
Clim. Past, 14, 455–472, 2018
https://doi.org/10.5194/cp-14-455-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

The sensitivity of the Greenland Ice Sheet to
glacial–interglacial oceanic forcing
Ilaria Tabone1,2, Javier Blasco1,2, Alexander Robinson1,2,a, Jorge Alvarez-Solas1,2, and Marisa Montoya1,2

1Universidad Complutense de Madrid, 28040 Madrid, Spain
2Instituto de Geociencias, Consejo Superior de Investigaciones Cientificas-Universidad Complutense de Madrid,
28040 Madrid, Spain
anow at: Faculty of Geology and Geoenvironment, University of Athens, 15784 Athens, Greece

Correspondence: Ilaria Tabone (itabone@ucm.es)

Received: 2 October 2017 – Discussion started: 8 November 2017
Revised: 9 March 2018 – Accepted: 13 March 2018 – Published: 9 April 2018

Abstract. Observations suggest that during the last decades
the Greenland Ice Sheet (GrIS) has experienced a gradually
accelerating mass loss, in part due to the observed speed-
up of several of Greenland’s marine-terminating glaciers.
Recent studies directly attribute this to warming North At-
lantic temperatures, which have triggered melting of the out-
let glaciers of the GrIS, grounding-line retreat and enhanced
ice discharge into the ocean, contributing to an acceleration
of sea-level rise. Reconstructions suggest that the influence
of the ocean has been of primary importance in the past as
well. This was the case not only in interglacial periods, when
warmer climates led to a rapid retreat of the GrIS to land
above sea level, but also in glacial periods, when the GrIS
expanded as far as the continental shelf break and was thus
more directly exposed to oceanic changes. However, the GrIS
response to palaeo-oceanic variations has yet to be investi-
gated in detail from a mechanistic modelling perspective. In
this work, the evolution of the GrIS over the past two glacial
cycles is studied using a three-dimensional hybrid ice-sheet–
shelf model. We assess the effect of the variation of oceanic
temperatures on the GrIS evolution on glacial–interglacial
timescales through changes in submarine melting. The re-
sults show a very high sensitivity of the GrIS to changing
oceanic conditions. Oceanic forcing is found to be a primary
driver of GrIS expansion in glacial times and of retreat in in-
terglacial periods. If switched off, palaeo-atmospheric vari-
ations alone are not able to yield a reliable glacial configu-
ration of the GrIS. This work therefore suggests that consid-
ering the ocean as an active forcing should become standard
practice in palaeo-ice-sheet modelling.

1 Introduction

Recent observations show that the Greenland Ice Sheet
(GrIS) has lost mass at an accelerated rate over the
past decades (Rignot et al., 2011; Zwally et al., 2011;
Sasgen et al., 2012; Shepherd et al., 2012; van den
Broeke et al., 2016). On average, the GrIS contributed to
0.47± 0.23 mma−1 of sea-level rise from 1991 to 2015
(van den Broeke et al., 2016), with an accelerated rate of
0.89± 0.09 mma−1 from 2010 to 2014 (Yi et al., 2015). In
the future, the GrIS is expected to continue losing mass,
contributing to a sea-level rise relative to the 20th cen-
tury between 90 and 280 mm by 2100 in the worst-case
scenario (RCP8.5) (Bindschadler et al., 2013; IPCC, 2013;
Clark et al., 2015; Fürst et al., 2015). This accelerated ice
loss is due to a combination of increased surface melting
and enhanced ice discharge from marine-terminating glaciers
to the ocean (van den Broeke et al., 2016). High surface
melting has been attributed to rising atmospheric Greenland
temperatures (Box et al., 2009; Hall et al., 2008; Tedesco
et al., 2016), which may also increase crevassing and calv-
ing at the ice front. Conversely, the recently enhanced dis-
charge of ice into the ocean is thought to be directly con-
nected to warmer Atlantic waters entering Greenland’s fjords
(Holland et al., 2008a; Rignot et al., 2010; Straneo et al.,
2010; Straneo and Heimbach, 2013). Higher oceanic tem-
peratures increase the submarine melting at the calving front
of tidewater glaciers, contributing to their acceleration, ice
mass discharge into the ocean and potentially grounding-line
retreat. This acceleration-and-retreat mechanism has been
found in several Greenland glaciers that terminate in the
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ocean (Rignot and Kanagaratnam, 2006). Jakobshavn Isbræ,
West Greenland’s fastest glacier, experienced a high rate of
basal melting (Motyka et al., 2011) initially induced by the
intrusion of warmer waters from the Irminger Sea (Holland
et al., 2008a), more than doubling its speed in the last 25
years (Joughin et al., 2012) and suffering a rapid retreat of its
terminus. Following enhanced subglacial melting observed
in the early 2000s, the Helheim Glacier (southeast Green-
land) also doubled its speed (Howat et al., 2005; Suther-
land and Straneo, 2012) and suffered peak thinning rates of
90 ma−1 (Stearns and Hamilton, 2007), with its terminus re-
treating by about 7 km over just 3 years (Howat et al., 2007;
Straneo et al., 2016).

The complex mechanisms that lead to ice-shelf thinning,
loss of buttressing and potential grounding-line instability
have been studied largely for the Antarctic Ice Sheet (AIS)
(DeConto and Pollard, 2016; Favier et al., 2014; Hanna et al.,
2013; Joughin et al., 2014a; Pritchard et al., 2012; Rignot
et al., 2004; Shepherd et al., 2004; Wouters et al., 2015).
The thinning of the Larsen C ice shelf (Holland et al., 2015)
and its recent calving event (Hogg and Gudmundsson, 2017;
Jansen et al., 2015), the collapse of Larsen B and the melt-
ing of the Antarctic Peninsula glaciers (Cook et al., 2016),
the widespread retreat of Pine Island and other glaciers in
West Antarctica (Alley et al., 2015; Joughin et al., 2014b;
Rignot et al., 2014) and the thinning of some East Antarc-
tica ice shelves (Rignot et al., 2013) are notable examples
of the direct connection between changes in oceanic forcing
and glacier-termini adjustment (Alley et al., 2015). Only in
the last several years has the scientific community also fo-
cused its attention on the ice–ocean interaction in Greenland,
motivated by the observed acceleration and retreat of major
GrIS outlet glaciers. Although marine-terminating glaciers
cover only a small fraction of the entire GrIS, modifications
at the ice–ocean boundaries due to oceanic changes may
considerably affect the inland ice geometry. The effects in-
duced by outlet-glacier acceleration are transferred onshore
by ice-flow dynamics, causing adjustments to the entire in-
land ice-mass configuration (Nick et al., 2009; Fürst et al.,
2013; Golledge et al., 2012). For this reason, a full under-
standing of the interaction between ice and ocean is crucial
to assess the response of the GrIS to past and future climate
changes.

Various numerical models have been used to simulate cur-
rent submarine melt rates (Jenkins, 2011; Rignot et al., 2016;
Sciascia et al., 2013; Xu et al., 2012, 2013) and dynamic re-
treat (Morlighem et al., 2016; Vieli and Nick, 2011) of the
GrIS marine-terminating glaciers, as well as ice-dynamic fu-
ture projections of the whole GrIS (Fürst et al., 2015; Now-
icki et al., 2013), due to changes in the oceanic temperatures.
However, how this thermal forcing affected the past GrIS
configuration has not been explored from a modelling per-
spective so far. Recently, Bradley et al. (2017) simulated the
GrIS evolution for the two last glacial cycles by considering
a sub-shelf melt parameterization which is a function of the

water depth below the ice shelves. Under this assumption,
the submarine melt rate increases when the past sea-level
rises. However, their approach does not take into account
ocean temperature changes. Other studies have reconstructed
the GrIS past evolution as driven essentially by atmospheric
forcing (Langebroek and Nisancioglu, 2016; Quiquet et al.,
2012, 2013; Robinson et al., 2011; Stone et al., 2013), while
the dynamic evolution of the entire GrIS including the influ-
ence of the past oceanic forcing too has only been investi-
gated in a simplified manner. To this end, Huybrechts (2002)
used a three-dimensional ice-sheet model in which marine
extent is controlled by changes in water depth based on
past eustatic sea-level variations, while Tarasov and Peltier
(2002), Simpson et al. (2009) and Lecavalier et al. (2014)
performed a palaeo-reconstruction of the entire GrIS con-
straining their ice-sheet models with past relative sea-level
(RSL) reconstructions. However, submarine melting was not
taken into account as an active forcing in these studies.

The main purpose of this work is to assess the impact
of ice–ocean interaction on the evolution of the whole GrIS
throughout the last two glacial cycles. By implementing a
submarine melting rate parameterization suitable for palaeo-
climatic studies into a three-dimensional hybrid ice-sheet–
shelf model, we evaluate the sensitivity of the GrIS to
past climatic variations, including changes in oceanic tem-
peratures (in terms of heat-flux variations), and investigate
their capability to trigger grounding-line advance and retreat
through time. First, we describe the ice-sheet–shelf model
used to simulate the GrIS evolution, focusing on the imple-
mentation of the submarine melt rate parameterization, and
the sensitivity tests performed for this study (Sect. 2). In
Sect. 3, we show the results obtained in each experiment and
we compare them with data for the last interglacial (LIG),
the Last Glacial Maximum (LGM) and the present day (PD)
found in the literature. After discussing the main model un-
certainties and caveats (Sect. 4), we summarize the main con-
clusions of this work (Sect. 5).

2 Model description and experimental design

2.1 Model

To investigate the oceanic sensitivity of the GrIS throughout
the last two glacial cycles, we use the three-dimensional, hy-
brid, ice-sheet–shelf model GRISLI-UCM. The model is an
extension of the GRISLI ice-sheet model (Ritz et al., 2001),
which has already been successfully used to simulate the
evolution of the past Greenland (Quiquet et al., 2012, 2013)
and Antarctic ice sheets (Ritz et al., 2001; Philippon et al.,
2006; Alvarez-Solas et al., 2010), as well as the Laurentide
Ice Sheet (Alvarez-Solas et al., 2011, 2013). GRISLI-UCM
combines the Shallow Ice Approximation (SIA) for slow in-
land deformational flow and the Shallow Shelf Approxima-
tion (SSA) over fast-flowing areas, that is, ice streams and ice
shelves, where plug flow is dominant. Since we assume de-

Clim. Past, 14, 455–472, 2018 www.clim-past.net/14/455/2018/



I. Tabone et al.: The sensitivity of the Greenland Ice Sheet 457

formational ice-sheet regions to be frozen at the bedrock, no
basal sliding is considered for SIA-dominated areas. Basal
sliding for ice streams is determined through a basal drag
term (τ b), defined as a function of the effective pressure
(Neff) between ice and water pressure, and the basal hori-
zontal velocity (ub), considered as follows:

τ b =−β ub, (1)

where

β ∝Neff. (2)

Dragging at the floating ice-shelf base is considered to be
zero. The position of the grounding line is evaluated follow-
ing a flotation rule dependent on the current sea level and
the ice thickness. Calving at the ice front is based on a two-
condition thickness criterion (Peyaud et al., 2007; Colleoni
et al., 2014). First, an ice-shelf front must have a thickness
lower than 200 m to potentially contribute to ice discharge.
This threshold is in agreement with the thickness of many
observed shelves at their ice–ocean interface. Second, if the
ice advected from each upstream point is not sufficient to
maintain the ice-front thickness higher than that threshold,
the grid point at the front calves. The entire GrIS ice dy-
namics is solved on a computational grid of 20 km× 20 km
horizontal resolution and 21 vertical layers. The glacial iso-
static adjustment (GIA) is described by the elastic lithosphere
– relaxed asthenosphere method (Le Meur and Huybrechts,
1996), for which the viscous asthenosphere responds to the
ice load with a tunable characteristic relaxation time (see
Sect. 2.4).

The hybrid scheme uses a weighting function to combine
the non-sliding horizontal SIA velocities (uSIA) with the SSA
horizontal velocities (uSSA) and is defined as (Bueler and
Brown, 2009)

u= (1− f (uSSA))uSIA+ f (uSSA)uSSA, (3)

where the weighting function f (uSSA) depends on the mod-
ule of the SSA component (uSSA) through

f (uSSA)=
2
π

arctan
(
uSSA

uref

)2

, (4)

ranging between 0 and 1. In this work, the reference velocity
uref is set to 100 m a−1. For small values of uSSA, f (uSSA)≈
0 and the horizontal velocities are calculated within the SIA,
while f (uSSA)≈ 1 for uSSA� uref, for which the contribu-
tion of SSA dominates.

2.2 Atmospheric forcing

The surface mass balance (SMB) is calculated by the posi-
tive degree-day (PDD) scheme (Reeh, 1989) forced by sur-
face atmospheric temperatures and precipitation. This melt-
ing scheme is admittedly too simple for palaeo-simulations

as it omits the contribution of insolation-induced effects on
surface melting, which are important in past warmer periods
such as the Eemian (Robinson and Goelzer, 2014). However,
since this study focuses on the melting effects induced by
past ocean temperature variations, the PDD melt model is
sufficient to give a first approximation of surface melt that
allows the ice sheet to retreat during interglacial periods in
a realistic way. The atmospheric temperature forcing is a
spatially and temporally variable field. It is retrieved using
an index-anomaly approach in which the present-day clima-
tological field (Tclim, atm) is perturbed by past temperature
anomalies derived through a spatially uniform climatic index
α(t) (Fig. 1), as follows:

Tatm(t)= Tclim, atm+ (1−α(t)) (TLGM, atm− TPD, atm). (5)

The index α(t) is built through a multiproxy approach. First,
we combine the temperature reconstruction for Greenland by
Vinther et al. (2009) from 11.7 ka BP to present, the North
Greenland Ice Core Project (NGRIP) reconstruction (Kindler
et al., 2014) for 115–11.7 ka BP and the North Greenland
Eemian Ice Drilling (NEEM) reconstruction (NEEM, 2013)
for 135–115 ka BP, and we generate a synthetic temperature
anomaly time series for 250–135 ka BP based on Antarctic
isotope records following Barker et al. (2011). Second, the
composite signal undergoes a windowed low-pass frequency
filter (fc = 1/16 ka−1) in order to remove the spectral com-
ponents associated with millennial timescales and below. Fi-
nally, the index α is obtained by normalizing the resulting
signal to be in agreement with Eq. (5), i.e. α = 0 for the LGM
and α = 1 for the present day. The present-day climatological
field is taken from the regional climate model MAR forced
by ERA-Interim (Fettweis et al., 2013). TLGM, atm− TPD, atm
is the 2-D surface atmospheric temperature (SAT) differ-
ence between the LGM and the present, as simulated by
the climatic model of intermediate complexity CLIMBER-
3α (Montoya and Levermann, 2008). For the precipitation
rate, the procedure is similar, but the annual present-day pre-
cipitation is scaled by the ratio of the past precipitation to its
present value, as in Banderas et al. (2017). At the base of the
grounded ice, the melt rate is calculated as a function of the
geothermal heat flux, which is prescribed following Shapiro
and Ritzwoller (2004), and the local pressure melting point.
The submarine melt rate is described in detail in the next sub-
section.

2.3 Oceanic forcing

Several marine basal melting rate parameterizations can be
found in the literature. Generally, the submarine melt rate
is thought to be directly influenced by the oceanic tempera-
ture variations below the ice shelves. Accordingly, most basal
melting parameterizations are built as function of the dif-
ference between the oceanic temperature at the ice–ocean
boundary layer and the temperature at the ice-shelf base,
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Figure 1. The 250 ka Greenland annual temperature anomaly signal
built through a multiproxy approach based on the reconstruction by
Vinther et al. (2009) from 11.7 ka BP to present, the NGRIP recon-
struction (Kindler et al., 2014) for 115–11.7 ka BP, the NEEM re-
construction (NEEM, 2013) for 135–115 ka BP and a synthetic tem-
perature anomaly time series for 250–135 ka BP following Barker
et al. (2011) (black line). The red line shows the filtered and normal-
ized climatic index α used to correct the present-day climatological
fields when forcing the model. The same signal can be interpreted
as the palaeo-oceanic temperature anomaly of Eq. (8) (in blue).

generally assumed to be at the freezing point. The depen-
dence on this temperature difference can be linear (Beck-
mann and Goosse, 2003) or quadratic (Holland et al., 2008b;
Pollard and DeConto, 2012; DeConto and Pollard, 2016; Pat-
tyn, 2017). Because of the increasing temperature anomaly
approaching the onshore ice-shelf limit, both schemes en-
sure a higher basal melting rate close to the grounding line,
as suggested by observations (Dutrieux et al., 2013; Rignot
and Jacobs, 2002; Wilson et al., 2017).

The marine basal melting rate parameterization used in
this work follows a linear approach that accounts separately
for sub-ice-shelf areas near the grounding line and for purely
floating ice (ice shelves). A linear scheme is the simplest case
that allows testing of the GrIS sensitivity to past oceanic tem-
perature changes. The formulation is derived from the net
basal melt rate Bgl (ma−1) for ice-shelf cavities close to the
grounding line and terminating in shallow ocean zones, ex-
pressed by Beckmann and Goosse (2003) as

Bgl(t)= κ (Tocn(t)− Tf), (6)

where Tocn is the oceanic temperature close to the ground-
ing line (K), Tf is the temperature at the ice base, assumed
to be at the freezing point (K), and κ is the heat flux ex-
changed between ocean water and ice at the ice–ocean in-
terface (ma−1 K−1). Since knowledge of past Tocn and Tf is
challenging for the complex heat-flux transfer between ice
shelves and the surrounding water, we opted for substituting
these quantities and rearranging the equations to make them
more suitable for palaeo-studies. A representation of the tran-
sient oceanic temperature Tocn can be given by the climato-
logical oceanic temperature Tclim, ocn corrected by the LGM–
present temperature anomaly (TLGM, ocn−TPD, ocn) scaled by
the same climatic index α = α(t) used to correct the atmo-
spheric climatological fields (Fig. 1). Under this assumption,

Eq. (6) can be rewritten as

Bgl(t)= κ (Tclim, ocn +1Tocn(t)− Tf), (7)

where

1Tocn(t)= (1−α(t)) (TLGM, ocn− TPD, ocn). (8)

Combining and reorganizing these equations as

Bgl(t)= κ (Tclim, ocn− Tf)+ κ 1Tocn(t), (9)

we can finally retrieve the expression for the basal melting
rate at the grounding line Bgl (ma−1) as used in this work:

Bgl(t)= Bref+ κ 1Tocn(t). (10)

Bref (ma−1)= κ (Tclim, ocn− Tf) is assumed to represent the
present-day basal melting rate around the ice sheet, κ repre-
sents the sensitivity of the basal melting rate to changes in
the oceanic temperature, and 1Tocn (K) expresses the tem-
poral evolution of the melting at the ice base. In this way,
Bgl coincides with the present-day melt (Bref) for α = 1 and
its LGM (21 ka BP) value for α = 0. When Bgl is negative,
the model allows for refreezing, and the grounding line can
advance offshore.

In a more realistic setup, all parameters in Eq. (10) could
be described by 2-D spatially variable fields. However, for
the sake of simplicity, here we considered all the parameters
to be spatially uniform around all the GrIS marine borders,
as described in Sect. 2.4. The glacial–interglacial tempera-
ture anomaly TLGM, ocn− TPD, ocn (Eq. 8) is set constant to
−3 K, which corresponds to the mean value of the recon-
structed LGM sea surface temperature (SST) anomalies for
the Atlantic Ocean between 60 and 80◦ N latitude (MARGO
Project Members, 2009). This value slightly differs from the
LGM mean SST anomaly reconstructed by Annan and Har-
greaves (2013) (between −1 and −2 K). However, a varia-
tion in κ or an identical change in 1Tocn equally affect the
oceanic forcing applied to the model. Therefore, considering
a different value for 1Tocn would not alter the magnitude of
the oceanic sensitivity applied to the GrIS. These simplifica-
tions allow here for a spatially uniform, but time-dependent,
Bgl.

The basal melting rate for purely floating ice shelves (Bsh)
is given by the grounding-line basal melt Bgl scaled by a con-
stant factor γ :

Bsh(t)= γ Bgl(t). (11)

In this study, γ is set to 0.1. Hence, we consider that the basal
melting rate for ice shelves is 10 times lower than that close
to the grounding zone, which is qualitatively in agreement
with melt rates observed in some Greenland glaciers (Mün-
chow et al., 2014; Rignot and Steffen, 2008; Wilson et al.,
2017). Conversely, the melt rate in the open ocean, that is
considered as being beyond the continental shelf break, is
prescribed to a high value (50 ma−1) to avoid unrealistic ice
growth beyond 1500 m of ocean depth.
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Table 1. Summary of all parameter values used to perturb the basal melting rate equation (Eq. 10) in each sensitivity test.

Sensitivity to Perturbed parameters Units Values

Reference submarine Bref ma−1 0, 0.2, 0.5, 1, 3, 5, 8, 10, 20, 30, 40
melting Bref κ ma−1 K−1 0

Heat-flux Bref ma−1 0, 0.2, 0.5, 1, 3, 5, 8, 10, 20, 30, 40
coefficient κ κ ma−1 K−1 0, 0.2, 0.5, 1, 2, 3, 5, 8, 10

2.4 Experimental design

To study how oceanic changes impact the evolution of the
GrIS over the last glacial cycles, we performed a set of sen-
sitivity tests by perturbing the two key parameters of the
basal melting rate equation (Eq. 10): the estimated present-
day submarine melting Bref and the heat-flux coefficient κ .
For each experiment, we ran an ensemble of simulations over
the GrIS domain throughout the last 250 ka. In this study,
the model is initialised with the present-day Greenland to-
pography (Bamber et al., 2013), the characteristic relaxation
time for the lithosphere is set to 3000 years, and the model is
forced by the past relative sea-level reconstruction of Grant
et al. (2014). The first ∼ 100 ka of the simulation are con-
sidered as a spin-up and are not analysed. A summary of all
the parameter values used in each sensitivity test is shown in
Table 1.

First, we analyse the sensitivity of the model to different
constant (in space and time) Bref values applied at the base
of the ice-sheet marine margins. Due to the scarcity of sub-
marine melt observations along the GrIS coasts, and since
the only available estimates have focused on few very rapid
tidewater Greenland glaciers that cannot be representative of
the basal melt rate for the entirety of GrIS marine areas (Rig-
not et al., 2010; Motyka et al., 2011; Straneo et al., 2012; Xu
et al., 2013; Enderlin and Howat, 2013; Fried et al., 2015;
Rignot et al., 2016; Wilson et al., 2017), we assume present-
day basal melting rates for Greenland comparable to those
from Antarctic ice shelves (Rignot et al., 2013). The range of
values of Bref is set between 0 and 40 ma−1, while κ is set
to zero to make the ocean contribution constant in time. The
resulting basal melting rate is thus equal to the tested Bref
value and a condition of no oceanic basal melting around the
GrIS is achieved only when both Bref and κ are set to zero.

Second, we study the sensitivity of the GrIS to the basal
melt rate sensitivity κ at the ice–ocean interface. The range of
tested values for κ is between 0 (expressing a temporally con-
stant basal melting rate) and 10 ma−1 K−1. The choice of this
range reflects the inference made in Antarctica by Rignot and
Jacobs (2002) that a variation of 1 K in the effective oceanic
temperature changes the melt rate by 10 ma−1 (Eq. 6). Due
to the lack of data for Greenland, as a first approximation,
we can assume such a value is also realistic there. This is
surely a simplification of the problem, as the relation between
ocean temperature and melt rate is not universal but depends

Figure 2. Time evolution of (a) grounded ice volume (millionkm3)
and (b) ice-covered area (millionkm2) simulated for different val-
ues of Bref (ma−1) having set κ = 0 (see Table 1). Dashed lines
show the present-day estimated volume and area of the GrIS (Bam-
ber et al., 2013).

on many factors, such as the water salinity, the depth, the
conformation of the cavity, the water velocity below the ice
shelf and subglacial discharge. The sensitivity test for κ is
firstly done for Bref = 1 ma−1 and then for other Bref values
to show that the GrIS response to the melting rate sensitiv-
ity κ depends on the chosen reference basal melting rate (see
Table 1).

3 Results

In this section, we present the results of each sensitivity study
aiming to assess the impact of the ocean on the evolution of
the GrIS throughout the last two glacial cycles, especially fo-
cusing on the LIG, the LGM and the PD GrIS. The present
work involved a total of 110 model simulations, although
only the most representative cases for each sensitivity study
are discussed.

www.clim-past.net/14/455/2018/ Clim. Past, 14, 455–472, 2018
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Figure 3. Glacial maximum GrIS surface elevation (km) simulated at Termination II (a–c) and Termination I (d–f) for different values of the
reference basal melting rate (Bref = 0, 5, 10 ma−1) under constant oceanic conditions (κ = 0). The timing at which the ice volume reaches
its maximum value during a glacial cycle depends on the experiment and is stated in black for each snapshot. Blue lines indicate the GrIS
extension at the following peak of deglaciation with its corresponding timing reported in blue. Red zones represent the ice shelves extending
beyond the glacial maximum grounding line (black line). Black circles indicate the locations of the Camp Century, NEEM, NGRIP, GRIP
and Dye3 ice cores (from north to south).

3.1 Sensitivity to the reference submarine melting

In this experiment, the maximum ice volume reached
in glacial times ranges between 3.4 and 4.3 million km3

(Fig. 2), 15–45 % higher than the observed current value
(Bamber et al., 2013), suggesting that under constant oceanic
forcing, the GrIS is limited to a configuration close to that of
the present day (Fig. 3). The highest glacial ice volume is
reached by imposing a null basal melting to the GrIS mar-
gins (Bref = 0), which corresponds to a simulation forced
solely by palaeo-atmospheric variations. The varying SMB
throughout the cycles still results in a changing GrIS ice vol-
ume over time. However, during glacials, most grounded ice
remains on land above sea level, and only small ice shelves
are able to grow (Fig. 3a, d).

ForBref > 0, a positive basal melt rate is applied to the ma-
rine margins of the whole GrIS throughout the two glacial cy-
cles. The submarine melting not only inhibits the grounding-
line advance during the glacials but contributes to thinning
the few marine-terminating glaciers still present, constrain-
ing the grounding line further inland and resulting in a
GrIS extent close to the observed present-day configuration
(Fig. 3b, c, e, f). This mechanism can still be quite active dur-
ing glacial times, such that the ice volume can be even lower
than that simulated at the present (Fig. 2). Note that the ice
volume is more sensitive to Bref during the glacial periods,
as during the interglacial periods the effect of the ocean is

limited by the topography of the Greenland itself. Thus, the
retreat is almost entirely driven by the surface ablation and
the elevation–melt feedback. For low Bref values, the ice lost
in a deglaciation is to a large extent determined by the GrIS
configuration in the preceding glacial. As high basal melting
rates inhibit the ice growth during the cold phase, the higher
the Bref is applied to the marine margins, the lower ice loss
is simulated in the following interglacial (Fig. 4). However,
for Bref = 5 ma−1, ice loss becomes insensitive to the melt-
ing applied, since the GrIS is also totally land based during
glacial periods and any subsequent ice mass loss is therefore
uniquely driven by ablation (compare Fig. 3a and b or Fig. 3d
and e).

3.2 Sensitivity to the heat-flux coefficient

We next study the sensitivity to the ocean for a fixed Bref
value of 1 ma−1 (Fig. 5). This value is within present-
day submarine melting rates estimates, between those found
in the largest remaining outlet glaciers in Greenland (Wil-
son et al., 2017) and those of smaller marine-terminating
glaciers with presumably much lower ocean-induced melt.
Under this assumption, the maximum ice volume simulated
in both glacial periods for different κ values ranges be-
tween 4 and 5.4 millionkm3, greatly exceeding the range
found for the case with constant oceanic forcing. Prescrib-
ing positive or zero uniform submarine melting to the marine
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Figure 4. Distribution of the ice volume (a) and area (b) lost dur-
ing the LIG (triangles) and the Holocene (circles) as a function of
Bref. Grey and yellow shades show the range between the maximum
glacial and the minimum interglacial ice volumes (area) for LIG and
Holocene, respectively. The loss is calculated between the time at
which the ice volume reaches its maximum value simulated before
the deglaciation (between 132 and 128 ka BP for TII and between
13 and 9 ka BP for TI) and its following ice minimum (between 122
and 121 ka BP for the Eemian and between 8 and 0 ka BP for the
Holocene). The colours of the points follow the legend of Fig. 2
for clarity. Each ice volume loss has been converted to value of
sea-level-equivalent anomaly (m s.l.e. with respect to its simulated
present-day volume.

boundaries limits the glacial expansion of the GrIS (Figs. 6a
and 7a), as discussed in Sect. 3.1. Conversely, by intensi-
fying the oceanic forcing applied to the margins (with in-
creasing values of κ), the glacial ice volume increases. For
κ = 1 ma−1 K−1, the model simulates a GrIS glacial expan-
sion to the continental shelf break in which the grounding
line has already advanced from the present-day continental
boundaries, and large ice shelves are generated in the eastern
GrIS, especially in the northeast (Figs. 6b and 7b). The max-
imum expansion is simulated for the last glaciation, where
the grounding line has almost reached the continental shelf
break and large ice shelves in the east cover the remaining
shallower zones of the bathymetry. For κ = 10 ma−1 K−1,
the GrIS extends all the way to the continental shelf break
at its glacial maximum, while only a few small floating ice
shelves are present (Figs. 6c and 7c).

A larger ice sheet loses more ice during a deglaciation,
leading to an interglacial state that is almost independent
of κ (Fig. 5). This response is related to the saturation of
the oceanic forcing in warm peaks, when the GrIS is al-
most totally land-based and the ice loss is hence mostly
due to the increase in atmospheric temperature and precip-
itation. Since glacial accretion affects the ice growth much
more than basal melting during the retreat, the ice loss dur-
ing a deglaciation monotonically increases with increasing
κ (Fig. 8). Thus, for larger κ values, more ice grows dur-
ing glacial periods and more ice is lost, and faster, during
the subsequent deglaciation. Mass loss is mostly due to the
large number of grounded-ice zones that are converted into
ice-free areas during the deglaciation (Fig. 8b). The percent-
age of grounded points lost until the peak of an interglacial
period saturates for κ above 3 ma−1 K−1 in correspondence

Figure 5. (a) Time evolution of GrIS grounded ice volume
(million km3) and (b) ice area (millionkm2) simulated for differ-
ent values of the heat-flux coefficient κ , having set Bref = 1 ma−1.
Dashed lines shows the GrIS ice volume and area estimated for the
present day (Bamber et al., 2013).

with preceding glacial GrIS configurations which present a
grounding-line expansion to the continental shelf break. The
slightly increasing ice loss still observed for higher oceanic
sensitivities is mostly related to the ice lost in the GrIS inte-
riors due to the positive elevation–melt feedback.

Due to our melting parameterization (Eq. 10) and to the
Bref value chosen, water below the ice shelves is allowed
to freeze for κ > 0.5 ma−1 K−1, favouring ice growth and
GrIS expansion (Fig. 5). Below this threshold, the model
still allows for submarine melting rates across the margins in
glacial times and the GrIS expansion is almost totally driven
by surface accumulation. However, the sensitivity with re-
spect to κ strictly depends on the value of Bref, as it defines
the positive threshold that the glacial GrIS has to overcome
to start reacting to the oceanic forcing imposed at the margins
(Fig. 9). For Bref = 10 ma−1, the GrIS responds to the ocean
only for κ > 3 ma−1 K−1, while forBref = 30 ma−1 the GrIS
starts to expand only for κ > 8 ma−1 K−1. For high Bref,
since a constant high submarine melting is applied overall,
the glacial GrIS is almost constrained to the PD configura-
tion and exposure to the ocean is reduced. Only a sufficiently
high κ to counteract this strong melting is able to make the
GrIS expand and then retreat during the interglacial. Once
the reaction has started, the sensitivity of the GrIS to κ in-
creases with increasing Bref; i.e. small variations in the mag-
nitude of κ lead to a fast and large growth of ice during
glacials and consequently to a fast and large loss of ice dur-
ing the deglaciation. Similar results are found for the LIG
(not shown).
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Figure 6. GrIS surface elevation (km) simulated at the penultimate glacial maximum (TII) (a–c) and at the LIG minimum (Eemian) (d–f)
for three values of the melting rate sensitivity κ having set Bref = 1 ma−1. The timing of these snapshots depends on the experiment and is
stated in black for each snapshot. Corresponding ice volume (in s.l.e.) is shown in blue. Red zones represent the ice shelves extending beyond
the glacial maximum grounding line (black line). Black circles indicate the locations of the Camp Century, NEEM, NGRIP, GRIP and Dye3
ice cores (from north to south).

Figure 7. GrIS surface elevation (km) simulated at the LGM (TI) (a–c) and present-day GrIS (d–f) for three values of the heat-flux coefficient
κ having set Bref = 1 ma−1. The timing of the snapshots depends on the experiment and is stated in black for each snapshot. Corresponding
ice volume (in s.l.e.) is shown in blue. Red zones represent the ice shelves extending beyond the LGM grounding line (black line). Black
circles indicate the locations of the Camp Century, NEEM, NGRIP, GRIP and Dye3 ice cores (from north to south).
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Figure 8. Distribution of ice volume (a) and area (b) lost during
the LIG and the Holocene as a function of κ , for Bref = 1 ma−1.
Grey and yellow shades show the deviation between the maximum
and the minimum ice volumes (area) for LIG and Holocene, re-
spectively (see Fig. 5). The loss is calculated between the time at
which the ice volume reaches its maximum value simulated before
deglaciation (between 140 and 128 ka BP for TII and between 19
and 10 ka BP for TI) and the subsequent ice minimum (between
122 and 121 ka BP for the Eemian and between 8 and 0 ka BP for
the Holocene). The colours of the points follow the legend of Fig. 5
for clarity.

3.3 Last interglacial

The amount of ice lost during the LIG period increases
with the oceanic sensitivity κ . High κ values lead to higher
glacial ice volumes and to larger ice losses during the con-
sequent deglaciation (Fig. 8). The range of observed volume
changes spans between 4.2 m s.l.e. (for κ = 0) and 8 m s.l.e.
(for κ = 10 ma−1 K−1), above the present-day GrIS ice vol-
ume. Despite this large ice-loss range, all GrIS configurations
simulated at the LIG ice minimum (Eemian) present a similar
extension (Fig. 6d–f). In all experiments, a large retreat is ob-
served in the north (especially in the northeast), where melt-
ing overcomes the low accumulation rates, and in the south-
west, where the ice discharge from the interior is enhanced
by the presence of fast ice streams and, in some areas, by the
fact that the bedrock is below sea level. Although the position
of the land-ice borders at the Eemian is not very sensitive to
κ , the corresponding surface elevation fields show some dif-
ferences depending on κ . For high values of κ , a lower ice
elevation is simulated over the GrIS (compare Fig. 6d and f),
a tendency that is reflected in a slightly lower ice volume too
(Fig. 5).

It is interesting to note that even when imposing a very
high κ , the complete disappearance of the GrIS is not sim-
ulated. The GrIS is only partly deglaciated and all ice-core
sites are still covered by ice (including the discussed ice core
locations of Dye3 and NEEM). Since the oceanic-driven re-
treat is limited by the land-based configuration observed in
the interglacials, the retreat during the LIG is mainly con-
trolled by the atmospheric temperatures and precipitations
with which the model is forced.

The amount of ice lost during the Eemian relative to
the present day (Fig. 10), which ranges between 2.9 and
3.2 m s.l.e., is within the uncertainty range of ice volumes

Figure 9. Distribution of the ice volume lost in the Holocene
as a function of the heat-flux coefficient κ , simulated for three
selected reference basal melting rates (Bref = 1 ma−1 in green,
Bref = 10 ma−1 in blue and Bref = 30 ma−1 in red). The ice vol-
ume loss is calculated between the time at which the ice volume
reaches its maximum value before the deglaciation and the present
day. The green points are the same as the circles of Fig. 8a (for the
Holocene).

suggested by some previous studies (e.g. 1.2–3.5 m s.l.e. for
Helsen et al. (2013), 0.4–4.4 m s.l.e. for Robinson et al.
(2011) and 0.4–3.8 m s.l.e. for Stone et al., 2013). Also, the
timing at which the peak of deglaciation occurs, which spans
between 122.3 and 121.6 ka BP in all the simulations, agrees
with the timing proposed in many previous studies (Calov
et al., 2015; Langebroek and Nisancioglu, 2016; Robinson
et al., 2011; Stone et al., 2013; Yau et al., 2016). The time
at which the peak of the Eemian occurs in our experiments
depends partly on the timing of the atmospheric tempera-
ture peak and partly on the duration of the post-glacial re-
bound, which controls the intrusion of warm waters into the
GrIS bays enhancing the ocean-driven retreat. However, the
Eemian peak does not depend on the maximum insolation
since the PDD scheme used does not account for past insola-
tion changes.

3.4 Last Glacial Maximum

Although many uncertainties about the GrIS configura-
tion during the last glacial period still exist, several esti-
mates of the sea-level contribution from the GrIS during the
last deglaciation can be found in the literature: 2.6 m s.l.e.
(Bradley et al., 2017), 2.7 m s.l.e. (Huybrechts, 2002), be-
tween 2 and 3 m s.l.e. (Clark and Mix, 2002), 3.1 m s.l.e.
(Fleming and Lambeck, 2004), 4.1 m s.l.e. (Simpson et al.,
2009), between 3.1 and 4.5 m s.l.e. (Buizert et al., 2018) and
4.7 m s.l.e. (Lecavalier et al., 2014). These estimates come
from ice-sheet models of different complexity, with their own
dynamics and boundary conditions. Particularly the ice-sheet
model used by Simpson et al. (2009) and Lecavalier et al.
(2014) is run in combination with a GIA and RSL model
and then constrained by past surface elevations derived from
ice-core data, observations of past changes in RSL and the
present-day GrIS configuration. These models do not solve
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Figure 10. GrIS ice volume evolution simulated for different val-
ues of the melting rate sensitivity κ during the last interglacial (see
Fig. 5 for the line colour legend). The ice volumes have been con-
verted to values of s.l.e. anomaly with respect to the present-day
volumes estimated in each specific simulation. Grey shading rep-
resents the reference basal melting rates Bref investigated for the
case of constant-in-time oceanic forcing (κ = 0 ma−1 K−1). The
upper bound refers to Bref = 40 ma−1 and the lower bound to
Bref = 0 ma−1. Black and white symbols indicate the LIG mini-
mum ice volumes estimated by previous studies. The tight clus-
tering of our estimates compared to previous work is due to the
fact that the sole uncertainty is here related to the oceanic forcing
through κ .

the dynamics of the ice shelves or the grounding-line migra-
tion, which is parameterized. However, their estimates of the
GrIS spatial extent can be considered as the most realistic
reconstructions of the recent past glacial GrIS so far.

Under constant oceanic conditions, the LGM-PD ice ex-
cess simulated by our model at 21 kyr BP spans between
0 and 1.4 m s.l.e. for Bref ranging from 0 to 40 ma−1, in-
creasing with decreasing Bref values (grey shaded region –
Fig. 11). This range is well below previous LGM ice volume
reconstructions found in the literature (grey points). How-
ever, slightly larger ice volumes (0.6–2 m s.l.e.) are found at
the peak simulated further in time in the glaciation (∼ 13–
10 ka BP). For the case with no submarine melting (Bref =

0 ma−1), the maximum ice volume (lower bound of grey
shadow, at ∼ 12 kyr BP) is close to those of Huybrechts
(2002) and Bradley et al. (2017). In this simulation, the GrIS
increases moderately as its extension surpasses its PD bor-
ders and the grounding line approaches the continental shelf
(Fig. 12a). Nevertheless, the atmospheric forcing alone is not
sufficient to make the GrIS expand as expected during the
LGM. According to reconstructions, the GrIS extended as
far as the continental shelf break in every direction, except in
the northeast region where the grounding line remains closer
to the coast (Lecavalier et al., 2014). In our simulations, the
GrIS reaches a glacial expansion consistent with the litera-
ture only for κ ≥ 1 ma−1 K−1 (Fig. 12b). However, the ice
volume reached for this oceanic sensitivity is still smaller

Figure 11. GrIS ice volume evolution simulated for different val-
ues of the melting rate sensitivity κ during the last deglaciation. The
ice volumes have been converted to values of s.l.e. anomaly with
respect to the present-day volumes estimated in each specific sim-
ulation. As in Fig. 10, grey shading represents the simulations for
the different reference basal melting rates (Bref) investigated for the
case of constant-in-time oceanic forcing (κ = 0). The upper bound
refers to Bref = 40 ma−1 and the lower bound to Bref = 0 ma−1.
Grey dots and orange shading indicate estimates of the GrIS ice
volume at the LGM (21 ka BP) and at the maximum ice volume
reached before the last deglaciation (16.5 ka BP), as suggested by
previous work.

than the LGM volumes of Simpson et al. (2009) and Lecav-
alier et al. (2014) (Fig. 11), since only with κ > 3 ma−1 K−1

does the model simulate a maximum ice volume compara-
ble to those ranges. The discrepancy in volumes, despite the
same extension, could be related to the different dynamics
and boundary conditions applied in the two models. Never-
theless, our simulated ice volumes are in agreement with re-
cent estimates corrected for seasonal surface air temperatures
in Greenland during the LGM (Buizert et al., 2018).

The timing of the reconstructed deglaciation can also pro-
vide information for comparison. The maximum increases
suggested by Simpson et al. (2009) (4.6 m s.l.e.) and Lecav-
alier et al. (2014) (5.1 m s.l.e.) occur at 16.5 ka BP, while our
simulations suggest a timing dependent on κ ranging from
20 to 10 ka BP for very low κ values (Fig. 11). The mag-
nitudes of the oceanic sensitivity that best approximate the
evolution of the GrIS before the Holocene are thus between
5 ma−1 K−1 (4.6 m s.l.e. at 17.4 ka BP) and 10 ma−1 K−1

(5.3 m s.l.e. at 14 ka BP). However, some discrepancies be-
tween our GrIS glacial extension and that of Lecavalier et al.
(2014) are still present (Fig. 12b).

3.5 Present-day GrIS

Given that the topography of the present-day GrIS is one of
the trustworthy measures used to assess the reliability of an
ice-sheet model, we compare our present-day GrIS ice thick-
ness and extent simulated for κ = 10 ma−1 K−1 to those es-
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Figure 12. GrIS total extent (ice shelves are included) simulated
at the peak of the last glaciation for (a) no melting/freezing at the
grounding line (cyan) and (b) κ = 0, 1 and 10 ma−1 K−1 (red,
green and purple lines, respectively) for Bref = 1 ma−1. The tim-
ing of the glacial maximums is (a) 12 kyr BP and (b) 10, 20 and
14 kyr BP for κ = 0, 1 and 10 ma−1, respectively. LGM (21 kyr BP)
GrIS grounding-line position estimated by Lecavalier et al. (2014)
is shown for comparison (black line).

timated by Bamber et al. (2013) (Fig. 13). The choice of this
particular κ value is based on the discussion above (Sect. 3.4)
for the LGM and is supported by the good agreement be-
tween the simulated present-day ice volume and observa-
tions (Bamber et al., 2013) (Fig. 7f). The simulated extent
of the GrIS matches reasonably well the observations. How-
ever, notable discrepancies are observed in some sectors. The
main differences are found in the northeast, where GRISLI-
UCM predicts an ice margin somewhat too far inland, and
in the southwest, where our model is not able to make the
GrIS retreat as expected. The ice loss in the north is a known
problem that appears in many studies when simulating the
GrIS during an interglacial (Stone et al., 2010; Born and Ni-
sancioglu, 2012). In the interior, the difference in ice thick-
ness is relatively low. However, the GrIS simulated by our
model generally shows thicker ice along the margins, a ten-
dency that propagates inland. Other areas in which our sim-
ulated ice thickness is lower than that observed are located
in the centre of the continent and in the very southeast corre-
sponding to a mountainous region. However, the focus of our
work is not to exactly reproduce the observed present-day
GrIS ice volume at the end of the simulations but rather to
demonstrate the impact of the ocean on the GrIS past evolu-
tion. From this perspective, the simulations arrive at a reason-
able representation of the present day and within the range of
other models.

Figure 13. Modelled minus observed surface elevation for the
present day. Modelled data are taken from the GRISLI-UCM sim-
ulation which best estimates the presumed LGM extension (Bref =
1 ma−1 and κ = 10 ma−1 K−1) while the observed surface eleva-
tion is taken from Bamber et al. (2013). Purple and black lines rep-
resent simulated and observed GrIS extensions, respectively. Black
circles indicate the locations of the Camp Century, NEEM, NGRIP,
GRIP and Dye3 ice cores (from north to south).

4 Discussion

Our model simulates the advance and retreat of the GrIS dur-
ing the last two glacial cycles. Transient simulations reflect
the ice-sheet response to the specific oceanic forcing applied
to the model. This reaction is different for glacial and inter-
glacial periods (Fig. 5). Since during the interglacial peri-
ods the GrIS is almost totally land based and therefore less
exposed to the ocean, the minimum ice volume reflects the
oceanic imprint only mildly and is limited to a small range
of possible values. On the other hand, the volume reached
in glacial periods is much more sensitive to κ . Although the
maximum ice volume loss is constrained by the imposed lim-
ited extension to the continental shelf break, the large ice loss
observed for a high oceanic sensitivity is closely related to
the GrIS configuration in the previous glacial, which is essen-
tially marine-based at the margins and therefore more sub-
jected to oceanic changes (Fig. 6c). As water temperatures
rise at the beginning of the deglaciation, the basal melting
rate increases too (Eq. 10), thinning ice shelves at the bound-
aries, enhancing outflow of ice and triggering grounding-line
retreat. The effects of this ocean-driven retreat are not lo-
cally confined but are propagated inland through a dynamic
response of the grounded ice sheet. The ice loss at the mar-
gins triggers ice advection from the interior which further
increases the ice discharge into the ocean, and, as the thick-
ness of the inland ice decreases, the elevation–melt feedback
begins. At a given stage of the deglaciation, when the whole
ice sheet starts to become land based, this atmosphere-driven
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retreat becomes the sole driver of ice mass loss. The simu-
lated retreat during this phase is influenced by the choice of
the surface melt scheme used in the model. At the peak of the
Eemian, the melt determined by the PDD scheme can be 20–
50 % lower than the melt calculated if past insolation changes
are taken into account (Robinson and Goelzer, 2014). This
inaccuracy therefore influences the GrIS contributions to sea-
level rise for the last interglacial (Fig. 10), which could be
underestimated.

As discussed in Sect. 3.4 and 3.5, the oceanic forcing that
seems to best reconstruct the past (LGM) and the present
GrIS is achieved for a heat-flux coefficient of 10 ma−1 K−1.
However, the submarine melt scheme used and some sim-
plifications made in its treatment may partly influence our
results. Firstly, only a limited range of reference submarine
melting rates has been investigated, since only two of the
system model parameters have been explored (Table 1). Sec-
ondly, our melting parameterization is highly conditioned by
the Bref value assumed to represent the present-day subma-
rine melting rate around the GrIS (Fig. 8), as it consequently
determines the minimum κ value needed to allow the GrIS
to respond to the ocean (Fig. 3). Using a single value for this
term is a coarse approximation to reality, but since the de-
tailed distribution of the present-day sub-shelf melt along the
coasts does not yet exist for Greenland, the retrieval of a 2-D
field would be complex and highly uncertain. However, we
have considered the same order of magnitude of melt rates as
is proposed in the literature for the AIS, which spans values
from negative to above 40 ma−1 in some very active regions
(Rignot and Jacobs, 2002). In support of this evidence, simi-
lar basal melting rates have been found recently in some GrIS
ice tongues (Wilson et al., 2017). Thirdly, the basal melt-
ing equation strongly depends on the oceanic temperature
anomaly TLGM,ocn−TPD, ocn, which has been prescribed to a
spatially constant value of −3 K. Since this term impacts the
oceanic sensitivity through κ (Eq. 10), it is clear that the same
results obtained in this work would have been reached by
fixing one value of κ and instead examining the influence of
different levels of the1Tocn on the GrIS past evolution. Con-
sidering a spatially constant SST anomaly represents an ide-
alized simplification of the oceanic forcing for two reasons:
the temperature of the water is clearly not uniform along the
GrIS coasts and the melt at the grounding line is presumably
controlled by water temperature deeper in the ocean column
(between 100 and 1000 m in Greenland; Rignot et al., 2016).
These issues could be avoided, for example, by using spa-
tially variable (horizontally and vertically) oceanic temper-
atures from available model outputs for Greenland. To see
whether this simplification could influence our results, some
tests using 2-D temperatures from CLIMBER-3α snapshots
(Montoya and Levermann, 2008) have been run (not shown).
Despite some differences in the ice distribution and the time
of the retreat, the main results obtained in this work did
not change. Finally, another simplification made here is the
assignation of the same climatic index α to both atmosphere

and ocean. In principle, forcing the ocean with an index de-
rived from past ocean temperatures could be more appropri-
ate. To this end, we ran additional simulations by applying
the multiproxy index α for the atmosphere and another in-
dex for the ocean calculated from benthic-retrieved ocean
temperatures (Waelbroeck et al., 2002). The results of the
new simulations show very little differences from the ones
reported here, while the same sensitivity to the ocean is pre-
served (not shown). Thus, such a distinction in forcing does
not affect the main outcomes of this work.

Our results may well be model dependent, and some
model limitations should be noted. As described in Sect. 2.1,
our ice-sheet–shelf model is provided with an internal GIA
scheme which accounts for bedrock deformation due to
changes in the GrIS ice load. However, since the GrIS rests
on the peripheral forebulge of the North American ice sheets
(NAIS), such as the Laurentide Ice Sheet, variations in the
NAIS ice load induce consequent vertical motions of the
lithosphere beneath the GrIS (Lecavalier et al., 2014). The
resulting GrIS isostatic adjustment is therefore the combi-
nation of these local and non-local responses which make
the GIA treatment rather complex. In principle, these non-
local effects should be taken into account as they contribute
to the sea-level variability, becoming especially relevant at
the beginning of deglaciations when the ice mass loss is sig-
nificantly induced by sea-level rise (Lecavalier et al., 2017).
However, for the sake of simplicity, the GrIS isostatic ad-
justment is assumed here to be only due to local ice mass
variations, as other works have done in the past (Greve and
Blatter, 2009; Helsen et al., 2013; Huybrechts, 2002; Lange-
broek and Nisancioglu, 2016; Stone et al., 2013).

The simulated ice volume at the present day is overesti-
mated for all investigated values of κ (Fig. 8). This fact sug-
gests that our model has a tendency to overestimate the ice
thickness of the GrIS, especially in the marginal zones of
the domain, a well-known phenomenon (Calov et al., 2015).
These discrepancies are partly linked to the relatively low
model resolution (20 km× 20 km), which limits the accu-
racy in estimating the margins especially along the fjords,
and partly due to the boundary conditions applied to the ice-
sheet model, such as the basal sliding. The coarse model res-
olution prevents the model from resolving fine-scale phys-
ical processes at the marine-terminating outlet glaciers that
end in narrow fjords, although they are considered as the pri-
mary sources of ice discharge today due to oceanic changes.
Such an inability of our model may be more relevant when
modelling the GrIS retreat during the LIG and the Holocene.
The lack of a sub-grid fjord treatment does not allow for a
proper analysis of the ice front processes which become rel-
evant when the retreat has reached the continental area above
the sea level. Especially when, as in our case, the submarine
melt goes abruptly to a high value at the grounding line, the
implementation of a sub-grid-scale parameterization would
allow the small processes at the fjords to be accurately re-
solved (Calov et al., 2015; Favier et al., 2016; Gladstone
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et al., 2017). However, these limitations lead to only second-
order effects given the scope of our work.

The parameterization used for the submarine melting rate
at the GrIS marine margins is a simplification compared
to other temperature-dependent submarine melting schemes.
We are aware that the melting rate depends on many regional
factors such as the temperature and salinity of the ocean at
the ice-shelf margin, the shape of the ice-shelf cavity and
the depth of the grounding line, which our equations do not
take into account. However, our simple construction allows
us to test the sensitivity of the GrIS to the oceanic forcing
in a straightforward manner and is found to be particularly
suitable for palaeo-studies.

Our basal melting scheme is implemented in such a way
that the melting at the grounding line (Eq. 10) is higher than
the one set below the ice shelves (Eq. 11). This approach
is supported by sub-shelf melting rate estimates (Dutrieux
et al., 2013; Reese et al., 2017; Rignot and Jacobs, 2002; Wil-
son et al., 2017). Moreover, we assume that the ratio between
the two is 1 : 10, which is valid for the present day, but could
be inaccurate for glacial times. However, some experiments
done with ratios of 1 : 5 and 1 : 15 differ very little from the
results presented in this work (not shown). Therefore, our pa-
rameterization is much less sensitive to the melting rate be-
low the ice shelves with respect to that at the grounding line.
On the other hand, a recent study shows the need to make
the basal melting decrease smoothly to zero when approach-
ing the grounding line from the ice shelf to avoid resolution-
dependent performances (Gladstone et al., 2017). This can be
achieved, for example, by considering the submarine melt to
be dependent on the water-column thickness beneath the ice
shelf, as Bradley et al. (2017) suggested in their work. It is in-
teresting to compare our results with theirs, as we address the
same scientific problem, i.e. the impact of submarine melting
on the evolution of the past GrIS, from two different points
of view. Our submarine melt scheme is implicitly a linear
function of the water depth, as, going down through the wa-
ter column, the melt rate maintains the same value until it
reaches a critical zone at which the sub-shelf melt is set to
50 ma−1 to avoid improbable ice expansion (Sect. 2.3). Our
work shows that without melting/freezing at the grounding
line (for Bref = 0 and κ = 0), the GrIS is not able to reach the
continental shelf break (Fig. 12a). However, it is able to ex-
tend past the present-day coastline, similar to the simulations
presented by Bradley et al. (2017). Moreover, experiments
performed under the same oceanic conditions with increased
basal sliding at the margins show that our model allows fur-
ther expansion during the glacial periods (not shown). On
the other hand, the model used by Bradley et al. (2017) has
the capability of making the GrIS retreat during interglacial
periods only if the submarine meltwater depth relation is ex-
ponential and if RSL variations due to both local and non-
local effects are considered. On the contrary, a proper retreat
during the deglaciations is always achieved in our simula-
tions (Figs. 3 and 6–7), although the GIA does not account

for global effects. These discrepancies are probably due not
only to the different submarine melt schemes considered in
each model but also to the features of the model dynam-
ics, such as the sliding law and the grounding-line migration
scheme. Following these assumptions, a sub-grid treatment
of the small-scale processes taking place at the grounding
line, such as basal sliding, sub-shelf melting, hydrology and
migration, will be added in our model in the future. This will
provide a more realistic description of grounding-line pro-
cesses such as the enhanced submarine melting as well as
the basal drag at the margin of fast grounded ice.

We should finally remark that the GrIS evolution during
the last two glacial cycles has been assessed here only from
an oceanic point of view, while the influence of different at-
mospheric forcings has not been investigated. This simplifi-
cation may be especially important for the results shown for
the LIG and the Holocene, in which the retreat is mostly in-
duced by surface ablation. However, this point will be in the
scope of future work.

5 Conclusions

Here, we assessed the impact of palaeo-oceanic tempera-
ture variations on the evolution of the GrIS on a glacial–
interglacial timescale. By using a three-dimensional hybrid
ice-sheet–shelf model including a parameterization of the
basal melting rate at the GrIS marine margins, the model
simulates the evolution of the whole ice sheet under tem-
porally variable oceanic conditions. Firstly, the magnitude of
the oceanic forcing applied at the ice–ocean interface triggers
and drives the grounding-line advance (through water freez-
ing) and retreat (through ice melting). Secondly, it induces
a dynamic adjustment of the grounded ice sheet, determin-
ing the amount of ice grown (lost) during the cold (warm)
stages. Although the GrIS evolution is a result of the at-
mospheric and oceanic forcings operating together, we have
shown that the ocean is a primary driver of the GrIS glacial
advance. Not only must the oceanic forcing be activated, but
it must be strong enough to reproduce a reliable GrIS evolu-
tion throughout the glacial cycles. It is important to remark
that other factors which could affect the GrIS evolution have
not yet been explored in detail. Sensitivity tests to the atmo-
spheric forcing, glacial isostatic adjustment effects and spa-
tially non-uniform submarine melt rates should be taken into
account in the future to analyse the scientific problem from a
broad range of points of view. Nevertheless, we have shown
that changing oceanic conditions is a fundamental contrib-
utor to the evolution of the whole GrIS, suggesting that the
oceanic component should be included as an active forcing
in palaeo-ice-sheet models.

Code and data availability. The GRISLI-UCM code and the
analysed data are available from the authors upon request.
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