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Abstract. The effect of aerosols is one of many uncertain
factors in projections of future climate. However, the be-
haviour of mineral dust aerosols (dust) can be investigated
within the context of past climate change. The Last Glacial
Maximum (LGM) is known to have had enhanced dust de-
position in comparison with the present, especially over po-
lar regions. Using the Model for Interdisciplinary Research
on Climate Earth System Model (MIROC-ESM), we con-
ducted a standard LGM experiment following the protocol of
the Paleoclimate Modelling Intercomparison Project phase 3
and sensitivity experiments. We imposed glaciogenic dust on
the standard LGM experiment and investigated the impacts
of glaciogenic dust and non-glaciogenic dust on the LGM
climate. Global mean radiative perturbations by glaciogenic
and non-glaciogenic dust were both negative, consistent with
previous studies. However, glaciogenic dust behaved differ-
ently in specific regions; e.g. it resulted in less cooling over
the polar regions. One of the major reasons for reduced cool-
ing is the ageing of snow or ice, which results in albedo re-
duction via high dust deposition, especially near sources of
high glaciogenic dust emission. Although the net radiative
perturbations in the lee of high glaciogenic dust provenances
are negative, warming by the ageing of snow overcomes this
radiative perturbation in the Northern Hemisphere. In con-
trast, the radiative perturbation due to high dust loading in
the troposphere acts to warm the surface in areas surround-
ing Antarctica, primarily via the longwave aerosol—cloud in-
teraction of dust, and it is likely the result of the greenhouse
effect attributable to the enhanced cloud fraction in the up-
per troposphere. Although our analysis focused mainly on

the results of experiments using the atmospheric part of the
MIROC-ESM, we also conducted full MIROC-ESM experi-
ments for an initial examination of the effect of glaciogenic
dust on the oceanic general circulation module. A long-term
trend of enhanced warming was observed in the Northern
Hemisphere with increased glaciogenic dust; however, the
level of warming around Antarctica remained almost un-
changed, even after extended coupling with the ocean.

1 Introduction

The Last Glacial Maximum (ca. 21 000 years before present;
LGM), which is the most recent period featuring maximum
expansion of the land ice sheets in the Northern Hemisphere,
has been investigated thoroughly using various palaeo-proxy
records and via modelling studies (Braconnot et al., 2007a, b;
Kageyama et al., 2006, 2017). Climate modelling is an essen-
tial tool in investigations seeking to clarify the mechanisms
of climate change, as stated in the Intergovernmental Panel
on Climate Change (IPCC) assessment reports (IPCC, 2013).
Therefore, it is especially important to evaluate the capability
of numerical models to capture past climatic conditions.
Palaeo-proxy data and modelling studies are both required
for a proper understanding of past climates; however, the fo-
cus of this study is on modelling. General circulation mod-
els (GCMs) are one of the tools used most widely for in-
vestigation of the mechanisms of both climate and climate
change. The improvement of computational resources has al-
lowed for the development of models with high complexity
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that permit interactive coupling of various climatic compo-
nents. In comparison with proxy data, previous modelling
experiments targeting the LGM have tended to underesti-
mate the magnitude of cooling, especially over high latitudes
(Masson-Delmotte et al., 2006, 2010). The importance of
feedback related to dust and vegetation has been identified
in Chapter 5 of the IPCC Fifth Assessment Report (IPCC,
2013).

It is recognised that uncertainty over the effect of aerosols
is one of the most important factors regarding radiative per-
turbation in estimates of global warming. Mineral dust is the
most abundant atmospheric aerosol, even in the present cli-
mate. For example, Mahowald et al. (2010) investigated the
trend of the amount of atmospheric dust in the 20th cen-
tury based on observations and modelling. They reported
a correlation between an increase in desert dust and a net
negative radiative perturbation. Examination of proxy data
has suggested a clear enhancement of dust during the LGM,
which was especially pronounced at high latitudes, i.e. reach-
ing levels more than 20 times greater than the present day
over Antarctica (Lambert et al., 2008; Lamy et al., 2014;
Dome Fuji Ice Core Project members, 2017). Although the
enhancement of dust deposition was found less over lower
latitudes, it was still several times higher in comparison with
the present day (Winckler et al., 2008).

Although earlier studies (Mahowald et al., 1999; Lunt and
Valdes, 2002; Claquin et al., 2003) have estimated higher
dust amounts during the LGM in comparison with the pre-
industrial (PI) period, dust amounts over Antarctica have
tended to be underestimated. Claquin et al. (2003) estimated
the radiative perturbation at the top of the atmosphere (TOA).
They reported a cooling effect attributable to dust, but they
also found a warming effect due to dust deposition on snow.
Later, Mahowald et al. (2006a, b) estimated the glaciogenic
dust flux and the aerosol-radiation interaction. Their stan-
dard LGM experiment simulated an underestimation of dust
deposition flux, especially over high latitudes, in compar-
ison with the DIRTMAP proxy data archive (Kohfeld and
Harrison, 2001). Then, they considered the effect of sources
of glaciogenic dust surrounding the ice sheets and glaciers.
Such areas are defined to generate substantial amounts of
glacial flour during glacial periods (Bullard et al., 2016). The
study considered the emission of various fluxes of dust from
these glaciogenic source areas and a best fit to the DIRTMAP
deposition distribution was obtained. Although this estimate
could conceal other possible and non-introduced processes
of dust sources, it constitutes an important step forward in
the determination of a reasonable representation of both the
atmospheric loading and the depositional distribution of dust
during the LGM. However, they did not estimate the effects
of aerosol—cloud interaction. Takemura et al. (2009) used the
Model for Interdisciplinary Research on Climate (MIROC)
Atmospheric GCM (AGCM) with an online aerosol mod-
ule to determine both the aerosol-radiation and the aerosol—
cloud interactions for the LGM and PI periods at both the
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surface and the tropopause. However, they underestimated
the amount of dust deposition over Antarctica, probably be-
cause they did not consider glaciogenic dust. Lambert et
al. (2013) used two general circulation models coupled with
online aerosol models and obtained underestimated dust flux
and radiative forcing. This underestimation was global, but
more pronounced over the polar regions, and they suggested
the possibility that it contributes to an underestimation of
polar amplification for LGM and future projections. Yue et
al. (2011) used an AGCM to estimate the aerosol-radiation
interaction for dust and they reported an evident cooling ef-
fect. Albani et al. (2014) supposed high erodibility areas to
obtain better representation of LGM dust. They also high-
lighted the importance of the optical properties and size dis-
tribution of dust aerosols. In comparison with the control set-
ting, Sagoo and Strelvmo (2017) applied an emission factor
of 3.4 to the dust emissions in an LGM level CO, experiment
(i.e. the land sea mask and ice sheets were unchanged from
the control) to mimic the high dust situation during the LGM
and they estimated the aerosol—cloud interaction. Hopcroft et
al. (2015) investigated the aerosol-radiation interaction at the
TOA using an AGCM and the land module of an Earth sys-
tem model (ESM), based on which they suggested the neces-
sity of further analyses of aerosol—cloud interaction as future
work. They also summarised the global mean dust emissions
and loadings of the PT and LGM periods reported in previous
studies. It was suggested that the amount of dust is highly de-
pendent on the model used, not only for the LGM but also for
the PI. The latest review of previous studies is also in Albani
et al. (2018).

Another aspect of dust is related to the ageing of the snow
surface, which possibly modulates the surface temperature
via albedo reduction. Krinner et al. (2006) discussed the im-
portance of the ageing effect of snow, particularly over east-
ern Siberia. Their ageing scheme was based on that of War-
ren and Wiscombe (1980) and Wiscombe and Warren (1980).
Moreover, Ganopolski et al. (2010) simulated the glacial—-
interglacial cycle using an intermediate complexity model, in
which the ageing effect was implemented via simple scaling.

Previous studies have not included a dynamic ocean in this
context, so the impacts on global ocean circulation are un-
known.

In summary, we claim that the evaluation of the total ef-
fect of dust on the LGM surface temperature is incomplete.
Therefore, this study addresses the problem by incorporating
the effects of aerosol-radiation interaction, aerosol—-cloud in-
teraction, snow ageing, and dust—ocean interaction. We un-
dertook AGCM simulations and full ESM simulations of the
LGM with sensitivity experiments targeting the effects of
dust on climate.

The following section explains the modelling and experi-
mental set-ups. The resulting estimations of dust amount and
dust depositional distribution are presented in Sect. 3.1, and
the influence of dust on surface temperature is described in
Sect. 3.2. To investigate how dust might modulate the atmo-
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spheric state, the radiative perturbation attributable to dust is
described in Sect. 3.3 and the effect of glaciogenic dust on
the ocean is discussed in Sect. 3.4. The results of the simula-
tions are summarised and discussed in Sect. 4.

2 Model and experimental design

2.1 Description of the MIROC-ESM

The MIROC-ESM (Watanabe et al., 2011) used in this study
was the version submitted to both the Coupled Model Inter-
comparison Project phase 5 (CMIP5) and the Paleoclimate
Modelling Intercomparison Project phase 3 (PMIP3). The
resolution of the atmosphere in the model is T42 with 80 ver-
tical levels, while that of the ocean is about 1° (256 x 192).
Although the model is capable of computing the amount of
CO; in the atmosphere, we prescribed the level of atmo-
spheric CO» in our experimental set-up. The spatially ex-
plicit individual-based Dynamic Global Vegetation Model
(SEIB-DGVM) (Sato et al., 2007) was implemented to sim-
ulate global vegetation dynamics and terrestrial carbon cy-
cling in the system, but it returns only the leaf area in-
dex (LAI) to the Minimal Advanced Treatments of Surface
Interaction and Runoff (MATSIRO) land module (Takata et
al., 2003). In this model, the SEIB-DGVM received several
variables from the AGCM, but it returned only the carbon
flux to the atmosphere. Also implemented was the Spectral
Radiation-Transport Model for Aerosol Species (SPRINT-
ARYS) online aerosol module (Takemura et al., 2000, 2002,
2005, and 2009), which explicitly treats organic, black car-
bon, and mineral dust, sea-salt aerosols, and sulfate and its
precursor gases. This module was coupled with the radiation
and cloud microphysical schemes to calculate the aerosol—
radiation and aerosol—cloud interactions. In the calculation
of the former, refractive indices depending on wavelengths,
size distributions, and hygroscopic growth were considered.
The refractive index of dust aerosols was taken from Deepak
and Gerber (1983) but its imaginary part was reduced for
consistency with recent measurements of weaker shortwave
absorption to 1.530-2.00 x 1073/ at 0.55 um dust (Takemura
et al., 2005). Number concentrations of both cloud droplets
and ice crystals are prognostic variables, as are their mass
mixing ratios, and the changes in their radii and precipita-
tion rates were calculated. Thus, the aerosol—cloud interac-
tion was taken into account (see Takemura et al., 2009, for
more details). The processes controlling dust generation are
the surface wind, vegetation type, soil moisture, LAI, and
snow cover. Once dust is generated, it is transported via
atmospheric circulation and deposited via the processes of
wet—dry deposition and gravitational settling. In this study,
glaciogenic dust was imposed for the sensitivity experiments.
The generation of glaciogenic dust flux followed the estimate
of Mahowald et al. (2006a). This flux was added as a time-
invariant source into the simulations and is not dependent on
modelled land surface or atmospheric conditions.
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In the MATSIRO module, the effect of dirt in snow (i.e.
snow ageing) was considered based on the work of both Yang
et al. (1997) and Warren and Wiscombe (1981). The magni-
tude of dirt concentration at the snow surface was varied to
fit an observed relation between snow albedo and dirt con-
centration (Aoki et al., 2006). The dirt concentration in snow
was calculated from the deposition fluxes of dust and soot
calculated in the SPRINTARS module. The relative strength
of the absorption coefficients for dust and soot were weighted
as a function of the deposition fluxes to obtain radiatively ef-
fective amounts of dirt in the snow.

2.2 Experimental design

We performed eight experiments: five using the AGCM part
of the MIROC-ESM and three using the full MIROC-ESM.
The specific experiments labelled PI.a and Pl.e represent the
AD 1850 control climate of the PI era, with Pl.e having been
submitted to CMIPS5. The previous 100-year climatology of
sea surface temperature (SST) and sea ice of the period sub-
mitted to CMIP5 was used as a boundary condition for Pl.a.
The experiments labelled LGM.e and LGM.a represent the
LGM climate following the PMIP3 protocol (Abe-Ouchi et
al., 2015). The LGM.e experiment was submitted to CMIP5—
PMIP3 (Sueyoshi et al., 2013). The LGM.a experiment was
the AGCM experiment using the SST and sea ice taken from
the PMIP3 LGM experiment (LGM.e). The LGM.e experi-
ment was extended for a further 800 years beyond the PMIP3
period (Fig. 1). The LGMglac.a experiment was a new ex-
periment based on the same conditions as LGM.a, but with
an additional glaciogenic dust flux following Mahowald et
al. (2006a). The LGMglac.naging.a and LGM.naging.a ex-
periments had the same settings as LGMglac.a and LGM.a,
but without the effect of snow ageing. The LGMglac.e ex-
periment was the full ESM version of LGMglac.a, which
branched from the LGM.e experiment 40 years prior to the
period submitted to CMIP5-PMIP3 (Fig. 1). The glaciogenic
dust flux from each area was set identical to the estimates of
Mahowald et al. (2006a) and the emission areas were defined
as shown in Fig. S1 in the Supplement to follow their work as
closely as possible; i.e. the three areas of strongest emission
were the pampas of South America, central North America,
and eastern Siberia. In contrast to non-glaciogenic dust, the
emission of glaciogenic dust was independent of dust emis-
sion conditions and it was emitted constantly for consistency
with the dust flux in Mahowald et al. (2006a) (Table 1b).
Once emitted into the atmosphere, the treatment of glacio-
genic dust was identical to non-glaciogenic dust. The inte-
gration of LGMglac.e was performed for 940 years. Table 2
lists the details of all the experiments.

Clim. Past, 14, 1565-1581, 2018
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Figure 1. Time series of (a) global mean annual temperature at
2 m of height (°C) and (b) peak strength of the Atlantic Meridional
Overturning Circulation (AMOC; Sv) for LGM.e and LGMglac.e.
The year zero was set to the beginning of the period submitted to
CMIPS.

3 Results

3.1 Dust amount and comparison with data archives

The emission flux of dust (gm~2 yr~!) is shown in Fig. 2 for
the Pl.a, LGM.a, and LGMglac.a experiments. For the PL.a
experiment, the major dust sources are the Sahara, Arabian,
Gobi, and Taklamakan deserts. A minor source is also found
in the mid-latitude region of South America. While these
dust sources look reasonable based on the present-day situa-
tion, there is too little dust emission from the other plausible
dust sources such as Australia, southern Africa, and south-
western North America. The wet bias over these areas in the
PlL.a experiment leads to excess vegetation, which prevents
dust emission, and persists in the LGM.a and LGMglac.a ex-
periments. In the LGM.a and LGMglac.a experiments, the
dust emission flux in the Sahara, Gobi, and Taklamakan
deserts is significantly enhanced, which is the result of a
windier and drier climate during the LGM, with additional
emission flux evident from northern Siberia. In contrast, the
emission flux from South America is reduced, which is prob-
ably because of increased soil moisture resulting from en-
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Table 1. (a) Simulated total dust emissions (Tg yr_l) and atmo-
spheric burden (Tg) for Pl.a, LGM.a, and LGMglac.a. (b) Glacio-
genic dust flux (Tg yr_l) (Mahowald et al., 2006a) from the areas

shown in Fig. S1 in the Supplement in longitudinal order.

(a) Experiment Pl.a LGM.a LGMglac.a

Emission 2540 7250 13400

Burden 11.09 30.65 39.20
(b) Area Glaciogenic dust
flux (Tgyr™ )
Europe 288
Eastern Siberia 3320
Alaska 39
Western North America 17
Central North America 841
Mississippi River basin 92
Pampas 1935

hanced precipitation in this region. For the LGMglac.a ex-
periment, glaciogenic dust emission is evident surrounding
the extended ice sheets during the LGM. The total emis-
sion amount is 2540 (Tg yr~!) for the PLa experiment, 7250
(Tgyr~!) for the LGM.a experiment, and 13400 (Tgyr—!)
for the LGMglac.a experiment. The total simulated emis-
sions and atmospheric loads are listed in Table 1.

The global dust budget can be compared with the find-
ings of previous studies. Hopcroft et al. (2015) summarised
it in their Table 1. They clarified that the dust amount is
highly dependent on the model, not only for the LGM ex-
periments but also for the PI experiments. Our emission and
load values fall in the middle of the ranges determined by
previous studies. However, they are close to those of Take-
mura et al. (2009) for PI.a and LGM.a, probably because the
models adopted are from the same model family and use the
same aerosol module. The emission of LGMglac.a is close
to that of Mahowald et al. (2006a), most likely because we
adopted their glaciogenic dust, but the load of LGMglac.a
(39Tg) is about 60 % of Mahowald’s loading (62 Tg), which
suggests overestimation of immediate dust deposition rates
near the source areas (Fig. 4) attributable to our assumption
of the independence of dust emission from wind speed. The
change in the zonal mean dust loading in the atmosphere
for the ratios LGM.a /PLa and LGMglac.a /Pl a is shown
in Fig. 3a and b, respectively. In the LGM.a experiment, the
dust mass concentration in the Northern Hemisphere is en-
hanced, but decreased in the Southern Hemisphere compared
with the PL.a experiment. In contrast, the mass concentration
is enhanced significantly in both the northern and southern
high latitudes in the LGMglac.a experiment. The glaciogenic
dust reached higher levels of the troposphere in the South-
ern Hemisphere compared with the Northern Hemisphere.
This can be attributed to the different conditions of the strong
dust sources. In the Southern Hemisphere, they are exposed
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Table 2. List of experiments. (a) Experiment using MIROC-ESM. (b) Experiments using the AGCM part of MIROC-ESM.

(a) Experiment names  Explanation Integration length (years)
Ple The piControl experiment submitted to CMIP5 530
LGM.e The 1gm experiment submitted to 1200
CMIP5-PMIP3; the integration is extended
a further 800 years from the end of PMIP3 pe-
riod
LGMglac.e LGM.e + adding glaciogenic dust flux 940

following Mahowald et al. (2006a)

(b) Experiment names  Explanation

Integration length (years)

Pla Pre-industrial control, SST, sea ice, and LAI are 25
taken from the climatology of PL.e

LGM.a The lgm experiment submitted to 25
CMIP5-PMIP3; the integration is extended
a further 800 years

LGMglac.a LGM.e + adding glaciogenic dust flux 25
following Mahowald et al. (2006a)

LGM.naging.a LGM.a + no ageing of snow albedo 25

LGMglac.naging.a LGMglac.a 4 no ageing of snow albedo 25

to stronger winds because of the lack of continental land,
whereas in the Northern Hemisphere, the strong sources of
glaciogenic dust are located over continents that are subject
to lower wind speeds. The distribution of dust deposition for
each experiment is shown in Fig. 4a—c and the ratio to PL.a
is shown in Fig. 5 for comparison with the archives of ice
and sediment core data, as indicated by the coloured circles
(Kohfeld et al., 2013; Albani et al., 2014). The scatter plots
shown in Fig. 4d—f compare the data with the modelled de-
position rate at the grids corresponding to the data locations.
The colours and mark types are used for categorisation ac-
cording to the area and the type of core data. Reasonable
correlation is seen for the Pl.a experiment, except in the grids
over the Southern Ocean, which are mostly located in the
southern Pacific Ocean region. The main source of the dust
deposited in this region is expected to be Australia (Li et al.,
2010; Albani et al., 2012), where our model underestimates
the emission. In the LGM.a experiment, the dust deposition
flux is underestimated in North America, Eurasia, the South
Pacific, the Southern Ocean, and Antarctica. In contrast, in
the LGMglac.a experiment, the underestimation is generally
improved. The model—data linear correlation coefficients in
the logarithmic scale are 0.79, 0.62, and 0.80 for the PlLa,
LGM.a, and LGMglac.a experiments, respectively. The dif-
ferences in the deposition flux between the Pl.a and Pl.e ex-
periments, LGM.a and LGM.e experiments, and LGMglac.a
and LGMglac.e experiments are almost negligible.
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3.2 Surface temperature at LGM and the effect of
glaciogenic dust

The surface temperature anomaly for LGM.a—PlLa is pre-
sented in Fig. 6a. The cooling is about 2.3 °C over the tropics
and increases towards high latitudes. The most pronounced
cooling is seen over the ice sheets in the Northern Hemi-
sphere. This general view is also seen in Fig. 6b, which
shows the temperature anomaly for LGMglac.a to PL.a. Fig-
ure 7b and ¢ show the anomaly of the downward radiation for
LGM to PI for these experiments. The cooled atmosphere at
the LGM results in reduced longwave radiation reaching the
Earth’s surface, which is consistent with the distribution of
the temperature anomalies in Fig. 6.

Now, we focus on imposed glaciogenic dust. The surface
temperature at the height of 2 m is influenced by glaciogenic
dust and the difference in LGMglac.a relative to LGM.a is
presented in Fig. 6¢c. The warming (i.e. less cooling com-
pared with the PLa results) is pronounced in the high lati-
tudes in contrast to the expectation of the likely cooling effect
of the dust (IPCC, 2013).

The changes in the LGMglac.a result relative to the LGM.a
result for the net, longwave, and shortwave downward radia-
tion at the surface are presented in Fig. 7a, d, and g. The fig-
ures represent the total effect of the atmospheric loading of
glaciogenic dust on radiation toward the Earth’s surface. Fig-
ure 7g shows a negative anomaly in shortwave radiation near
the strong sources of glaciogenic dust, as well as in the north-
ern high latitudes and the edge of Antarctica. In contrast, a
positive anomaly of longwave radiation in the LGMglac.a ex-
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Figure 2. Dust emission flux (g m—2 yr_l) for (a) PL.a, (b) LGM.a,
and (c¢) LGMglac.a. Ocean areas are dark grey and ice sheets are
white.

periment is pronounced around Antarctica and in the north-
ern high latitudes (Fig. 7d). While the negative anomaly in
shortwave radiation dominates the net change near the areas
of glaciogenic dust emission, the positive longwave anomaly
dominates the region surrounding Antarctica. The radiative
perturbation attributable to glaciogenic dust is detailed in the
next section.

Figure 8 shows that warming of LGMglac.a—LGM.a south
of 55° S is evident without the inclusion of the effects of the
ageing of snow (LGMglac.naging.a—LGM.naging.a). This
suggests the warming around Antarctica is not the result of
snow ageing but that it follows from the change in the ra-
diation balance in the atmosphere. Moreover, the magnitude
of the warming is not significantly affected by ocean cou-
pling (LGMglac.e-LGM.e). In contrast, more than 80 % of
the warming in the Northern Hemisphere is the result of
the ageing of the snow surface, as is evident by inspection
of the LGMglac.naging.a—-LGM.naging.a results (Fig. 8).
The high dust deposition rate reduces the surface albedo
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Figure 3. All panels are zonal mean height plots. Ratio of the dust
mass concentration for (a) LGM.a / PLa, (b) LGMglac.a / PL.a, and
(c) temperature change for LGMglac.a—-LGM.a. Contour lines in
(a) and (b) show the dust mass concentration for PL.a (g cm_3) and
in (c) the temperature change for LGM.a-PLa (°C).

as shown in Fig. S2 in the Supplement and leads to a re-
duction of reflected shortwave radiation, which overcomes
the cooling effect of the dust loading in the atmosphere, re-
sulting in warming (Fig. 6¢). The warming in the North-
ern Hemisphere is most pronounced over eastern Siberia and
central North America, where large amounts of glaciogenic
dust are deposited and therefore where the albedo of the
LGMglac.a experiment is reduced significantly. The snow
in the LGMglac.a experiment thaws earlier in the year than
in the LGM.a experiment over eastern Siberia. Substantial
snowmelt over a large area within this region accelerates
warming via albedo reduction. This is consistent with the
results of Krinner about snow ageing preventing the accu-
mulation of snow in this region. In contrast, in central North
America, the snow is reduced compared with the LGM.a ex-
periment but it is still significantly higher than the Pl.a ex-
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periment. The position of the —2 °C isotherm averaged over
June—August, which is the threshold of ice sheet retreat—
extension (Ohmura et al., 1996), shifted northward by about
1° latitude, which is significantly less than the model resolu-
tion. Therefore, the effect of our dust flux on climate is lesser
melting of the Laurentide Ice Sheet. However, we question
whether the model is able to represent the appropriate ageing
of snow under such a high dust deposition flux. As this is be-
yond the scope of this study, further evaluation of the effects
of snow ageing are required.
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3.3 Dust-related aerosol-radiation and aerosol—cloud
interactions

The aerosol-radiation and aerosol—cloud interactions were
estimated using the same method as Takemura et al. (2009).
The aerosol-radiation interaction was estimated based on the
difference between a standard experiment including dust im-
pacts and another experiment under the same conditions but
without the dust affecting radiation. The aerosol—cloud in-
teraction was estimated based on the difference between a
standard experiment and another experiment under the same
condition but without dust at all.
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Figure 5. Model-data comparison of the ratio of dust deposi-
tion flux estimated from the ice and sediment core data archives
obtained from Kohfeld et al. (2013) and Albani et al. (2014):
(a) LGM.a/PLa and (b) LGMglac.a / PLa.

The net global mean radiative perturbation (aerosol—
radiation and aerosol-cloud) of dust is one of cool-
ing at the Earth’s surface for all the experiments; i.e.
PLa: —0.99 Wm™2, LGM.a: —1.50 W m~2, and LGMglac.a:
—1.71 Wm™2. The breakdown of the LGM experiments rel-
ative to the PI experiment for the change in the global
mean radiative perturbation is listed in Table 3. The net
change in the global mean aerosol-radiation interaction at
the TOA is slightly positive for LGM.a—PI.a and it amounts
to 0.12Wm~2 for the LGMglac.a—PLa results. Albani et
al. (2018) summarised the results from previous studies
about aerosol-radiation interaction at the TOA. Our posi-
tive anomaly at the TOA is located around the upper end
of previous studies, ranging from about —3 to 0.1 Wm™2.
On the other hand, the change at the surface is nega-
tive both with (—0.21 W m~2) and without (—0.30 W m~—2)
glaciogenic dust. The change at the surface is of similar
magnitude to the findings of previous studies (e.g. —0.25
and —0.56 Wm™2 with and without glaciogenic dust in
Mahowald et al. (2006b), —0.23 Wm~2 in Takemura et
al. (2009), and —0.26 Wm~2 in Albani et al., 2014), and it
is caused primarily by changes in shortwave radiation. The
net change in the global mean aerosol-cloud interaction at
the TOA for the LGM.a—PLa result is —0.36 W m~2. Both
the shortwave and longwave radiation increased with glacio-
genic dust, resulting in a net change of —0.39 Wm™2. At
the surface, without glaciogenic dust, there is net negative
reduction in comparison with the TOA. With the inclusion
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Air temperature at 2 m
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Figure 6. Difference in surface temperature at 2 m of height (°C)
for (a) LGM.a-Pl.a, (b) LGMglac.a-Pl.a, and (¢) LGMglac.a—
LGM.a. Change is considered not significant at the 95 % confidence
level in the hatched area based on a t test.

of glaciogenic dust, however, the change at the surface is
slightly more negative than the change at the TOA. Consid-
ering the total effect of dust, but without glaciogenic dust,
the radiative perturbation change at the TOA relative to the
surface is small, whereas the inclusion of glaciogenic dust
results in surface cooling via aerosol-radiation interaction.
Figure 9 shows the spatial distribution of radiative per-
turbation by dust at the TOA, which has a smaller differ-
ence between the LGMglac.a and LGM.a results compared
with the surface (Fig. 10a). At the TOA, although the in-
fluence of glaciogenic dust from the pampas region is dis-
tributed over the Southern Ocean, the positive longwave and
negative shortwave radiation almost cancel each other out.
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Figure 7. Change in (a) net, (d) longwave, and (g) shortwave downward radiation at the surface for LGMglac.a-LGM.a (W rnfz) (down-
ward, positive). The same in (b), (e), and (h) for LGMglac.a—Pl.a and (c), (f), and (i) for LGM.a—-PLa.

There are local negative effects over the strong sources of
glaciogenic dust but the amplitudes are much smaller than at
the surface (Figs. 9a and 10a). Figure S3 in the Supplement
shows the LGMglac.a—LGM.a anomaly of aerosol-radiation
and aerosol—cloud interactions for the TOA and the surface;
it also presents the same information but without the snow
ageing effect. The panels clarify the fact that the effect of
snow ageing is independent from radiative perturbation by
dust load in the atmosphere. The figure also clarifies the fact
that the anomaly of the aerosol-radiation interaction tends
to be significant at the level of 0.1 W m~2, whereas the sig-
nificance of the anomaly of the aerosol-cloud interaction
is difficult to determine. Nevertheless, the positive anomaly
around Antarctica at the surface is significant. Therefore, al-
though glaciogenic dust changes the TOA radiation budget
only marginally, it heats and/or cools the atmosphere and
causes a greater change in the radiation budget at the sur-
face. The global mean change resulting from the addition of
glaciogenic dust is cooling (—0.19 W m~2), but with local at-
mospheric heating over the high latitudes. Hereafter, we in-
vestigate the changes in the spatial distribution and strength
of radiation at the surface under different climatic conditions.

Figure 10 shows the change in the net radiative per-
turbation due to dust at the surface for the LGMglac.a—
LGM.a, LGMglac.a—Pl.a, and LGM.a—PI.a experiments. The
aerosol-radiation interaction dominates near the massive
dust sources, e.g. the Sahara Desert. Except for such regions,
the aerosol—cloud interaction dominates the radiative pertur-
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bation. The addition of glaciogenic dust acts to reduce short-
wave radiation. The negative radiative perturbation is distinct
near the emission areas. In contrast, for longwave radiation, a
general positive radiative perturbation resulting from glacio-
genic dust is obvious, especially near the strong sources of
dust and at the edge of Antarctica. The negative shortwave
radiation forcing overcomes the positive longwave radiation
forcing near the sources of glaciogenic dust. However, the
positive longwave radiative perturbation plays a role in the
regions surrounding Antarctica. The higher dust loading in
the higher troposphere in the Southern Hemisphere promotes
the generation of cloud ice nucleation and high-level clouds,
especially in the regions surrounding Antarctica, likely re-
sulting in an enhanced greenhouse effect, which warms the
lower troposphere (Figs. 3c and 11). Because the dust deposi-
tion flux of the standard LGM.a experiment is higher than the
PL.a experiment in the Northern Hemisphere but lower in the
Southern Hemisphere, the impact of glaciogenic dust might
be more efficient in the Southern Hemisphere. Sagoo and
Strelvmo (2017) reported global mean cooling in a “high”
dust experiment, consistent with our results (Table 3). The
discrepancies could arise because of different cloud ice nu-
clei schemes, their experimental setting (no change in land
from their control), and/or because their sources of high dust
emission were located mainly in desert areas, whereas our
glaciogenic dust sources are located in the high latitudes.
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Table 3. LGMglac.a—PI.a and LGM.a-Pl.a changes in global mean radiative perturbation by dust (a) at the surface and (b) at the top of the

atmosphere (TOA) (W m_z).

(a) Surface LGMglac.a—PlLa LGM.a-Pl.a LGMglac.a-Pl.a LGM.a-PLa

Aerosol-radiation  Aerosol-radiation Aerosol-cloud  Aerosol—cloud
Net —0.30 —0.21 —0.42 —0.28
Longwave 0.37 0.28 0.50 0.34
Shortwave —0.67 —0.50 —0.92 —-0.62
(b) TOA LGMglac.a-PlLa LGM.a-Pl.a LGMglac.a—PlL.a LGM.a-PLa

Aerosol-radiation  Aerosol-radiation Aerosol-cloud  Aerosol—cloud
Net 0.12 0.07 —0.39 —0.36
Longwave 0.17 0.14 0.62 0.26
Shortwave —0.05 —0.07 —1.01 —0.63

Zonal mean temperature (°C) LGMglac—LGM

60° N
30°N
EI.(I‘\{ula::z.sl I.(}f\i a
LGMglac.naging.a—LGM.naging.a
EQ LGMglac.e~LGM.e :
. beginning,end of ESM exp.
30°S
60°S

Figure 8. Difference in 2 m air temperature between LGMglac and
LGM. Red line denotes LGMglac.a-LGM.a. Green line denotes
LGMglac.naging.a—LLGM.naging.a, which means the change is not
attributable to the ageing effect of snow. Thin and thick black lines
denote LGMglac.e-LGM.e at the beginning (average of year 1 to
100 in Fig. 1) and the end (average of year 701 to 900) of the exper-
iments, respectively. Shading represents the year-to-year standard
deviation.

3.4 Influence of glaciogenic dust on the ocean

We extended the LGM.e experiment by 800 years beyond
the original PMIP3 period (Fig. 1) and the LGMglac.e ex-
periment was conducted for 940 years. Because the temper-
atures become quasi-stable after year 600 in Fig. 1, the av-
erage of the final 300 years is used for the analyses. The
strength of the Atlantic Meridional Overturning Circulation
(AMOC) of LGM.e was reduced by about 10 Sv in the analy-
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sis period compared with the spin-up period and LGMglac.e.
The strength of the abyssal cells (Fig. S4 in the Supplement)
is more stable but with differences of a few Sverdrups be-
tween LGM.e and LGMglac.e, reflecting the AMOC state.
The surface air temperature and SST changes according to
the LGMglac.e-LGM.e results are presented in Fig. 12. The
zonal mean anomaly of air temperature over land and scat-
ter plots of the anomaly in the proxy data (Bartlein et al.,
2011) and the anomaly of the corresponding model grids are
shown in Fig. S5 in the Supplement. It illustrates the level of
agreement between the model and the proxy archives. Pro-
nounced discrepancy is evident in the northern high latitudes
around 70° N, with some proxy data over Alaska suggest-
ing warmer temperatures than PI, which is not resolved in
all our LGM experiments and the other LGM experiment
in PMIP3 models. Although the differences between LGM.e
and LGMglac.e appear minor in comparison with the pollen
proxy archive, LGMglac.e generally exhibits slightly closer
agreement with the proxy data.

Warming of the SST by the increased air temperature for
LGMglac.e compared to LGM.e is obvious in the northern
high latitudes, but the magnitude of the SST change is mostly
below 0.5 °C. Locally strong warming along the Gulf Stream
can be attributed to differences in the strength of the ther-
mohaline circulation. Although investigation of the effect of
dust on the thermohaline circulation is left for future work,
we note that there might be a possibility of an effect of strong
snow ageing in the Northern Hemisphere. In contrast, al-
most no change is calculated in the SST around Antarctica
(Fig. 12f), which confirms that warming around Antarctica
is not attributable to a change in the temperature of the ocean
surface. Even after the extended integration times of our sim-
ulations, the high plateau over Antarctica, which is often the
location of ice core sites, does not warm further (see e.g. cir-
cled letters in Fig. 12a—c). The LGMglac.e cooling from the
PL.e results for this area is largely within the range of obser-
vational estimates (—7 to —10°C) (Stenni et al., 2010; Ue-
mura et al., 2012).
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Figure 9. Change in net radiative perturbation by dust at the top of the atmosphere (TOA): (a) LGMglac.a-LGM.a, (b) LGMglac.a—Pl.a,

and (¢c) LGM.a-PlL.a.
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Figure 10. Change in net radiative perturbation by dust at the surface: (a) LGMglac.a-LLGM.a, (b) LGMglac.a-PI.a, and (c) LGM.a-Pl.a.
Decomposition of net change for longwave radiation: (d) LGMglac.a-LGM.a, (e) LGMglac.a—Pl.a, and (f) LGM.a-Pl.a; for shortwave
radiation: (g) LGMglac.a—LGM.a, (h) LGMglac.a—Pl.a, and (i) LGM.a—PLa.

The SST anomaly in both the LGM.e-Pl.e and the
LGMglac.e—Pl.e experiments appears reasonable in compar-
ison with the LGM SST reconstruction shown by coloured
circles (MARGO project members, 2009) (Fig. 12d and e).
Local cooling of the ocean temperature is seen in the
lee of the source of glaciogenic dust in Argentina, which
would be caused by the negative radiative perturbation
(Figs. 7 and 10a).

The zonal mean potential temperature and salinity anoma-
lies in the Atlantic and Pacific oceans for the LGM.e—
PI.e and LGMglac.e—Pl.e experiments are presented in Figs.
S6 and S7 in the Supplement. The positive anomalies in the
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Northern Hemisphere in Figs. S6¢c and 7c in the Supple-
ment are attributable to the difference in the strength of the
AMOC between LGM.e and LGMglac.e. The minor nega-
tive anomaly in the upper 100 m around 30° S in the Atlantic
basin can be attributed to the effect of glaciogenic dust from
the pampas area.

4 Conclusions and discussion

This study used the MIROC-ESM to investigate the effect of
mineral dust aerosols on the glacial climate. The represen-
tations of climatology by the PL.a and Pl.e simulations are
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Figure 11. Averaged value height plot (60-80° S) for change in
LGMglac.a-LGM.a for temperature (red), cloud fraction (blue),
and cloud ice mass concentration (green). Note that the cloud
ice mass concentration is plotted only at values exceeding 1 x
10-8 kg kgfl in LGM.a.

considered reasonable for a state-of-the-art ESM (Watanabe
et al., 2011). The cooling evident in the LGM.e experiment
in comparison with the PLe results is also generally com-
parable with palaeo-proxy archives (Fig. 12). The net radia-
tive effect of global mean dust during the LGM is negative,
which is the same trend as reported in previous studies (Al-
bani et al., 2014; Hopcroft 2015; Mahowald et al., 2006b;
Sagoo and Strelvmo, 2017). The global mean value is dom-
inated by a high emission of dust from subtropical deserts.
Takemura et al. (2009) suggested an LGM-PI anomaly of
—0.9 W m~2 for the global mean aerosol—cloud interaction,
whereas our anomaly is —0.36 W m~2 (Table 3), even though
the results are based on models from the same model family.
This difference in the global mean value is derived mainly
from the different boundary conditions used for the PI ex-
periment. The SST used by Takemura et al. (2009) (Ohgaito
and Abe-Ouchi, 2009; Fig. 1) over the warm pool was about
1° warmer than the SST used in this study (Sueyoshi et al.,
2013; Fig. 4), suggesting different convective activity and
consequently different amounts of cloud ice and cloud wa-
ter. This tropical difference influences the global mean value,
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suggesting that the SST bias of the control experiment could
affect both regional and global mean radiative perturbations.

The focus of this study was on the high latitudes, with in-
vestigation of the effect of glaciogenic dust based on new
LGMglac.a and LGM.a experiments using the AGCM part
of the MIROC-ESM. The effect of the addition of glacio-
genic dust on climate is evident mainly as warming in the
high latitudes. The effect of mineral dust aerosol on climate
is highly uncertain but cooling is relatively likely (IPCC,
2013). Our results suggest the effect of dust on climate is
dependent on background condition. However, our glacio-
genic dust worked differently from that demonstrated by Ma-
howald et al. (2006b) in the zonal mean. Especially for the
northern high latitudes, areas are warmed via albedo reduc-
tion because of snow ageing and because of the prolonged
disappearance of snow at certain periods, which is especially
pronounced in eastern Siberia. Although the longwave radia-
tive perturbation is negative near the strong sources of glacio-
genic dust flux, the snow ageing effect overcomes this cool-
ing, resulting in a net increase in temperature. The possibil-
ity of overestimating the ageing of snow effect or our simple
emission method may influence the result.

The warming effect resulting from the addition of glacio-
genic dust is also seen in areas surrounding Antarctica; how-
ever, it is not attributable to snow ageing but to longwave
aerosol—cloud interactions. Accounting for this effect would
alter the distribution of the scatter evident in Fig. 5.5d in the
IPCC Fifth Assessment Report, which shows the correlation
of eastern Antarctic cooling during the LGM with the future
projection.

We adopted additional dust sources from Mahowald et
al. (20064, b) as a first step in which their glaciogenic dust
flux was identified as a best fit to the DIRTMAP data archive.
Nevertheless, as noted, their deposition flux does not corre-
spond well to new proxy data at locations in the Southern
Ocean. However, in our case, this mismatch can also be at-
tributed to a feature of our model, i.e. insufficient dust emis-
sion from Australia and South Africa, which is caused mainly
by an overestimation of soil moisture and the resulting excess
of vegetation. It should be noted that there is still a possibility
of contamination by ice-rafted debris at the edge of the sea
ice extent. Our study draws attention to the high dust loading
over the Southern Ocean that affects the increase in surface
temperature in areas surrounding Antarctica, implying the
necessity of investigating climate sensitivity to the amount
of dust emission in future work. However, over the Southern
Ocean, SST is affected minimally (Fig. 8) by the surface ra-
diation change (Figs. 7a and 10a), probably because of the
large heat capacity of the ocean.

Glaciogenic dust was imposed constantly in this study,
which is not realistic. In reality, temporal variability of
glaciogenic dust should be dependent on changes both in
wind speed and the threshold wind friction velocity at which
dust emission is initiated. Thus, the independence of dust
emission from wind speed might cause an overestimation
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Figure 12. Difference in surface temperature at 2 m of height: (a) LGM.e-Pl.e, (b) LGMglac.e-Pl.e, and (¢) LGMglac.e-LGM.e. Coloured
circles represent reconstructed temperature change by pollen proxy archives (Bartlein et al., 2011). Circled letters in Antarctica represent four
ice core locations: E for EDML, F for Dome Fuji, V for Vostok, and C for Dome C. Sea surface temperature (SST) changes: (d) LGM.e-Pl.e,
(e) LGMglac.e-Pl.e, and (f) LGMglac.e—-LGM.e. Purple and red lines in (d) and (e) are 85 % sea ice concentration in February and August
for PI (thin) and LGM (thick), respectively. Coloured circles represent MARGO SST reconstruction (MARGO project members, 2009).

Light grey represents ice sheet areas.

of dust deposition rates at the grids close to emission ar-
eas and under low atmospheric loading. However, our re-
sults are in good agreement with the measurements of de-
position flux in general. It will be necessary to implement
a better scheme for glaciogenic dust in subsequent research.
Sagoo and Strevmo (2017) prescribed a globally “idealised
high” dust emission factor for their LGM-like experiment.
Because our glaciogenic dust sources are located in the high
latitudes, the influence of glaciogenic dust emission on the
surface temperature around Antarctica is likely more pro-
nounced in our simulation results.

In the tropics, the effect of enhanced dust input on the sur-
face temperature is similar to what Mahowald et al. (2010)
reported in their study of the middle to late 20th century but
with contrasting effects at high latitudes. The major differ-
ence is that dust is enhanced at low latitudes, i.e. the Sahara—
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Sahel drought in the 20th century perturbation compared
with the additional high dust inputs at high latitudes in our
study, at which the background albedo is high because of the
extended areas of snow and ice cover.

In the MIROC-ESM, snow cover in the Pl.e (Pl.a) experi-
ment tends to persist in boreal spring over Siberia in compar-
ison with reanalysis data (Fig. S8 in the Supplement). This
positive bias might influence the change we see in the LGM.e
(LGM.a) and LGMglac.e (LGMglac.a) experiments.

The strong effect of snow ageing is especially signifi-
cant in the Northern Hemisphere. Because snow ageing has
been tuned to fit modern observations in Hokkaido, Japan
(Aoki et al., 2003, 2006), in the MIROC-ESM, a strong dust
provenance near snow-covered areas is lacking, e.g. as in the
glaciogenic dust situation seen in eastern Siberia. Therefore,
evaluation of the quantitative influence of snow ageing using
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various observational sites is needed. The albedo impurity
relationship provided by Aoki et al. (2003, 2006), in which
ageing starts to work when the impurity is > 10 ppmw, ex-
plains the reason for the considerable snow ageing in the
Northern Hemisphere but lack of snow ageing over Antarc-
tica. The deposition flux over Antarctica is 3—4 orders of
magnitude smaller than the regions of high dust emission
in the Northern Hemisphere. The threshold of activation of
snow ageing is between the high dust deposition in the North-
ern Hemisphere and the low deposition flux around Antarc-
tica.

Although we were unable to treat the effect of Fe supply to
the ocean in this model, activating the Fe fertilisation effect
and enhancing the amount of plankton would influence CO,
uptake, especially over the Southern Ocean (Martin, 1990).
Improved representation of the distribution of dust deposition
is possible as a boundary condition for offline biogeochemi-
cal models to investigate CO; uptake, e.g. in a more realistic
version of the experiments by Oka et al. (2011). Further in-
vestigation of the non-negligible effect of the change in the
size distribution of dust as identified by Albani et al. (2014),
Mahowald et al. (2014), and Hopcroft et al. (2015) might also
be necessary.

Plant functional types are considered in the dynamic veg-
etation module but not returned to the land module in the
MIROC-ESM; i.e. the climate—vegetation interaction is lim-
ited. The importance of full vegetation coupling was high-
lighted by O’ishi and Abe-Ouchi (2013), who suggested the
necessity for future models to evaluate changes in plant func-
tional types, especially their effect on dust cycles.

Under global warming, the amount of dust emission re-
mains uncertain (Tegen et al., 2004; Woodward et al., 2005;
Mahowald et al., 2006a; Jacobson and Streets, 2009; Liao et
al., 2009; Ito and Kok, 2017). Therefore, improving the un-
derstanding of dust processes in models of the past climate
would be a practical way to reduce the uncertainty of projec-
tions into the future.

Data availability. Pl.e and LGM.e experiment results can be
downloaded from the ESGF server (https://esgf-node.llnl.gov/
search/cmip5/, last access: 30 October 2018) (ESGF, 2018) as pi-
Control and lgm. The other experiments in the paper are available
by request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-14-1565-2018-supplement.
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