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Abstract. This study presents vanillic acid and para-
hydroxybenzoic acid levels in an Arctic ice core from
Lomonosovfonna, Svalbard covering the past 800 years.
These aromatic acids are likely derived from lignin com-
bustion in wildfires and long-range aerosol transport. Vanil-
lic and para-hydroxybenzoic acid are present throughout the
ice core, confirming that these compounds are preserved on
millennial timescales. Vanillic and para-hydroxybenzoic acid
concentrations in the Lomonosovfonna ice core ranged from
below the limits of detection to 0.2 and 0.07 ppb, respec-
tively (1 ppb = 1000 ng L−1). Vanillic acid levels are high
(maximum of 0.1 ppb) from 1200 to 1400 CE, then gradually
decline into the twentieth century. The largest peak in the
vanillic acid in the record occurs from 2000 to 2008 CE. In
the para-hydrobenzoic acid record, there are three centennial-
scale peaks around 1300, 1550, and 1650 CE superimposed
on a long-term decline in the baseline levels throughout the
record. Ten-day air mass back trajectories for a decade of
fire seasons (March–November, 2006–2015) indicate that
Siberia and Europe are the principle modern source regions
for wildfire emissions reaching the Lomonosovfonna site.
The Lomonosovfonna data are similar to those from the
Eurasian Arctic Akademii Nauk ice core during the early part
of the record (1220–1400 CE), but the two ice cores diverge
markedly after 1400 CE. This coincides with a shift in North
Atlantic climate marked by a change of the North Atlantic
Oscillation from a positive to a more negative state.

1 Introduction

Biomass burning influences the biosphere, atmospheric
chemistry, and the climate system on both regional and
global scales. Fire influences ecosystem dynamics, ecohy-
drology, surface albedo, and emissions of chemically and ra-
diatively active aerosols and gases (Crutzen and Andreae,
1990; Legrand et al., 2016; Hessl, 2011; Bowman et al.,
2009; Randerson et al., 2006). In boreal regions, fire plays a
stabilizing role in circumboreal successional dynamics, influ-
encing forest age structure, species composition, and floris-
tic diversity (Soja et al., 2007). Boreal forest burned area,
fire frequency, fire season length, and fire severity will likely
increase with continued warming (Soja et al., 2007; Chapin
et al., 2000). Arctic tundra fires are of particular concern be-
cause of their potential to release large amounts of ancient
permafrost carbon into the atmosphere (Mack et al., 2011).

Understanding the role of fire in the climate system re-
quires a knowledge of past regional and temporal variations
on decadal, centennial, and millennial timescales. A num-
ber of proxy fire records have been developed from sedi-
ment cores and ice cores but systematic reconstruction of fire
history remains a major challenge. Terrestrial sedimentary
charcoal records are inherently local in extent, but regional
and even global trends in burning have been developed from
these records using various normalizing and averaging meth-
ods (Marlon et al., 2008, 2016; Power et al., 2008, 2013).
The global charcoal database (GCD: Blarquez et al., 2014) is
spatially and temporally inhomogeneous across the Northern
Hemisphere boreal and Arctic regions, with good coverage
in regions of North America and western Europe, and poor
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coverage in Asia. Dissolved and particulate constituents in
ice cores have also been used as burning proxies. These in-
clude cations (ammonium, potassium), anions (formate, ac-
etate, nitrate), and black carbon (see Legrand et al., 2016;
Rubino et al., 2016, for recent reviews). One of the chal-
lenges of interpreting these records is that most of the dis-
solved ions have multiple sources, in addition to burning. For
example, ammonium is also derived from biogenic marine
and terrestrial sources, agriculture, and livestock (Legrand
et al., 1992, 2016; Fuhrer et al., 1996; Savarino and Legrand,
1998; Bouwman et al., 1997; Rubino et al., 2016). Efforts
to isolate the fire-derived contributions to these records have
employed principle component analysis and peak counting
methods. Eichler et al. (2009) examined a Siberian Altai ice
core using a multiproxy approach, and concluded that potas-
sium, nitrate, and charcoal were fire-related while ammo-
nium and formate were biogenic in origin. The detailed inter-
pretation of ice core chemical proxies is complicated by the
fact that black carbon is emitted primarily during the flam-
ing conditions, while ammonium and many organic aerosol-
borne constituents are emitted primarily during smoldering.
Ice core gas measurements of methane and carbon monoxide,
and their isotopomers, have also been used to derive histo-
ries of pyrogenic emissions (Ferretti et al., 2005; Wang et al.,
2010). These gases have sufficiently long atmospheric life-
times in that they integrate emissions over hemisphere/global
scales.

A variety of organic aerosols are emitted from the burning
of vegetation under smoldering conditions. Levoglucosan, a
combustion product of cellulose, is considered a universal
biomass burning tracer because it is emitted in greater quan-
tities than most other burning-derived organic aerosols and is
uniquely produced by the burning of plant matter (Simoneit
et al., 1999). Levoglucosan has been detected in ice cores
from Antarctica, Greenland, and northeast Asia (Gambaro
et al., 2008; Kawamura et al., 2012; Zennaro et al., 2014). It
is considered a qualitative tracer because it degrades rapidly
in the atmosphere (Hoffmann et al., 2010; Hennigan et al.,
2010; Legrand et al., 2016; Slade and Knopf, 2013).

Aromatic acids are among a wide range of phenolic com-
pounds generated by lignin pyrolysis. These compounds are
ubiquitous constituents of biomass burning aerosols and have
been detected in polar ice cores. Lignin is produced from
three precursor alcohols (p-coumaryl alcohol, coniferyl al-
cohol, and sinapyl alcohol), and the resulting phenolic com-
pounds retain the structure of these alcohols. The aromatic
acids analyzed in this study are vanillic acid (VA) and p-
hydroxybenzoic acid (p-HBA). VA is predominantly associ-
ated with conifer and deciduous boreal forest tree species,
while tundra grasses and peat generate primarily p-HBA
with lesser amounts of VA (Simoneit, 2002; Oros and Si-
moneit, 2001a, b; Oros et al., 2006; Iinuma et al., 2007). p-
HBA is also produced from boreal conifer tree species (Oros
and Simoneit, 2001a).

Burning is the only known source of these aromatic acids
in aerosols or ice cores. Quantitatively, the ice core lev-
els of these compounds result from the combined effects
of emissions, atmospheric transport, depositional, and per-
haps post-depositional processes. Aromatic acids can un-
dergo re-volatilization at the snow surface. Laboratory ex-
periments have shown that Arctic snow samples contain-
ing lignin-derived compounds photochemically react to pro-
duce formaldehyde and acetaldehyde (Grannas et al., 2004).
Melting and refreezing processes have the potential to re-
distribute aromatic acids to lower depths. Meltwater at the
surface percolates to deeper snow layers and water-soluble
compounds are concentrated when the meltwater is refrozen
(Wendl et al., 2015).

Prior studies of pyrogenic aromatic acids in ice cores in-
clude shallow cores from Greenland, northeast Asia (Kam-
chatkan Peninsula), and Europe (the Swiss Alps) (Mc-
Connell et al., 2007; Kawamura et al., 2012; Müller-Tautges
et al., 2016). The record from Greenland showed that the tim-
ing of variability in the VA and black carbon records was
similar over the past 200 years until around 1890 CE (Mc-
Connell et al., 2007). VA and p-HBA were elevated from
the 1950s to the 1970s in the 60-year ice core record from
the Swiss Alps (Müller-Tautges et al., 2016). VA and p-HBA
were elevated in the 1700s and in the twentieth century in the
ice core from northeast Asia over the past 300 years. There
is only one millennial timescale ice core record of VA and p-
HBA: a 2600-year Akademii Nauk ice core record from the
Eurasian Arctic (Grieman et al., 2017). This record showed
three major multi-century pulses of burning-derived aromatic
acids, including one during the Little Ice Age (LIA; 1450–
1700 CE).

Here we present measurements of vanillic acid (VA) and
p-hydroxybenzoic acid (p-HBA) in an Arctic ice core from
the Lomonosovfonna ice cap in central Spitsbergen, Sval-
bard, which is located northeast of Greenland, in the Atlantic
sector of the Arctic Ocean (Fig. 1). The goal of this study
was to generate a record sensitive to conditions in northern
Europe/northern Eurasia. Air mass back trajectories are used
to examine the distribution and ecology of likely source re-
gions for biomass burning aerosols transported to Svalbard.
We discuss the variability observed in the ice core records
of these compounds over the past 750 years, and compare
the records to other proxy records of Northern Hemisphere
climate and biomass burning.

2 Methods

2.1 Ice core site characteristics and dating

The Lomonosovfonna ice core site is 1202 m above sea
level (a.s.l.) (78.82◦ N, 17.43◦ E) (Fig. 1). The ice core was
drilled in 2009 to a depth of 149.5 m by a team from the
Paul Scherrer Institute and the Norwegian Polar Institute.
The core did not reach bedrock and contains a continuous
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Figure 1. Location of Lomonosovfonna ice core drilling site on the
island of Spitsbergen in Svalbard (78◦49′24.4′′ N, 17◦25′59.2′′ E)
and the Akademii Nauk ice core drilling site on Severnaya Zemlya
(80◦31′ N, 94◦ 49′ E). The map was produced in the Python “mat-
plotlib” graphics environment (Hunter, 2007).

750-year record (Wendl et al., 2015). The near-surface an-
nual average temperature of Lomonosovfonna is −12.5 ◦C
at 1020 m a.s.l. (Beaudon et al., 2013; Pohjola et al., 2002;
Zagorodnow, 1988). The annual average accumulation rate is
0.58 ± 0.13 m w.e. year−1 (Wendl et al., 2015). The firn/ice
transition occurs at 13 m depth, at approximately 1997 CE.

The Lomonosovfonna ice core was dated by Wendl et al.
(2015), yielding a time span for the core of 1222–2009 CE
(Fig. S1 in the Supplement). Annual layers were counted us-
ing seasonal δ18O and Na+ variations to a depth of 97.7 m
(79.7 m w.e.), giving an age of 1750 CE at that depth. The
chronology of the upper section of the core was also con-
strained by the 210Pb profile and the 1963 3H horizon. The
age scale below 97.7 m was developed using a simple glacier
ice flow model (Thompson et al., 1998), assuming an aver-
age accumulation rate of 0.58 ± 0.13 m w.e. year−1 (Wendl
et al., 2015). The age scale was adjusted to match seven vol-
canic reference horizons. The oldest of these is the Samalas
volcanic eruption of 1257/8. Dating uncertainty was esti-
mated by comparing purely modeled reference horizon years
to known volcanic eruption years. Above 68 m w.e., the dat-
ing uncertainty is ±1 year within 10 years of reference hori-
zons, and±3 years otherwise. Between 68 and 80 m w.e., the
dating uncertainty is ±3 years, and below 80 m w.e., the dat-
ing uncertainty is ±10 years (Wendl et al., 2015).

The Lomonosovfonna site experiences summer surface
melting and winter refreezing (Wendl et al., 2015). Wendl
et al. (2015) examined the distribution of melt layers in
the Lomonosovfonna ice core, concluding that most summer
melt layers are refrozen within the year, with some extending

over 2 or 3 years. The frequency of melt layers increases after
1800 CE (Fig. S2; Wendl et al., 2015). During the warmest
years of the twentieth century, percolation length reached
8 years. Due to possible redistribution of soluble compounds
by melt, percolation, and refreezing, interannual variability
of the aromatic acid signals is not interpreted in this study.
Ten-year bin averages are used to illustrate short-term vari-
ability in the data (see Sect. 3.1).

2.2 Potential source regions and ecological types using
air mass back trajectories

Air mass back trajectories were used to identify potential
source regions and eco-floristic zones from which biomass
burning aerosols are likely to reach the Lomonosovfonna
ice core site. This analysis assumes modern-day meteoro-
logical conditions. Ten-day air mass back trajectories were
computed using the HYSPLIT model with NCEP/NCAR re-
analysis data (Draxler et al., 1999; Stein et al., 2015; Kalnay
et al., 1996). The 10-day back trajectories were started at
100 m above the ice surface at 00:00 and 12:00 LT (lo-
cal time) for three separate 10-year periods, 1948–1957,
1970–1979, and 2006–2015 CE. The fraction of trajecto-
ries originating in or transecting various geographic re-
gions and eco-floristic zones was calculated for spring
(1 March–31 May), summer (1 June–31 August), and fall
(1 September–30 November). The geographic regions in-
cluded in the study were North America, Siberia (> 42◦ E),
and Europe (< 42◦ E). The boundaries of North Amer-
ica, Siberia, and Europe were defined using global self-
consistent, hierarchical, high-resolution geography database
GIS shapefiles (Wessel and Smith, 1996). These regions
were subdivided into eco-floristic zones defined by the Food
and Agriculture Organization (FAO; Fig. S3; Ruesch and
Gibbs, 2008, http://cdiac.ornl.gov/epubs/ndp/global_carbon/
carbon_documentation.html, last access: 1 February 2017).

The Siberian region has the highest fraction of trajecto-
ries to the Lomonosovfonna site, accounting for 39, 15, and
38 % of the trajectories in spring, summer, and fall from 2006
to 2015 CE, respectively. Siberian trajectories were most
commonly from boreal tundra woodlands, boreal conifer
forests, and boreal mountain systems (Fig. S4; Table S1 in
the Supplement). Fewer than 3 % of the trajectories tran-
sected other Siberian eco-floristic zones. Europe contributed
fewer than 11 % of the trajectories arriving at the site in any
season. Those trajectories most commonly encountered bo-
real coniferous forests, boreal mountain systems, and tem-
perate oceanic forests (Fig. S5; Table S1). Pollen species in
the Lomonosovfonna ice core covering the past 150 years
drilled in 1997 match northern boreal taxa from Fennoscan-
dia (Hicks and Isaksson, 2006). Biomass burning aerosols
from eastern European agricultural fires in 2006 reached
Svalbard within a few days (Stohl et al., 2007). Other Eu-
ropean eco-floristic zones contributed to fewer than 5 % of
the trajectories in any season. North America contributed
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fewer than 4 % of the trajectories for any season. This anal-
ysis does not rule out contributions from North America, but
it does suggest that such input would likely require consider-
ably longer atmospheric transport times.

2.3 Ice core sample preparation and analysis

For this study, we resampled discrete ice core samples pre-
viously analyzed for major ions (Wendl et al., 2015). The
original ice core samples were 1.8 × 1.9 cm in cross section
and 3–4 cm long, melted and stored frozen in polypropylene
vials. For analysis of VA and p-HBA, the ice was re-melted,
1 mL was withdrawn from each vial, and the samples from
four adjacent vials were combined into one. This resulted in
a total of 993 samples. As discussed below, this sampling
procedure resulted in decreasing temporal resolution with
increasing depth from sub-annual samples at the surface to
about 2-year samples at the bottom of the core.

VA and p-HBA in the ice core samples were measured us-
ing anion exchange chromatographic separation and tandem
mass spectrometric detection in negative ion mode with an
electrospray ionization source (IC-ESI-MS/MS). The analyt-
ical methods and standards used in this study are described
in detail by Grieman et al. (2017). The experimental sys-
tem consisted of a Dionex AS-AP autosampler, ICS-2100 in-
tegrated reagent-free ion chromatograph, and ThermoFinni-
gan TSQ Quantum triple quadrupole mass spectrometer. VA
was detected at two mass transitions (m/z 167→ 108 and
m/z 167→ 152) and p-HBA was detected atm/z 137→ 93.

Limits of detection for single measurements were es-
timated using three times the standard deviation of the
Milli-Q water blank. The limits of detection for the VA
m/z 167→ 108 and 167→ 152 transitions were 0.010 and
0.006 ppb (n = 80), respectively. The limit of detection for
p-HBA was 0.012 ppb (n = 80). The mass spectrometer sig-
nals for VA at the two mass transitions were highly correlated
and either mass transition can be used to measure ice core
VA (Fig. S6). Data from the m/z 167→ 152 transition is re-
ported here because of the slightly better detection limit.

3 Results and discussion

3.1 Analytical results and data processing

In this study, 993 samples were analyzed for VA and p-HBA
(Fig. 2). VA and p-HBA levels range from below detection
to 0.2 and 0.07 ppb, respectively. A substantial fraction of the
VA and p-HBA data (67 and 58 %, respectively) is below the
limits of detection. Data below the limits of detection are re-
ported as 0.5 times the limit of detection (0.003 ppb for VA
and 0.006 ppb for p-HBA). Smoothing of the data was car-
ried out using time bin averaging (10, 40, and 100 year), loess
smoothing, and moving averages. All smoothing treatments
reveal similar multi-decadal and centennial-scale features in
the records and the choice of smoothing technique does not

Figure 2. Aromatic acids in the Lomonosovfonna, Svalbard ice
core. (a) Vanillic acid, (b) p-hydroxybenzoic acid. Arrows are the
detection limits. The black horizontal lines are the Medieval Cli-
mate Anomaly (MCA) and the Little Ice Age (LIA) (Mann et al.,
2009). The dashed horizontal line is the extended LIA in the Sval-
bard region (Divine et al., 2011).

influence the interpretation of the data (Figs. S7, S8). Geo-
metric means and standard deviations of the transformed data
were used for all statistics because frequency distributions of
the data show skewness towards lower concentrations. Time-
averaging compensates for the decrease in frequency of sam-
pling with depth in the core due to layer thinning.

3.2 The Lomonosovfonna vanillic and p-hydroxybenzoic
acid time series

The Lomonosovfonna VA and p-HBA time series exhibit
variability on a wide range of timescales. There is abun-
dant annual to decadal variability in both records. The am-
plitude of individual peaks in the raw data is roughly sim-
ilar across the whole record for both compounds, ranging
from 0.1 to 1.2 ppb for VA and 0.1–0.8 for p-HBA (Fig. 2).
The peaks appear to be of longer duration during the older
portions of both records. Both of these aspects of the raw
data are likely artifacts due to the combined effect of an-
nual layer thinning with depth and the sampling strategy of
analyzing individual ice core samples of constant thickness
(12–16 cm). The time span integrated by individual sam-
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Figure 3. Lomonosovfonna ice core records of vanillic acid (a)
and p-hydroxybenzoic acid (b) and the ratio of vanillic acid /p-
hydroxybenzoic acid (c). For all plots: solid lines are 10-year bin
averages, and gray shaded areas are 40-year bin averages of ±1
standard error. The dashed line on the bottom plot indicates a ratio
of 1. The black horizontal lines are the Medieval Climate Anomaly
(MCA) and the Little Ice Age (LIA) (Mann et al., 2009). The dashed
horizontal line at the top is the extended LIA in the Svalbard region
(Divine et al., 2011).

ples ranged from 1.7 years near the bottom of the core, to
0.5 years at mid-depth (∼ 80 m), to 0.07 years near the top
(Fig. S1). This thinning effect is eliminated when the data
are time bin-averaged. Peaks in the 10-year bin-averaged
records are roughly similar in duration across the whole
record (Fig. 3). In the bin-averaged data, the magnitudes
of the peaks are no longer constant across the record. For
VA, the two early peaks (1250–1280 and 1360–1390 CE)
are much larger than all subsequent peaks. p-HBA exhibits
three major multi-decadal peaks. One is simultaneous with
the early VA peak (1250–1280 CE) and the others occur at
1520–1570 and 1610–1640 CE.

Figure 4. Lomonosovfonna ice core records of vanillic acid (a) and
p-hydroxybenzoic acid (b) for the twentieth century. Gray shaded
areas are 10-year bin averages with ±1 standard error.

Both compounds exhibit long-term decreasing trends over
the 800-year record, as illustrated by the 40-year bin-
averaged data (Fig. 3). Forty-year bin-averaged VA levels de-
cline by about a factor of 3 over the first half of the record
(1200–1600 CE), then remain relatively steady for the re-
mainder of the record. It is possible that the decline in VA
continued after 1600 CE but much of the data after this time
are near or below the limit of detection. Forty-year bin-
averaged p-HBA levels decline by about a factor of 2 over
the whole 800-year record.

Centennial-scale variability is observed as pronounced
maxima early in the record (1300–1500 CE), as illustrated
by the 40-year bin averages (Fig. 3). There are hints of con-
tinued centennial-scale variability in VA in the remainder of
the record. Centennial-scale variability is evident through-
out the p-HBA record, with maxima coinciding with the VA
maxima early on and with additional maxima in the 1500s,
1600s, and 1800s.

The twentieth century levels of VA and p-HBA are not
anomalous relative to the rest of the ice core record. VA ex-
hibits a slight increase after 1970 and the largest single peak
in the record occurs from 2000 to 2008 CE (Fig. 4). p-HBA
levels also appear to increase after 1970, although to a lesser
degree than VA. The 2000–2008 period is slightly elevated
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in p-HBA but not to the extent observed in VA. The samples
from 1997 to 2009 CE are within the firn layer. It is possible
that firn samples could be contaminated with biomass burn-
ing aerosols during handling in the field but we have no rea-
son to suspect that the aromatic acids in these samples are
influenced by contamination. We have not observed labora-
tory contamination for these compounds as a significant issue
in our laboratory.

Wavelet analysis was used to illustrate temporal variations
in the spectral content of the signals. Lomonosovfonna VA
and p-HBA time series exhibit non-stationary periodic vari-
ability, meaning that the spectral characteristics vary with
time (Fig. S9).

3.3 Potential for post-depositional modification of VA
and p-HBA

There have been no field studies of atmosphere–snow inter-
actions for aromatic acids like VA and p-HBA, so little is
known about post-depositional effects. The following three
types of effects should be considered: (1) re-volatilization
after deposition to the snowpack; (2) vertical redistribu-
tion associated with melting, percolation, and refreezing;
and (3) degradation due to chemical or microbiological pro-
cesses. All of these effects would likely occur to a greater
extent at relatively warm sites like Lomonosovfonna (mean
annual temperature −12.5 ◦C), and during warmer periods
like the Medieval Climate Anomaly (MCA) or the twenti-
eth century. Redistribution associated with melt layers has
been discussed in detail for other ions (Wendl et al., 2015),
and one would expect that the influence of these processes
on aromatic acids would be similar. Wendl et al. (2015) used
principal component analysis to determine that melt layers
did not have a major influence on the distribution of ions on
decadal timescales. Finally, the VA and p-HBA data from
Lomonosovfonna and Akademii Nauk argue against chemi-
cal degradation as an important process, since there is clearly
no monotonic decrease in VA or p-HBA levels downcore.

The fact that VA and p-HBA are commonly observed
in atmospheric aerosols, even after long distance transport,
suggests that the volatility of these compounds in aerosols
might be considerably lower than that of the pure sub-
stance (Simoneit and Elias, 2000; Simoneit et al., 2004;
Zangrando et al., 2013, 2016). The vapor pressures for VA
and p-HBA are 0.0023 and 2.5×10−5 Pa (https://chem.nlm.
nih.gov/chemidplus/rn/121-34-6, last access: 15 May 2017,
Jones, 1960) at 25 ◦C, respectively. Ionic interactions with
salts or hydrophobic interactions with soot or complex or-
ganics may stabilize aromatic acids in aerosols or snow. Lab-
oratory and aerosol field studies have demonstrated reduced
volatility of low molecular weight organic acids (relative to
the vapor pressure of the pure compound) due to interac-
tion with cations derived from sea salt or other sources, but
this effect has not been studied for aromatic acids (Häkkinen
et al., 2014; Laskin et al., 2012).

If re-volatilization of aromatic acids from the snowpack
does occur, one might expect loss to be enhanced in ice acid-
ified by high levels of nitrate and sulfate from volcanic or
pollutant inputs. There is no obvious evidence that acidifica-
tion is a dominant control on VA or p-HBA levels in the ice
core (Fig. S10). It is particularly notable that VA and p-HBA
levels are not anomalously low during the twentieth century,
when ice core sulfate and nitrate levels increased several fold
compared to the preindustrial era (Figs. S10, S11). Based on
the ice core signals alone, we conclude that re-volatilization
does not appear to be the predominant factor controlling ice
core aromatic acid levels, although this cannot be ruled out.
Further investigation of this issue is needed.

3.4 Relationship to ammonium record

Here we compare the variability of Lomonosovfonna VA and
p-HBA to the previously published ammonium record from
the same ice core (Wendl et al., 2015). That study concluded
that prior biogenic sources were the major contributor to am-
monium in the ice core prior to the mid-1800s, and agri-
culture became a major source during the twentieth century.
Prior studies have suggested that episodic ammonium peaks
in ice cores represent a fire signal, while longer-term variabil-
ity reflects the biogenic signal (Fischer et al., 2015; Legrand
et al., 2016). Following Fischer et al. (2015), we used singu-
lar spectrum analysis (SSA) to decompose the Lomonosov-
fonna VA, p-HBA, and ammonium records into these two
components.

The analysis was done by computing 30 principle compo-
nents (PCs) using 3-year bin-averaged data for VA, p-HBA,
and ammonium (Wendl et al., 2015). The low frequency
component (PC-1) of the ammonium record shows little sim-
ilarity to PC-1 for either of the organic acids. VA and p-HBA
exhibit decreasing trends over the record while ammonium
increases (Fig. 5). To compare the higher frequency com-
ponents, we used a peak detection method (Higuera et al.,
2010). This was done by summing PCs 2–30 and counting
the frequency of peaks above a threshold (75th percentile) in
a 40-year moving window. The resulting signals for VA and
p-HBA exhibit centennial-scale variability which is consis-
tent with that obtained from bin-averaging (Fig. 3) and am-
monium exhibits similar variability on these timescales. The
correlation coefficient between VA-ammonium and p-HBA-
ammonium was computed from the peak frequency data us-
ing a 200-year moving window. The 95 % confidence inter-
vals for these correlation coefficients are shown in Fig. 5.
Based on this analysis, ammonium and VA are positively cor-
related for three time periods (1300–1450, 1675–1725, and
post-1880). Ammonium and p-HBA exhibit positive correla-
tions for two time periods (1425–1650 and 1825–1875). In-
terestingly, the positive correlations for ammonium with VA
and with p-HBA occur at different intervals. The fact that
some extended periods of correlation between VA, p-HBA,
and ammonium are present in the Lomonosovfonna record
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suggests that there may be a fire-derived contribution to the
ammonium signal in this ice core. However, the relationships
are obviously complex and worthy of further study.

3.5 Relationship to sedimentary charcoal records

Sedimentary charcoal records in the Global Charcoal
Database (GCD) from Siberia (50–70◦ N, 50–150◦ E) and
Fennoscandia (50–70◦ N, 0–50◦ E) were analyzed using the
paleofire R package (GCD: Blarquez et al., 2014). Only 3 of
the 12 Siberian records in the GCD have sufficient data from
1200 to 2000 CE for comparison to the Lomonosovfonna
ice core record. These regions are Chai-ku Lake in eastern
Siberia, and Zagas Nuur and Lake Teletskoye in southern
Siberia. The Siberian region as a whole is therefore not well-
represented. Six of the 19 Fennoscandian records in the GCD
have enough data from 1200 to 2000 CE for comparison to
the Lomonosovfonna ice core record. Siberia and Fennoscan-
dia are primarily boreal tundra woodlands, boreal conifer
forests, and boreal mountain systems (Fig. S3; Ruesch and
Gibbs, 2008). One important caveat to this comparison is that
the dating of sedimentary charcoal records is often based on
linear interpolations between a few 14C ages. Hence their age
scales are typically less well-constrained than Lomonosov-
fonna or other ice cores.

Four of the six records from Fennoscandia exhibit in-
creased charcoal influx from 1200 to 1400 CE (Fig. S12;
Blarquez et al., 2014). Lomonosovfonna VA and p-HBA
are both elevated during this period. Three of the six char-
coal records are elevated around 1600 CE when Lomonosov-
fonna p-HBA is also elevated. Two of the records also
show a long-term decline from 1200 to 2000 CE similar to
the Lomonosovfonna VA and p-HBA records. Two of the
Siberian records exhibited increased charcoal influx from
1200 to 1600 CE relative to 1600 CE to present (Fig. S13).
The Lomonosovfonna VA and p-HBA are also higher early
in the record. The Fennoscandian records are clearly most
similar to the Svalbard ice core record, but the database is
too limited to determine definitively the source region for the
VA and the p-HBA in the Lomonosovfonna ice core from so
few charcoal records.

3.6 Comparison between Svalbard and Siberian ice
core records of vanillic acid and p-hydroxybenzoic
acid

The only other millennial-scale ice core record of VA and
p-HBA is the Akademii Nauk ice core from the Severnaya
Zemlya Archipelago in the Arctic Ocean north of central
Siberia (Grieman et al., 2017; Fritzsche et al., 2002). The
Akademii Nauk ice core covers a considerably larger time
range than Lomonosovfonna, extending over the past 2600
years. Here we discuss only the period of temporal overlap
between the two ice cores (1200–2000 CE).

Figure 5. Relationships between Lomonosovfonna vanillic acid
(VA), p-hydroxybenzoic acid (p-HBA), and ammonium (NH4) us-
ing 3-year bin-averaged data. (a) First component from the singu-
lar spectrum analysis of VA (blue solid line), p-HBA (blue dashed
line), and NH4 (orange line) (PC1) reconstructed into concentration
units (RC1, ppb), (b, c, d) Frequency of peaks in the ice core sig-
nals reconstructed using singular spectrum components 2–30 and
peak threshold of 75th percentile, smoothed with a 40-year running
window. (e) Correlation coefficients for the ice core peak frequen-
cies using a 200-year running window (p < 0.001). Bands are the
95 % confidence intervals of the correlation coefficients of VA and
ammonium (blue) and p-HBA and ammonium (green).

The two ice core records exhibit similar trends and levels
during the early part of the record (1220–1400 CE; Fig. S14).
During this period, Lomonosovfonna exhibits declining lev-
els of both aromatic acids. In the Akademii Nauk core, this
period represents the tail end of an earlier peak in both aro-
matic acids with a maximum around 1200 CE. The two cores
diverge markedly after 1400 CE for the remainder of the
records (Fig. 6). Akademii Nauk VA exhibits a period of
highly elevated levels from 1460 to 1660 CE. During this pe-
riod, Akademii Nauk VA reaches levels more than an order of
magnitude above those of Lomonosovfonna VA. Akademii
Nauk p-HBA exhibits a period of elevated levels from 1460
to 1550 and 1780 to 1860 CE. There are multi-decadal peaks
in p-HBA in the Lomonosovfonna record that overlap in time
with the large Akademii Nauk VA peaks, although not nearly
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Figure 6. Aromatic acids in the Lomonosovfonna, Svalbard,
and Akademii Nauk ice cores. (a) Vanillic acid and (b) p-
hydroxybenzoic acid. Violet lines are 10-year bin averages of the
Lomonosovfonna ice core. Green lines are the 10-year bin av-
erages of the Akademii Nauk ice core measurements (Grieman
et al., 2017). The black horizontal lines are the Medieval Climate
Anomaly (MCA) and the Little Ice Age (LIA) (Mann et al., 2009).
The dashed horizontal line is the extended LIA in the Svalbard re-
gion (Divine et al., 2011).

as large in amplitude or duration. Interestingly, these peaks
do not appear at all in the Lomonosovfonna VA record.

Ten-day back trajectories were computed for the Akademii
Nauk site using the same methods as those described above
from 2006 to 2015 CE (Sect. 2.2; Grieman et al., 2017).
The trajectories show that both of the Lomonosovfonna and
Akademii Nauk sites are influenced by air masses transect-
ing Eurasian forested regions (Fig. 7; Table S1). The largest
fraction of trajectories transects Siberian boreal tundra wood-
land, boreal coniferous forests, and boreal mountain sys-
tems for both ice core sites, particularly in the summer and
fall. Given this similar transport pattern, we would have ex-
pected the two large multi-century peaks in Siberian aromatic
acids after 1400 CE to be exhibited in the Lomonosovfonna
record as well. The sharp divergence between the two records
around 1400 CE and the subsequent dramatic increase in aro-
matic acids only in the Siberian ice core suggest a change in
transport patterns to the sites after 1400 CE. The fraction of
back trajectories transecting vegetated regions of Siberia for
Akademii Nauk was about twice that for Lomonosovfonna.
Conversely, trajectories from European forests comprise a
smaller contribution to Akademii Nauk than to Lomonosov-
fonna. Air masses from European regions are more likely to
reach the Lomonosovfonna site than the Akademii Nauk site.
We speculate that the divergence between the two ice cores
reflects a shift in large-scale atmospheric circulation patterns,
as discussed below.

Figure 7. Ten-day back trajectories from 2006 to 2015 reach-
ing the boreal ecosystems starting from the Lomonosovfonna and
Akademii Nauk ice core locations. Blue is Lomonosovfonna and
red is Akademii Nauk. Trajectories reaching: Siberia (a, c), Eu-
rope (b, d), boreal coniferous forest (a, b), and boreal mountain
system (c, d).

3.7 Relationship to atmospheric circulation and climate

The general climate context for the last millennium is late
Holocene cooling, with superimposed centennial-scale cli-
mate variability associated with the MCA (950–1250 CE),
the LIA (1400–1700 CE), and the twentieth century warm-
ing (PAGES 2k Consortium, 2013; Lamb, 1965; Mann et al.,
2009). Svalbard δ18O ice core records show that cooling con-
tinued in the region through the nineteenth century (Divine
et al., 2011). Divine et al. (2011) suggest that the extended
LIA at Svalbard could reflect the climatic influence of re-
gional sea ice conditions. In that case, the extended LIA was
probably not characteristic of the biomass burning source
regions in Europe and Siberia influencing the Lomonosov-
fonna ice core.

For recent decades, increased burning of wildfires is gen-
erally associated with higher summer temperatures (Flanni-
gan et al., 2009). On that basis alone, one might expect to
see a long-term decrease in aromatic acid signals over the
last millennium, and that is generally the case for both VA
and p-HBA in the Lomonosovfonna ice core. However, on
multi-century and centennial timescales, the variability in the
aromatic acids in the Lomonosovfonna ice core is also large
and somewhat complex. Both VA and p-HBA levels were
high during the MCA. VA declines into the LIA. p-HBA ex-
hibits elevated levels during the latter half of the LIA but VA
does not (Fig. 8). This dissimilarity could be due to a shift
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in spatial patterns of either biomass burning or atmospheric
transport after 1400 CE.

It seems likely that regional changes in burning prox-
ies on multi-century and centennial timescales are strongly
linked to changes in large-scale atmospheric circulation and
the resulting impacts on regional climate and atmospheric
transport. For the source regions influencing the Svalbard
Lomonosovfonna ice core, one might expect that changes
in the North Atlantic Oscillation (NAO) might play an im-
portant role. The NAO is a major mode of climate variabil-
ity in the North Atlantic region, characterized by changes
in the pressure gradient between the Icelandic low and the
Azores high during winter months (Hurrell et al., 2001).
Strong pressure gradients (positive NAO index) are associ-
ated with strong zonal flow, enhanced westerlies transporting
warm air to Europe, increased precipitation in northwest Eu-
rope, and decreased precipitation in southern Europe (Trouet
et al., 2009). Weaker pressure gradients (negative NAO in-
dex) are associated with stronger meridional flow and cool-
ing of the North Atlantic region (Trouet et al., 2012). Proxy
NAO records have been developed from variations in win-
tertime sea salt sodium in the GISP2 ice core, from Mo-
roccan tree rings and speleothem records in Scotland, and
from lake sediments in southwestern Greenland (Meeker and
Mayewski, 2002; Trouet et al., 2009; Olsen et al., 2012).

The proxy NAO records show a marked change in phase
at the onset of the LIA (around 1400 CE) from several hun-
dred years of positive NAO index to a more negative and
variable NAO state that continued throughout and after the
LIA (Fig. 8). The Lomonosovfonna oxygen isotope (δ18O)
record shows a cooling trend at this time, consistent with
the NAO shift (Wendl et al., 2015). The change in NAO
behavior at this time was accompanied by a decline in VA
in the Lomonosovfonna record, a decline in the VA /HBA
ratio, and a sudden divergence between the Lomonosov-
fonna and Akademii Nauk ice cores (1400 CE). We suggest
that a change of high latitude northern hemispheric atmo-
spheric circulation patterns occurred at this time, resulting
in (1) a cooler, wetter northern Europe with less burning
and (2) reduced zonal transport, resulting in “decoupling”
of the two ice core signals. Central Siberian burning likely
increased at this time, as evidenced by sharply increased aro-
matic acids in the Akademii Nauk ice core. The Siberian ice
core signals are similar in timing to changes in the strength of
the Asian monsoon, as recorded in speleothem proxy records
(Grieman et al., 2017; Wang et al., 2005). We speculate that
during the LIA, central Siberia was influenced primarily by
conditions in the Pacific rather than the Atlantic Ocean.

The summertime NAO (SNAO) is defined as the leading
mode of July–August sea level pressure (SLP) variability in
the North Atlantic sector (Folland et al., 2009; Efthymiadis
et al., 2011). The SNAO affects temperatures, precipitation,
and cloudiness in Europe during summer, and one might ex-
pect that variations in burning are even more directly linked
to the SNAO than the NAO. The SNAO has a slightly dif-

Figure 8. Comparison of the timing of aromatic acid signals in
the Lomonosovfonna ice core over the past 800 years compared to
other climate-related proxy records. From top: (a) 10-year bin aver-
ages of Lomonosovfonna vanillic acid (violet line), ratio of vanillic
acid /p-hydroxybenzoic acid (gray line), and (b) p-hydroxybenxoic
acid; (c) 10-year bin averages of the oxygen isotope record from the
Lomonosovfonna ice core (Wendl et al., 2015); (d) North Atlantic
Oscillation (NAO) index (red> 0; blue< 0; Trouet et al., 2009); and
(e) 10-year bin averages of the summer North Atlantic Oscillation
(SNAO) index (Linderholm et al., 2009). The black horizontal lines
are the timing of the Medieval Climate Anomaly (MCA) and the
Little Ice Age (LIA) (Mann et al., 2009). The dashed horizontal line
is the extended LIA in the Svalbard region (Divine et al., 2011).

ferent spatial pattern than the NAO, with a relatively small
Arctic node and a southern node over northwestern Europe.
The positive (negative) mode of the SNAO is characterized
by a warmer and drier (cooler, wetter) northern Europe (Lin-
derholm et al., 2008; Folland et al., 2009). The influence of
the SNAO extends to central Asia, and could therefore influ-
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ence both major source regions for the Lomonosovfonna ice
core.

In order to illustrate the possible influence of the SNAO,
we compared back trajectories from the Lomonosovfonna
site for recent periods when the SNAO index was posi-
tive (1970–1979 CE, mean SNAO index: 6.3) and negative
(1948–1957 CE; mean SNAO index: −2.0) (Folland et al.,
2009). Figure 9 shows the major spatial clusters of 10-day
air mass back trajectories for each time period (computed
using HYSPLIT) superimposed on the SLP anomalies rela-
tive to mean SLP from 1948 to 2017. The high SNAO pe-
riod is characterized by (1) high pressure over Scandinavia,
favoring drier conditions, and (2) trajectories generally orig-
inating at lower latitudes, with a larger fraction of transport
from Scandinavia. These results suggest that SNAO-driven
variability in atmospheric transport could contribute to vari-
ability in burning signals in the Lomonosovfonna record.

SNAO variability has been reconstructed for the past
500 years using historical documents and tree rings (Linder-
holm et al., 2008, 2009, 2013; Luterbacher et al., 2001). The
SNAO record is primarily negative over the past 500 years,
with brief positive excursions until the start of the twentieth
century when it shifted into its positive phase (Linderholm
et al., 2009). The long-term trends in the SNAO and NAO re-
constructions are generally similar, and there are some com-
mon features on centennial timescales (Fig. 8; Trouet et al.,
2009). Both NAO and SNAO records exhibit a positive ex-
cursion from 1500 to 1650 CE, during a period of elevated p-
HBA in Lomonosovfonna. After 1400 CE, VA remains low
and does not show similar variability to p-HBA. This in-
coherence between the records could be due to the change
in atmospheric circulation patterns after 1400 CE when the
Svalbard and Siberia ice core records diverge.

3.8 Lomonosovfonna ice core VA/p-HBA ratios

The mean VA / p-HBA ratio for the Lomonosovfonna ice
core using the 10-year bin averages of each record is 0.40 ±
0.25 (n = 79). Both compounds are produced during the
smoldering phase of burning (Akagi et al., 2011; Legrand
et al., 2016; Simoneit, 2002) and both are produced from
combustion of major boreal forest tree species. Short-term
changes in the ratio most likely reflect the changing contri-
butions from various source regions with different ecosys-
tems. Longer-term changes in the ratio could reflect changes
in ecology and biogeography (i.e., shifts between conifer and
broadleaf forests or grasslands) or changes in atmospheric
transport patterns. As noted earlier, analysis of back trajec-
tories suggests that boreal forests are the principle source re-
gions for this ice core, with minor contributions from tundra
and temperate forests.

The range of VA / p-HBA ratios observed in the
Lomonosovfonna ice core is consistent with the laboratory
combustion studies of boreal forest tree species. Combus-
tion studies have been conducted on several conifers char-

-4.00 2.00

1948–1957 summer 1970–1979 summer

SLP anomaly (mb)

Figure 9. Ten-day clustered back trajectories starting from the
Lomonosovfonna ice core location superimposed on sea level pres-
sure anomalies for summer (June–August) of 1948–1957 (negative
SNAO) and 1970–1979 (positive SNAO). Anomalies are relative to
the 1948–2017 mean of NCEP/NCAR reanalysis data.

acteristic of North American and European boreal forests.
North American conifer (lodgepole pine, Sitka spruce, Dou-
glas fir, and mountain hemlock) combustion yielded VA / p-
HBA weight ratios ranging from 0.40 to 0.99 (Oros and Si-
moneit, 2001a) (Table S2). Specific North American conifers
produce only one of the two compounds. For example, east-
ern white pine produced only VA, and noble fir produced
only p-HBA (Oros and Simoneit, 2001a). European conifers
and peat burning produced VA / p-HBA weight ratios rang-
ing from 0.07 to 8.75 (Iinuma et al., 2007). Combustion of a
German peat sample yielded a low VA / p-HBA ratio of 0.08
(Iinuma et al., 2007; Oros et al., 2006). Combustion of a tun-
dra grass sample from the Canadian Yukon produced p-HBA
only, but at rates 1000-fold less than conifers (Oros et al.,
2006). Deciduous tree species produced roughly 1000-fold
more VA than conifers (mg VA kg−1 fuel burned), and de-
ciduous species did not produce detectable levels of p-HBA
(Oros and Simoneit, 2001a, b). Thus even a small fraction of
air mass trajectories from temperate forests could influence
the VA / p-HBA ratio.

We are not aware of laboratory combustion studies of the
actual species comprising Siberian forests or tundra. This is
a major gap in the knowledge base needed to interpret Arc-
tic ice core data. Similarly, very few studies to date have re-
ported VA / p-HBA ratios for ambient Arctic aerosols. Fu
et al. (2009) reported ratios ranging from 0.16 to 2.2 in
weekly aerosol samples collected at Alert, covering the range
observed in the ice core.

There are significant long-term changes in the
Lomonosovfonna VA / p-HBA ratio over time. The ra-
tio is relatively high during the MCA (0.8), decreases
by a factor of 2 from 1200 to 1400 CE, and remains low
through the LIA until around 1800 CE (Fig. 3). There is
also an increase in VA / p-HBA after 1800, although VA
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is close to the detection limit and the uncertainty in the
ratio is consequently large. Interestingly, the changes in the
VA / p-HBA ratio broadly mirror changes in the phase of the
paleoreconstructions of the NAO and SNAO (Fig. 8). One
might speculate that the associated changes in climate and
transport mentioned earlier contribute to the variations in the
VA / p-HBA ratio but the specific causes are not understood
at this time.

There are several multi-decadal excursions in the VA / p-
HBA ratio. Ratios greater than one occur in the VA peaks
around 1270 and 1370 CE. The second of these peaks is a
notable increase in VA, with no corresponding peak in p-
HBA. Conversely, around 1540 and 1620 CE, there are p-
HBA peaks without a corresponding peak in the VA record.
These events are probably too short to represent ecological
changes, but too long to represent single fire events or sea-
sons. Such events are worthy of further investigation.

4 Conclusions

The Lomonosovfonna ice core record shows that the pyro-
genic aromatic acids, vanillic acid and para-hydroxybenzoic
acid, are present in Arctic ice and preserved on millennial
timescales. The observed temporal variability of these sig-
nals should contain information about the history of high lati-
tude burning in northern Europe and Siberia. VA and p-HBA
are both elevated from 1200 to 1400 CE and decline until the
LIA. Paleoclimate proxy records indicate that this transition
coincides with a shift in the North Atlantic Oscillation from
positive to a more negative state, but the causal basis for a
relationship is not established.

On centennial and shorter timescales, the two acids exhibit
some notable differences. For example, the two largest peaks
in the p-HBA record around 1600 CE are not present in the
VA record. Conversely, elevated levels of VA from 2000 to
2008 CE are not present in the p-HBA record. Such anoma-
lies are intriguing in that they suggest significant changes
in either burning patterns or atmospheric transport. Further
studies of the variability of these compounds in ice cores cov-
ering the instrumental and satellite eras should be conducted.

The two millennial-scale ice cores analyzed for these
compounds to date, Lomonosovfonna and Akademii Nauk,
show intriguing similarity between the Svalbard and Siberian
records at the end of the MCA (1200–1400 CE) but dramatic
differences for most of the past millennium. Such differences
are surprising given that air mass trajectories based on reanal-
ysis data indicate considerable overlap in source areas for the
two ice cores. It seems that a large-scale dynamical explana-
tion of the regional and temporal trends must exist in these
and other proxy fire records. Developing a unified interpreta-
tion of these signals will require further work.
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