsurface
thermal regime can be estimated from the deepest tempera-
tures of each borehole profile (see scheme in Fig. 1). Once
vertical variations in the thermal properties of the subsurface
rocks are taken into account, temperature depends linearly on
depth at the bottom part of the temperature profile, allowing
for the approximation of the subsurface thermal equilibrium
by a regression. The extrapolation of this linear behavior to
the surface can be interpreted as the long-term mean sur-
face temperature at each borehole location (7p temperature
in Eq. 2 and Fig. 1, see Pickler et al., 2016, for further de-
tails). Depending on the profile’s depth, the Tj temperatures
represent the long-term ground surface temperature for a de-
termined period of time. Due to the nature of heat diffusion
through the ground, the required time (¢) for a change in the
surface energy balance to reach a certain depth (z) is given
by the following equation (Carslaw and Jaeger, 1959; Pickler
et al., 2016):
22

4i’
where « is the thermal diffusivity of the subsurface. We con-
sider k =1 x 107°m?s~! for all BTP measurements (Cer-
mak and Rybach, 1982). In this study, all BTPs are trun-
cated at the same depth (300 m) to ensure that all 7 tem-
peratures are estimated for the same temporal period. We
use the last 100m of each BTP to estimate the subsurface
thermal equilibrium, obtaining an estimated temporal pe-
riod that approximately ranges from ~ 1300 CE (z = 300 m)
to ~ 1700 CE (z =200 m). Hence, this period of time pro-
vides a baseline to compare with long-term temperatures

&

3)
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Table 1. Model name, SAT(y estimates, GST( estimates, SATy and GST( differences with the mean LoST temperatures and references for
each PMIP3/CMIP5 GCM simulation. All results are in degrees Celsius. Ground temperatures for the MRI-CGCM3 piControl simulation
could not be retrieved from the PMIP3/CMIP5 data servers. The temperature average of the LoST database is 5.2°C, with a 95 % confidence

interval between 5.0 and 5.4 °C.

Past millennium

‘ Preindustrial control

Model SATy GSTg SAT)p-LoST GSTp-LoST Reference ‘ SATy GSTg SAT)-LoST GSTp-LoST Reference
CCSM4 153 5.60 —3.65 0.37 Landrumetal. 2013) | 2.12  6.03 -3.07 0.80 Gentetal. (2011)
MRI-CGCM3 138  4.84 -3.81 —0.31  Yukimoto etal. (2012) | 1.39 - -3.80 — Yukimoto et al. (2012)
MPI-ESM-P 1.63 275 -3.56 —2.91 Jungclausetal. (2014) | 2.00  3.10 -3.19 —2.56  Jungclaus et al. (2013)
GISS-E2-R 1.96  3.10 -3.23 —2.42  Schmidtet al. (2014) 202 3.14 -3.16 —2.35  Milleretal. (2014)
BCC-CSMI.1 075 539 —4.44 022 Xiao-Ge et al. (2013) 1.03 558 —4.15 042 Wuetal. (2013)

from the PMIP3/CMIP5 PM simulations. However, the es- Temperature

timated temporal period is not homogeneous as result of the oL\ .

nonlinear relationship between time and depth (Beltrami and °°°

Mareschal, 1995); thus, the estimates of recent years (i.e., %

1700 CE) are better determined than the estimates of past o | i

years (1300 CE). Influences of long-term perturbations of the ° E

past surface energy budget outside of this temporal window

may also affect the temperature within the depth range used _ 000070

here (see Sect. 5 for more details). =N T(2) =Ty T2+ T(1)

3 The LoST database E T 300 m = =700 years ago

S 3 % z=200m — t=300 years ago

In order to provide a gridded dataset over continental North § X

America, Ty temperatures from BTP measurements are spa-

tially interpolated to a 0.5° x 0.5° grid using the gradient g -

plus inverse distance squared (GIDS) technique. The GIDS

method (Nalder and Wein, 1998) relies on the multiple linear

regression of observed climate variables to retrieve longitudi- 2 |

nal, latitudinal and altitudinal gradients that are employed to “

estimate values for gridded nodes. The contribution of each

measurement is inverse-weighted by their squared distance -

to the target node, while the coefficients from the regression a7

analysis allow to correct for the location of each measure-
ment:

1 N
o= 2 {Vi + (latp — lat;)Ciac
Zt{\l:ldi z |: i
+(longy — long;)Ciong + (z0 — )Ce} 42 )

where V) is the predicted variable at the target node, V;;
lat;, long; and z; represent the variable, latitude, longitude
and altitude of the ith measurement respectively; laty, long
and zo represent the latitude, longitude and altitude of the
target node respectively; Ciat, Clong and C; are the coeffi-
cients from the regression analysis; and d; is the distance
from the ith measurement to the target node. The propaga-
tion of known errors in the GIDS algorithm is described in
Sect. S1 in the Supplement. The GIDS technique has been
used to interpolate surface temperature, precipitation, evapo-
transpiration and other climate variables in several zones of
the world including North America (e.g., Price et al., 2000;
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Figure 1. Synthetic borehole temperature profile (black dots) us-
ing data from the CCSM4 PM simulation (inset) and the linear fit
of temperatures between 200 and 300m (red line). The synthetic
temperature profile is generated using the simulated global ground
temperature anomaly at a depth of 1.0 m for the period from 1300
to 1700 CE as the transient perturbation (7;), mean ground tempera-
ture as the long-term surface temperature (7)) and a typical thermal
gradient (I") of 0.01 K m~! (Jaume-Santero et al., 2016). The equiv-
alence between depth (z) and time (¢) is given by Eq. (3). Thermal
diffusivity is considered as x = 1 x 107 m? s~! (Cermak and Ry-
bach, 1982).

Mardikis et al., 2005). Furthermore, the GIDS method per-
forms well in comparison with other broadly used interpola-
tion techniques like co-kriging or smoothing splines (ANUS-
PLIN suite) (Nalder and Wein, 1998; Price et al., 2000; Li
and Heap, 2011), and it has been previously employed to
downscale CMIPS5 simulations (McCullough et al., 2016).

www.clim-past.net/15/1099/2019/



F. J. Cuesta-Valero et al.: LoST database

As the Ty dataset employed here provides latitudes and
longitudes for each temperature profile, we expand the
database estimating the altitude above sea level for each
BTP measurement from the second version of the 2min
Gridded Global Relief Data (ETOPO2 v2) of the National
Oceanic and Atmospheric Administration (National Geo-
physical Data Center, 2006; Two-minute Gridded Global Re-
lief Data, NOAA, https://doi.org/10.7289/V5J1012Q, last ac-
cess: on 7 July 2017). For this study, the regression analysis
of Tp temperatures considering latitude, longitude and alti-
tude yields robust results, with an R? value of 0.865 and a
p value of < 0.05. The distance from the measurements to
the nodes is computed using the Vincenty formula for an el-
lipsoid with different major and minor axes (Vincenty, 1975);
therefore, the altitude of both measurements and grid nodes
are not considered in our distance calculations.

We performed a pseudo-proxy experiment (e.g., Smerdon,
2012) to determine the maximum appropriate distance from
a grid node to a BTP measurement to interpolate the 7 tem-
peratures. That is, we used the long-term mean ground sur-
face temperatures for the period from 1300 to 1700 CE from
the five PMIP3/CMIP5 PM simulations as surrogate real-
ities, and applied the interpolation methodology employed
to create the LoST database. Therefore, these GCM simula-
tions were regridded to a 0.5° x 0.5° grid, considering grid
cells containing BTP measurements as a reference for ap-
plying Eq. (4) to the rest of grid cells. Then, root-mean-
squared errors (RMSEs) between the interpolated data and
the remapped simulations were computed (Fig. S1 in the
Supplement). We set 650km as the maximum distance cri-
terion as this is the maximum distance at which the RMSE is
lower than 1.0 °C for the five simulations. Nevertheless, such
a distance criterion produces results for three grid cells in
the Yucatdn Peninsula (Mexico), which we consider unjusti-
fiable as there are no BTP measurements in or near this part
of Mexico. Therefore, these grid cells are masked out from
our analysis.

4 Results

The distribution of LoST temperatures at grid cells contain-
ing BTP measurements reproduces the shape of the distri-
bution of raw Ty temperatures (Fig. 2a), indicating that the
GIDS interpolation does not substantially modify the shape
of the original distribution of temperatures retrieved from
BTP measurements. However, the distribution of the entire
LoST database resembles the distribution of CRU tempera-
tures, differing from the distribution of the raw Ty temper-
atures. This change in the temperature distribution after the
spatial interpolation may be related to the inclusion of inter-
polated temperatures at higher and lower latitudes than for
the raw Tp temperatures, as the majority of BTP measure-
ments cover from 35 to 60° N. Nonetheless, the latitudinal
mean temperatures from the LoST database are consistent
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with Tp temperatures from BTP measurements, either con-
sidering only grid cells with BTP measurements or the en-
tire LoST database (Fig. 2b). The latitudinal mean temper-
atures from the LoST database reach higher values than the
CRU database at latitudes higher than ~ 50° N, whereas both
datasets achieve similar mean temperatures at lower latitudes
(Fig. 2b). Previous studies have found warmer ground tem-
peratures than air temperatures in meteorological observa-
tions over North America, which is probably due to the insu-
lating effect of snow cover during winter (e.g., Beltrami and
Kellman, 2003; Smerdon et al., 2003). That is, warmer tem-
peratures should be expected for the LoST database than for
the CRU database, as our results show (Fig. 2a and b). Nev-
ertheless, it should be noted that the CRU database covers a
period with a marked global temperature increase (Hartmann
et al., 2013). Therefore, estimates of long-term surface tem-
peratures from CRU data reflect such a temperature increase,
hindering the direct comparison between both datasets. De-
spite this difference in the climatology of both databases, the
long-term surface temperature from the LoST dataset repro-
duces the expected spatial pattern of temperatures for North
America (Fig. 2c, d), which is in agreement with long-term
surface temperatures estimated from BTP measurements and
with long-term surface temperatures from CRU data.

The LoST temperatures were also compared with long-
term surface temperature estimates from five past millennium
(PM) and five piControl simulations (Table 1) included in the
PMIP3/CMIPS archive to test the realism of forced and con-
trol GCM simulations in reproducing estimates of long-term
surface temperatures. Long-term surface temperatures from
the PM simulations are estimated as the mean surface air
temperature for the period from 1300 to 1700 CE (SATy) and
the mean ground surface temperature linearly interpolated at
1.0 m depth for the same period (GSTy), in order to be con-
sistent with the estimated temporal range for Tj temperatures
in Sect. 2.3. The PMIP3/CMIP5 simulations are interpolated
onto the grid of the LoST database; SAT¢ and GSTy values
are only estimated at grid cells containing LoST tempera-
tures. SAT( and GSTy values are also estimated for piControl
simulations following the same method, but averaging over
each entire control simulation.

Surface temperatures from PMIP3/CMIP5S PM and pi-
Control simulations show similar latitudinal patterns to that
from the LoST database, with lower temperatures at north-
ern latitudes and higher temperatures at southern latitudes
(Figs. S2, S3). SAT( estimates from the CCSM4, the MRI-
CGCM3 and the BCC-CSM1.1 models show generally lower
values than LoST temperatures for both piControl and PM
simulations, whereas GST( estimates show higher values
than LoST temperatures at high latitudes for the same GCM
simulations (Figs. S4, S5). Such results are in agreement
with previous analyses of the air and ground temperature re-
lationship within GCM simulations (Gonzélez-Rouco et al.,
2003, 2006; Stieglitz and Smerdon, 2007; Koven et al., 2013;
Garcia-Garcia et al., 2016) and meteorological observations
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Figure 2. Histogram (a) and latitudinal mean temperatures (b) from
BTP measurements (gray), LoST temperatures at grid cells contain-
ing BTP measurements (black), LoST temperatures (red) and mean
surface air temperature from the CRU database (blue). LoST tem-
peratures (~ 1300-1700 CE) (c¢) compared with the mean surface
air temperature from CRU data (1901-2015 CE) (d). White stars
in (¢) indicate the locations of the 514 BTP measurements.

over North America (e.g., Smerdon et al., 2003; Beltrami
and Kellman, 2003). In contrast, MPI-ESM-P and GISS-E2-
R simulations present lower SATy and GST( values than
LoST temperatures, indicating lower long-term ground sur-
face temperatures than the rest of the models (Table 1;
Figs. S4, S5). The comparison of the mean LoST tempera-
ture over North America with the simulated temperature evo-
lution by each GCM shows three different behaviors within
the PMIP3/CMIP5 ensemble. The CCSM4 and the BCC-
CSM1.1 simulations present lower mean air temperatures
and higher mean ground temperatures than the mean LoST
temperature (Fig. 3, Table 1). The similar GSTy and mean
ground surface temperatures for the CCSM4 and the BCC-
CSM1.1 GCMs in both PM and piControl simulations were
expected as these models use a similar land surface model
component (Wu et al., 2014), and the simulated ground tem-
peratures by CMIP5 models are highly dependent on the land
surface model component employed (Garcia-Garcia et al.,
2019; Slater and Lawrence, 2013). In contrast, the GISS-E2-
R and the MPI-ESM-P models produce lower mean GSTy
values than the mean LoST temperature and the rest of
models, while simulating similar SAT( values to those from
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the rest of the PMIP3/CMIP5 GCMs. Previous results have
shown that the MPI-ESM-P PM simulation yields a high air—
ground temperature coupling (Garcia-Garcia et al., 2016),
probably due to the omission of latent heat of fusion in soil
water (Koven et al., 2013). This could cause the low ground
surface temperature simulated by the MPI-ESM-P model in
both PM and piControl simulations in comparison with the
mean LoST temperature (Fig. 3). A strong air—ground cou-
pling may also cause the low ground surface temperature
in the GISS-E2-R simulations, as the magnitude of the dif-
ference between GSTy and SAT( is similar to that from
the MPI-ESM-P simulations (Table 1). Finally, the MRI-
CGCM3 PM simulation yields GST( values below the LoST
climatology, but only by 0.3°C (0.1°C if considering the
20 range of the LoST climatology, Fig. S6), which are rela-
tively small in comparison with the differences between the
LoST climatology and the GST( values from the MPI-ESM-
P and GISS-E2-R simulations (> 2.0 °C, Table 1). Thus, we
can consider that three of the five PMIP3/CMIP5 GCMs
(the CCSM4, the MRI-CGCM3 and the BCC-CSM1.1) sim-
ulate a surface temperature climatology, in the PM (1300-
1700 CE) and piControl simulations, comparable to that from
the LoST dataset, which is an unexpected result as none
of the PMIP3/CMIP5 GCM simulations studied here were
specifically tuned to match this climatology.

5 Discussion

Our results demonstrate that LoST temperatures can be used
as a reference for assessing the represented climatology in
both PM and piControl simulations. Nevertheless, the de-
termination of Ty temperatures presents some uncertainties
that should be discussed. The extrapolation of each quasi-
equilibrium temperature profile to the surface introduces
a small error in the LoST estimates, averaging less than
0.15°C from the 514 BTPs evaluated here (see Sect. S1 for
details about the error treatment in the LoST database). Rock
heterogeneity should also be considered for estimating Ty
temperatures. We assume homogenous thermal properties for
all borehole profiles, which is another source of uncertainty
for LoST temperatures. The ideal approach consists of es-
timating the thermal resistance with depth (Eq. 1), but the
absence of thermal conductivity measurements for the BTPs
employed (Jaume-Santero et al., 2016) makes this approach
impractical. Additionally, measurements of thermal conduc-
tivity tend to be distributed around a central value (e.g., the
measurements at the Neil Well, Beltrami and Taylor, 1995).
If the thermal conductivity varies systematically with depth
at a certain location, such variation will be reflected in the
temperature profile as an unphysical signal. Such logs were
removed from the database employed in this analysis, as ex-
plained in Jaume-Santero et al. (2016). Therefore, it is rea-
sonable to assume a homogenous conductivity with depth.
Long-term alterations of the surface energy balance out of the
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Figure 3. Surface air temperature evolution (gray solid line), ground surface temperature evolution (black solid line), SAT( (gray horizontal
line) and GST( (black horizontal line) for (a) PMIP3/CMIP5 PM and (b) PMIP3/CMIPS piControl simulations. Solid red lines represent
the mean LoST temperature, and the red shadow represents the 95 % confidence interval (Sect. S1, Fig. S6). Dashed blue lines represent
estimated references for long-term surface air temperatures from the LoST climatology and the simulated air—-ground temperature offset
in (a) piControl and (b) PM simulations. Ground temperatures for the MRI-CGCM3 piControl simulation could not be retrieved from the

PMIP3/CMIPS5 data servers.
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1300-1700 CE period may also affect the LoST estimates.
Particularly, possible transient temperatures in BTPs due to
the Little Ice Age (LIA) and the Medieval Warm Period
(MWP) add a certain degree of uncertainty in the determina-
tion of Ty values. However, the spatial extent of both the LIA
and the MWP was not homogeneous over North America
(e.g., Masson-Delmotte et al., 2013, and references therein),
meaning that not all BTPs were affected by the events (Bel-
trami and Mareschal, 1992; Chouinard et al., 2007; Jaume-
Santero et al., 2016). Additionally, the influence of the LIA
and the MWP should be part of any millennial-scale tran-
sient climate simulation; therefore, the effect of such cli-
mate events is taken into account in the comparison between
LoST results and transient climate simulations. The absence
of these two periods in piControl simulations probably con-
tributes to the slightly poorer agreement between LoST tem-
peratures and piControl temperatures in comparison with re-
sults for the PM simulation (Fig. 3). Another factor that may
impact the retrieved quasi-equilibrium temperature profile is
the heterogeneity of North American topography (e.g., Kohl,
1999). To our knowledge, all analyzed BTPs are located in
plain terrain, and were not corrected for elevation as the BTP
database employed does not provide elevation data. There-
fore, we use the ETOPO2 database to assess if the altitude
distribution of the BTPs is sufficient to represent the topog-
raphy of the LoST domain. The altitude distribution over the
LoST domain and at grid cells containing borehole sites are
displayed in Fig. S8. Both histograms present a similar shape
for altitudes up to ~ 430 m, showing a lack of borehole loca-
tions at altitudes between ~ 430 and ~ 1013 m. The uneven
latitudinal distribution of borehole sites probably causes this
gap in the distribution of altitudes, as well as a small excess
of BTP locations at high altitudes. Despite these differences,
both distributions are generally in agreement, indicating a
sufficient altitude distribution from the borehole database to
represent the North American broad-scale topography.
There are, however, two main limitations for the appli-
cation of the LoST database at this stage of the study: the
supplied variable and the regional character of the database.
The LoST database is constituted by estimates of long-term
ground surface temperatures, whereas GCM simulations are
typically evaluated against observations of surface air tem-
perature (SAT) (e.g., Mauritsen et al., 2012; Flato et al.,
2013; Séférian et al., 2016; Schmidt et al., 2017). We can pro-
vide a reference for simulated long-term SAT by accounting
for the offset between simulated air and ground temperatures
and using the LoST temperatures (synthetic SAT, sSAT). As
an example, SAT references are estimated for the five PM and
five piControl simulations employed in this study (dashed
blue line in Fig. 3). SAT references for PM simulations are
estimated from the offset between air and ground tempera-
tures in piControl simulations, whereas SAT references for
piControl simulations are estimated from the offset between
air and ground temperatures in PM simulations. Such off-
sets show a constant behavior in both simulations (Fig. S7).
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GCM simulations in disagreement with the estimated SAT
reference (the MPI-ESM-P and the GISS-E2-R simulations)
may represent a strong air—ground coupling, as discussed in
Sect. 4. Therefore, although the LoST database contains es-
timates of ground surface temperatures, it may also be used
to assess simulated long-term surface air temperatures as a
first-order approach.

The regional character of the LoST database presented
poses some caveats for analyzing the global climatology of
preindustrial simulations. Indeed, results of the simulated re-
gional climatology cannot be globally extrapolated as the
magnitude of the potential spurious drifts in control simula-
tions varies markedly at regional scales and these regional
drifts could be larger than the global-averaged drift (Sen
Gupta et al., 2012, 2013). Further work would consist of
generating a global LoST database from the existing global
network of BTP measurements, which would help to mini-
mize the effect of possible regional drifts on the simulated
climatology. However, BTP measurements are scarce in the
Southern Hemisphere, which is a potential burden that needs
to be considered when assembling a global version of this
database. Additionally, the temperature profiles employed in
this study to estimate Ty temperatures were truncated to a
depth of 300 m, which determines the temporal period of ref-
erence for the comparison with PM simulations. Deeper BTP
measurements can retrieve the climatology of previous time
periods, although the global BTP network contains fewer
temperature profiles deeper than 300 m (see Fig. 1 in Bel-
trami et al., 2015).

Despite the regional character of the LoST temperatures,
the northern BTPs contained in this database allow for the
evaluation of the long-term stability of permafrost over North
America. That is, the northern temperatures in this database
can be compared with regional and global simulations as a
reference to the preindustrial permafrost stability. Further-
more, previous studies have found that the CMIP5 GCM sim-
ulations have difficulties properly representing permafrost
evolution (Koven et al., 2013; Slater and Lawrence, 2013),
partially due to the broad range of simulated climate trajec-
tories by each GCM and the differences between the land
surface model components employed (Slater and Lawrence,
2013). Using LoST temperatures to improve the surface tem-
perature climatology of global and regional simulations may
enhance the simulated long-term preindustrial 0 °C isotherm,
which is important to correctly represent permafrost evolu-
tion.

Numerous proxy-data-based reconstructions of tempera-
ture, precipitation and other climate related variables exist
for North America, providing a reference for the evaluation
of important aspects of past and future climate model sim-
ulations (e.g., PAGES 2k-PMIP3 Group, 2015; Cook et al.,
2015). Proxy-data temperature reconstructions have already
been compared against borehole temperature records of past
variations in surface temperature over North America (e.g.,
Jaume-Santero et al., 2016). It is worthy to note that proxy
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systems are indirect sources of climate information requir-
ing a calibration procedure with modern meteorological data,
whereas borehole temperature data consist of direct measure-
ments of the thermal regime of the subsurface in the recent
past. That is, the LoST database contains information de-
rived from direct measurements of subsurface temperatures,
constituting the first estimates of long-term absolute surface
temperatures in North America. Another important differ-
ence between proxy and borehole reconstructions is that most
proxy systems generally capture high-frequency variations of
climate conditions (Moberg et al., 2005), whereas borehole
temperature profiles record long-term changes in the surface
conditions, filtering out short-period signals. In this context,
LoST temperatures provide a complementary reference to
the multiproxy database over North America for evaluating
the performance of climate model simulations.

6 Conclusions

A gridded database of past long-term surface temperatures
over most parts of continental North America has been as-
sembled from geothermal measurements. Our results show
that this database can be used as a reference to evaluate
the realism of GCM preindustrial control and past millen-
nium simulations and possibly to improve the reference cli-
mate state by adjusting key parameters or preindustrial forc-
ings in control experiments. Hence, the spread in ECS esti-
mates by GCM simulations may be reduced given the rela-
tionship between control temperature climatology and three
long-term powerful feedbacks: the ice—albedo feedback, the
water vapor feedback and the permafrost—carbon feedback.
Future work would consist of generating a global version
of the LoST database using the rest of the global network
of borehole temperature profile measurements and follow-
ing the described methodology, as well as generating new
versions of this global database including future temperature
profile measurements.

Data availability. The LoST database can be downloaded
from https://figshare.com/s/f20d6002a57cf3279alc (last access:
12 June 2019), with https://doi.org/10.6084/m9.figshare.8124887
(Cuesta-Valero et al., 2019).
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