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Abstract. Data assimilation (DA) methods have been used
recently to constrain the climate model forecasts by paleo-
proxy records. Both DA and climate models are computa-
tionally very expensive. Moreover, in paleo-DA, the time
step of consequence for observations is usually too long for
a dynamical model to follow the previous analysis state and
the chaotic behavior of the model becomes dominant. The
majority of recent paleoclimate studies using DA have per-
formed low- or intermediate-resolution global simulations
along with an “off-line” DA approach. In an off-line DA,
the re-initialization cycle is completely removed after the as-
similation step. In this paper, we design a computationally
affordable DA to assimilate yearly pseudo-observations and
real observations into an ensemble of COSMO-CLM high-
resolution regional climate model (RCM) simulations over
Europe, for which the ensemble members slightly differ in
boundary and initial conditions. Within a perfect model ex-
periment, the performance of the applied DA scheme is eval-
uated with respect to its sensitivity to the noise levels of
pseudo-observations. It was observed that the injected bias in
the pseudo-observations linearly impacts the DA skill. Such
experiments can serve as a tool for the selection of proxy
records, which can potentially reduce the state estimation er-
ror when they are assimilated. Additionally, the sensitivity
of COSMO-CLM to the boundary conditions is addressed.
The geographical regions where the model exhibits high in-
ternal variability are identified. Two sets of experiments are
conducted by averaging the observations over summer and
winter. Furthermore, the effect of the spurious correlations
within the observation space is studied and a optimal cor-

relation radius, within which the observations are assumed
to be correlated, is detected. Finally, the pollen-based recon-
structed quantities at the mid-Holocene are assimilated into
the RCM and the performance is evaluated against a test
dataset. We conclude that the DA approach is a promising
tool for creating high-resolution yearly analysis quantities.
The affordable DA method can be applied to efficiently im-
prove climate field reconstruction efforts by combining high-
resolution paleoclimate simulations and the available proxy
records.

1 Introduction

It is now well known that many of the long-term processes
(millennial scale) in the climate system have a large im-
pact on predicting the climate, even for shorter timescales
(decadal and yearly) (Evans et al., 2013; Acevedo et al.,
2015; Latif et al., 2016; Steiger and Smerdon, 2017). The
improvement of future predictions of the climate models de-
pends largely on the understanding of such processes. How-
ever, cutting-edge science appears to be immature in describ-
ing processes that take place on timescales beyond the yearly
cycle of the climate system (Latif et al., 2016). One of the
main challenges is the lack of information for longer time
periods, with observational datasets usually covering less
than the recent century. Alternative information on past cli-
mate behavior with timescales beyond the available obser-
vational datasets is indeed required. Two methods are com-
monly employed for reconstructing the climate prior to in-
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strumental records: paleo-proxy reconstructions and climate
models (Hakim et al., 2013).

Climate proxy archives (tree ring, coral, sediment, and
glacial) are examples of indirect climate observations that
suffer from several structural ill conditions (Acevedo et al.,
2015; Jones and Mann, 2004). The data recording processes
involved in such archives are very complex, encompassing
physical, biological, and chemical processes (Evans et al.,
2013). The temporal resolution of climate proxies does not
exceed seasonal timescales. Differentiating the climate and
human impact on proxies is also challenging work. Further-
more, inverting proxy records into climate information is tra-
ditionally done in the framework of statistical modeling and
multivariate linear regression techniques dominate this area
(Acevedo et al., 2015). Using more sophisticated statistical
models is problematic because the overlapping time span
between the instrumental (weather station observations) and
proxy records becomes too short to train the statistical mod-
els.

Climate models may serve as an alternative method for the
investigation of long-term paleoclimate variability. They cre-
ate dynamically consistent climate states by using numerical
methods (Goosse, 2016). However, their reconstructed states
are very sensitive to the initial conditions and to the imposed
forcings, as well as to the parameterization schemes used for
the representation of sub-grid-scale processes (small-scale
processes that are not explicitly resolved by the model). An
improvement of the spatial resolution of climate models is
thought to be of crucial importance for the study of past
climate changes, in particular when comparing their results
against proxy data that are highly affected by local-scale pro-
cesses (Renssen et al., 2001; Bonfils et al., 2004; Masson
et al., 1999; Fallah and Cubasch, 2015; Russo and Cubasch,
2016; Russo, 2016). As a consequence, along with GCMs,
high-resolution regional climate models (RCMs) are recently
being applied in paleoclimate studies. Several recent studies
have applied a time slice climate simulation method (Kas-
par and Cubasch, 2008) to dynamically downscale the global
paleoclimate simulations with a higher resolution (Prömmel
et al., 2013; Fallah et al., 2016; Russo and Cubasch, 2016).
Simulation of the climate of the past using RCMs is a chal-
lenging approach due to their high computational costs and
the dependency of such models on the driving general cir-
culation model (GCM). Given the computational costs of
RCMs, previous studies could conduct only a single time
slice climate simulation. An individual model simulation
may not provide a sophisticated measure of the uncertainty
in the climate state.

In addition to the two abovementioned methodologies, a
novel and appealing technique for the reconstruction of the
climate of the past is data assimilation (DA). According to
Talagrand (1997), the assimilation of observations is the pro-
cess through which the state of the atmospheric or oceanic
flow is estimated by using the available observations and the
physical laws that govern its evolution, presented in the form

of a numerical model. DA has recently emerged as a pow-
erful tool for paleoclimate studies, mathematically blend-
ing together the information from proxy records and cli-
mate models (Evensen, 2003; Hughes et al., 2010; Brönni-
mann, 2011; Bhend et al., 2012; Dee et al., 2016; Hakim
et al., 2013; Steiger et al., 2014; Matsikaris et al., 2015,
2016; Hakim et al., 2016; Acevedo et al., 2017; Okazaki and
Yoshimura, 2017; Perkins and Hakim, 2017). For a review of
the DA techniques applied in paleoclimate studies, we refer
to the works of Acevedo et al. (2015, 2017) and Steiger and
Hakim (2016). One limiting aspect of classical DA methods
is the fact that realistic climate models may not have predic-
tive skills longer than several months (Acevedo et al., 2017;
Perkins and Hakim, 2017). The models lose their forecasting
skills shortly after initialization and evolve freely until the
next step in which the observations are available. Consid-
ering the complexity of the implementation of DA methods
into climate models, their high computational expenses, and
the short forecasting horizon of the models, an alternative DA
approach (off-line or “no-cycling”) was applied by several
scholars (Franke et al., 2017; Okazaki and Yoshimura, 2017;
Dee et al., 2016; Acevedo et al., 2017; Steiger and Hakim,
2016; Chen et al., 2015; Steiger et al., 2014). In an off-line
DA, the model initialization from the analysis has been aban-
doned and the background ensembles are derived from pre-
computed simulations (Okazaki and Yoshimura, 2017). In
this paper we conduct a test by assimilating yearly aver-
aged pseudo-observations and real observations into an en-
semble of RCM simulations over Europe via an off-line DA
approach. The main purpose of our study is to contribute to
the simulation of the climate in general and to paleo-DA ef-
forts in particular by addressing the following points.

i. What is the geographic distribution of model bias in an
ensemble of regional climate simulations (members dif-
fer slightly in boundary and initial conditions)?

ii. What is the optimum radius within which the observa-
tions are correlated?

iii. Can this particular off-line DA approach be used to con-
strain regional climate simulations in time and space?

iv. What is the range of observation errors within which the
observations reduce the model’s bias via DA?

This paper is structured as follows. Section 2 starts by
introducing the off-line DA basics and the experiment de-
sign. Furthermore, the concept of the perfect model experi-
ment and the metrics, which measure the performance of this
method, are described. In Sect. 3 we present our results of
constrained model simulations. We discuss and summarize
our work in Sect. 4.
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2 Data and methods

2.1 Optimal interpolation basics

Prior to describing the experimental design, we give a brief
review of the optimal interpolation (OI) method (for the full
review see Barth et al., 2008a, b). OI or “objective analysis”
or “kriging” is one of the most commonly used and simple
DA methods applied since the 1970s (Barth et al., 2008b).
The unknown state of the climate (X) is a vector, which
has to be estimated conditioned on the available observations
(Y ). Given the state vector X, the state on observation loca-
tions is obtained by an interpolation method (here, nearest
neighbor). Here, this operation is noted as matrix H (obser-
vation operator) and consequently the state at the observation
locations is defined as HX. If the observations are in the form
of proxy data, the operator H will bring the model state to the
proxy state by means of a proxy forward model. The ultimate
goal of OI is to estimate the real state of the climate, which is
labeled as the “nature” run (XN). After any DA cycle, the so-
called analysis (XA) is calculated given the observation (Y )
and the background XB (first guess or forecast). The back-
ground and observation can be written as

XB
=XN

+ ηB, (1)

Y =HXN
+ ε, (2)

where ε and ηB denote the observation and background er-
rors, respectively. In the applied OI scheme here, it is as-
sumed that the background and observations are unbiased.

E[ηB
] = 0 (3)

E[ε] = 0 (4)

Other hypotheses are that the information about the obser-
vation and background errors are known (prior knowledge)
and they are independent.

E[ηBηBT
] = PB (5)

E[εεT ] = R (6)

E[ηBεT ] = 0 (7)

The OI scheme is considered as the best linear unbiased
estimator (BLUE) of the nature state XN. A BLUE has the
following characteristics.

1. It is linear for Y and XB.

2. It is not biased:

E[XA
] =XN. (8)

3. It has the lowest error variance (optimal error variance).

The unbiased linear equation between XB and Y can be
written as

XA
=XB

+K
(
Y −HXB) , (9)

where K is the “Kalman gain” matrix. Equation (9) can be
written as

ηA
= ηB

+K
(
ε−HηB)

= (I −KH)ηB
+Kε. (10)

Thus, the error covariance of the analysis will be

PA(K)= E[ηAηAT
] = (I −KH)PB(I −KH)T +KRKT ,

(11)

where R is the observation error covariance matrix.
The trace of matrix PA indicates the total error covariance

of the analysis:

Trace(PA(K))= Trace(PB)+Trace
(

KHPBHTKT
)

− 2Trace
(

PBHTKT
)
+Trace(KRKT ). (12)

Given that the total error variance of the analysis has its
minimum value, a small δK will not modify the total vari-
ance:

Trace
(

PAnalysis (K+ δK)
)
−Trace

(
PA (K)

)
= 0

= 2Trace
(

KHPBHT δKT
)

− 2Trace
(

PBHT δKT
)
+ 2Trace

(
KRδKT

)
= 2Trace

([
K
(

HPBHT
+R

)]
δKT

)
. (13)

Assuming that δK is arbitrary, the Kalman gain is

K= PBHT
(

HPBHT
+R

)−1
. (14)

Finally, the error covariance of the BLUE is given by

PA
= PB

−KHPB

= PB
−PBHT (HPBHT

+R)−1HPB. (15)

The calculation of the covariance matrices for RCM is
very expensive. Therefore, an ensemble of the model states
is applied to approximate the mean and covariance of the
forecast (Evensen, 1994). Following a stochastic approach
(Hamill, 2006), an observation ensemble is created by adding
random noise (in the observational range) to the Y . In our ex-
periment, we tested the impact of different observation errors
on the analysis skill in more detail. The error covariance of
the BLUE, PB, can be localized through the following pa-
rameterization:

PB (x1, . . .,xn,y1, . . .,yn)=

σ (x1, . . .,xn)2 exp

(
−

(x1− y1)2

L21
. . .−

(xn− yn)2

L2
n

)
, (16)

where σ (x1, . . .,xn)2 is the error variance and Ln the corre-
lation length (or “localization radius”). The background state
on each grid point may be highly correlated with observa-
tions over regions far apart. The correlation length is defined
to overcome these spurious relations.
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2.2 Observation system simulation experiment

Models contain systematic errors that may have diverse ori-
gins (dynamical core, parameterization, and initialization).
DA schemes are also based on simplified hypotheses and are
imperfect (e.g., here the Gaussian parameterization for PB).
The interaction of error sources with one another obscures
the tracing of the origins of such biases. These caveats are
neglected by using a simplified numerical experiment called
an observation system simulation experiment (OSSE). The
usage of OSSEs is increasing in the field of climate DA as a
validation tool (Annan and Hargreaves, 2012; Bhend et al.,
2012; Steiger et al., 2014; Acevedo et al., 2015; Dee et al.,
2016; Acevedo et al., 2017; Okazaki and Yoshimura, 2017).
Firstly, one simulation is selected as the natural state of the
climate XN or the prediction target. Then by using the out-
put from the nature run and by adding random draws from a
white noise distribution, pseudo-observations are created that
are interpolated over the observation locations. The location
of 500 random meteorological stations of the “ENSEMBLES
daily gridded observational dataset for precipitation, temper-
ature and sea level pressure in Europe called E-OBS” (Hay-
lock et al., 2008) are used to create the pseudo-observation
data (Fig. 1). Finally, the OI scheme is applied to assimilate
the pseudo-observation into the free ensemble run (an un-
constrained ensemble of simulations) and the observationally
constrained run XDA is obtained. Here we neglect the reini-
tialization step of the DA and draw the forecast state from
a precomputed free ensemble simulation. Recently, such as-
similation methodologies have been labeled as off-line DA
(Huntley and Hakim, 2010).

2.3 Ensemble generation technique

RCM simulations tend to follow the trajectory of the driv-
ing GCM; however, it is known that RCMs deviate from the
driving GCM, both on smaller scales that are not resolved by
the GCM and on larger scales that are resolved by the GCM
(Becker et al., 2015). RCMs are very sensitive to the choice
of the domain and are usually tuned for the selected area.
Modifying the RCM domain in size or geographic area will
set new boundary conditions for the RCM. In the context of
domain manipulation, several studies analyzed the impact of
the domain size on regional model simulations, finding that it
might have a significant impact on predictive skill and clima-
tological characteristics of the models (Larsen et al., 2013;
Goswami et al., 2012; Colin et al., 2010). In addition, a shift
of the model domain generates different large-scale patterns
in the simulation outputs (Miguez-Macho et al., 2004), which
are the consequence of the “large-scale secondary circula-
tions” in the RCM and are relative to the driving data (Becker
et al., 2015). There are different popular methods for gener-
ating RCM ensembles, e.g., the use of different parameter-
izations (Wang et al., 2011), different driving data (Verbunt
et al., 2007), or different initialization dates (Hollweg et al.,

45° N

60° N

30° N

15° N

0° 20° E

Figure 1. RCM domains: the thin black box shows the nature and
the dashed boxes show the shifted members (only two are shown for
the northwest and southeast with five grid points of distance from
nature). The red pluses show 500 random meteorological stations of
the “ENSEMBLES daily gridded observational dataset for precipi-
tation, temperature and sea level pressure in Europe called E-OBS”
(Haylock et al., 2008). The thick black box shows the evaluation
domain.

2008). However, the uncertainty introduced by the selection
of a specific model domain is rarely considered, but the use-
fulness of this approach is shown in Pardowitz et al. (2016)
and Mazza et al. (2017). The advantage of this method is
that it is easy to implement and allows for a consistent model
setup among the ensemble members. The multiple members
are created by shifting the model domains relative to each
other.

2.4 Experimental design

The CCLM model version cosmo_131108_5.00_clm8
(Asharaf et al., 2012) is used as the dynamical model and the
nearest-neighbor interpolation is applied as the observation
forward model. We have to note that model–data mapping is
still a limiting factor in paleo-DA (Dee et al., 2016; Goosse,
2016). For a review of proxy system models we refer to the
recent work of Dee et al. (2016). Here, our focus is only on
the DA scheme and its usability in paleoclimate. Two sets of
observations are used by time averaging daily values over the
winter (DJF) and summer (JJA) seasons. The time average
climate analysis is conducted by using the OI scheme as the
DA tool. The horizontal resolution of the simulations is set to
0.44◦× 0.44◦. Our OSSE consists of two sets of simulations.

– Nature simulation. This is a 10-year-long simulation
over Europe driven by global atmospheric reanaly-
sis data (6-hourly) produced by the European Centre
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for Medium-Range Weather Forecasts (ECMWF), the
so-called ERA-Interim (Dee et al., 2011) (initial and
boundary conditions are taken from ERA-Interim). This
run will be used as the “target” state of the climate in the
investigations and is labeled as the nature run.

– Shifted domain simulations. All the model parameters
are set as in the nature run but simulation domains are
shifted in four distinct directions (northeast, northwest,
southeast, and southwest) and with five different shift-
ing values (one to five grid points) from the nature do-
main. These shifting directions allow for optimal dif-
ferent boundaries compared to the nature run (Fig. 1).
Due to high computational expenses of such simula-
tions we conducted 10-year simulations (total number
of 21×10= 210 model years). The state vector is taken
from the evaluation domain (thick black box in Fig. 1).

2.5 Model skill metric

The skill of the analysis (XA) can be quantified by the root
mean square error (RMSE):

RMSE
(
〈XA
〉

)
=

((
XN
−〈XA

〉
)2) 1

2
, (17)

where and 〈 〉 denote the time and ensemble mean opera-
tor. The mean and spread of the ensemble are presented as

〈XA
〉 =

1
N

N∑
n=1

xA
n , (18)

σ (i,j )=

√√√√ 1
N − 1

N∑
n=1

(εn(i,j ))2, (19)

where εn(i,j )=Xm(i,j )−〈X〉(i,j ), N is the ensemble in-
dex, and (i,j ) the indices of horizontal positions. The same
approach is used to calculate the skill for the free ensemble
quantities.

To maintain clarity we focus only on the temperature
at 2 m (T2M) as a variable. For evaluation, the relaxation
zone where the boundary data are relaxed in the RCM (here
20 grid points next to the lateral boundaries) is removed. The
sea surface temperature in our CCLM simulation is inter-
polated from the driving model (here ERA-Interim) and not
calculated by the model dynamics; the spread of the ensem-
ble for T2M is zero over oceans. Therefore the RMSEs over
oceans are masked out from the analysis and only values over
land are shown.

3 Results

3.1 Unconstrained ensemble runs

Figure 2 shows the seasonal mean RMSE and the spread of
the ensemble for T2M over the evaluation domain. A slight

change in the boundary conditions (shifting of the domain)
of the model leads to large RMSEs (up to 1 K in seasonal
means over 10 years) in the forecasted quantities (Fig. 2).
Maximum RMSE values are located on the regions where
the spread of the ensemble is also large. An interesting fea-
ture of the RMSE pattern is the accumulation of the errors
in the center and northeast of the domain for both the winter
and summer seasons. West and north of the domain is largely
dominated by the ocean where the temperature quantities are
forced by the reanalysis data. There is a small difference be-
tween the ensemble members on these areas, and the maxi-
mum error values are mostly located on land. On the other
hand, the maximum lateral inflow occurs on the west and the
northwest boundaries. These features have to be considered
cautiously when conducting long-term climate simulations
using CCLM. The long seasonal time-averaging filter rela-
tively dampens the RMSE and the spread of the ensemble.
The errors will increase drastically for daily quantities. One
of our main motivations in this paper is to test the usage of
OI in the calculation of analysis quantities by assimilating
the pseudo-observations and real observations in the free en-
semble simulations.

3.2 Constrained ensemble runs

Prior to conducting the analysis calculation, we searched for
an optimal correlation length (L) for the covariance localiza-
tion, which minimizes the RMSE of the analysis. The mean
RMSE over the evaluation domain is calculated for differ-
ent values of L (0.1◦ ≤ L≤ 6◦). The RMSE values show a
minimum at a correlation length of 1.7◦ (∼ 190 km) for sum-
mer (JJA) and 2.1◦ (∼ 230 km) for winter (DJF) (Fig. 3). For
a long-term time averaging, e.g., yearly or decadal periods,
the correlation length will increase accordingly (Chen et al.,
2015). The increase rate of the RMSE with respect to the
correlation length is larger during the summer than in winter.
The error reduction of the DA is influenced by the shape of
the white noise added to create the pseudo-observation data.
Here, we assess the noise levels by the signal-to-noise ratio
(SNR), which is the ratio of the variance of clean observa-
tion to the variance of added white noise. Figure 4 shows
the averaged seasonal near-surface temperature RMSE for
the analysis of the ensemble run. The RMSE values are re-
duced linearly with increasing SNR. In the study of Acevedo
et al. (2017), the RMSE values did not change significantly
between 2 and 11 SNR values. One possible reason for such
a behavior might be due to the regional domain of RCM over
Europe, which is dominated by local effects. On the other
hand, ∼ 70 % of the GCM domain in Acevedo et al. (2017)
was covered by the oceans where no proxy was assimilated.
In our experiment, the field mean filter does not flatten the
RMSE reduction rate for larger SNR values over Europe. For
the rest of the paper the results are shown with SNR= 3.

Figures 5 and 6 show the error reduction of the analy-
sis for summer and winter. The assimilation of 500 pseudo-
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(a) Ensemble spread for winter
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(b) Ensemble RMSE for winter
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(c) Ensemble spread for summer
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(d) Ensemble RMSE for summer

45°N

60°N

30°N

15°N

0° 20°E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
E
 [

K
]

Figure 2. 10-year ensemble spread and RMSE for the seasonal mean of 2 m temperature (K).
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Figure 3. Field mean of RMSE for near-surface temperature (K)
analysis over the evaluation domain for different correlation lengths
(L, in ◦C) for winter (blue) and summer (red).

observations has significantly reduced the mean of the errors
for both seasons. However, the spread of the errors is more
highly reduced in summer than in winter. The regions with
the largest error reduction are located in highly populated
areas by pseudo-observations (e.g., Germany, Sweden, and
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Figure 4. Field mean of seasonal near-surface temperature RMSE
(K) of the analysis vs. SNR.

Denmark). One interesting feature is the error reduction over
the south of the domain where only three observations are
available. Usually, in an off-line DA the observational infor-
mation would not be accumulated over time and could not
be conveyed to unobserved regions (Acevedo, 2015). There
are two outliers in the ensemble spread during the winter
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Figure 5. (a) 10-year RMSE (K) of the analysis for summer (JJA)
and (b) the field mean RMSE (K) of the analysis and the free en-
semble run for summer (JJA).

that contribute to the larger error spread during the winter
(Fig. 6b). The DA has successfully detected these two out-
liers and reduced the errors significantly (Fig. 6b).

3.3 Long ensemble runs

As defined by the World Meteorological Organization
(WMO) the climate is explained by averaging the weather
state for a period of at least 30 years. Therefore, we con-
ducted a new set of five 36-year-long simulations (one nature
and four shifted runs). The computational cost of RCM was
the only limiting factor to choose this number of members
(5× 36= 180 years of model run). The members were per-
turbed by shifting the domain four grid points to the north-
east, northwest, southwest, and southeast. The 36-year en-
semble spread and RMSE show similar patterns as in the
previous experiment using 20 members (Fig. 7). The anal-
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Figure 6. (a) 10-year RMSE (K) of the analysis for winter (DJF)
with and (b) the field mean RMSE (K) of the analysis and the free
ensemble run for winter (DJF).

ysis quantities indicate a significant error reduction in both
the median and spread of the ensemble (Figs. 8 and 9). Fig-
ure 10 illustrates the time evolution of field mean RMSEs
for the free ensemble and analysis quantities. There is a lin-
ear trend in free-run RMSE. However, the linear trend is re-
moved in the RMSE of the analysis for the summer. This fea-
ture was previously observed in an off-line DA experiment
using an intermediate complexity model and the EnKF ap-
proach (Acevedo et al., 2017). Furthermore, the results show
that the analysis RMSEs are significantly reduced compared
to the free ensemble run.

3.4 Random background selection

Following the methodology of Steiger et al. (2014) and Dee
et al. (2016) for background selection, using a random cli-
matology from a large climate simulation pool instead of
an ensemble simulation at the observation instant might re-
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(a) Ensemble spread for winter
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(b) Ensemble RMSE for winter
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(c) Ensemble spread for summer
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(d) Ensemble RMSE for summer
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Figure 7. 36-year ensemble spread and RMSE for the seasonal mean of 2 m temperature (K).

move the trend previously observed in the RMSEs for win-
ter. Under this setup, the RMSE reduction shows a coher-
ent pattern (Fig. 11a) and the uprising trend in RMSE is
removed (Fig. 11b). However, the analysis RMSE mean is
in the range of the background state. In our experiment, the
background itself had acceptable skills over large portions
of the domain. Using random states affects the model skills,
for example over the western part of the domain (i.e., Spain,
Portugal, France, and Morocco). We conclude that using ran-
dom states would be beneficial if the model had no signifi-
cant skills at any region of its domain. Such significant skills
of the background might be a characteristic of this particular
RCM, which is tuned for Europe.

3.5 Application to a paleo-study: the case of summer
temperatures over Europe at the mid-Holocene

A test with the real data will shed light on the applied DA ef-
ficiency. Therefore, we design additional experiments using
real proxies and precomputed COSMO-CLM simulations at
the mid-Holocene. Here, we briefly explain the method and
present the results for a single summertime (JJA) time slice of
6000 years before present (6KBP). We use the pollen-based
temperature reconstructions of Mauri et al. (2015) as the ob-
servation and the model simulations of Russo and Cubasch
(2016) as the background in our DA method; 20 % of the

proxy data are kept as the test data (randomly selected), and
the remaining 80 % as the training dataset. The proxy data
do not have a regular timing. Two approaches are applied for
averaging the proxy data.

a. Averaging with respect to their distance to the target
year (6KBP): a time window centered on the target year
(e.g., reference time ±500 years) is chosen and the val-
ues as well as their standard errors are weighted by their
time distance to the target year. The weights are cho-
sen from a normal distribution with a standard deviation
of 100. A total of three weighting time spans are de-
fined (five bins). Figure 12 shows the weights assigned
to each time interval with respect to the reference time.
The data falling in each particular time bin are weighted
equally.

b. Averaging with respect to their uncertainties provided
as standard error by Mauri et al. (2015) at the recorded
time: all reconstructions within the time window of the
reference year ±500 years are chosen. The weighted
arithmetic mean of the temperatures and its standard er-
rors are used to calculate the time slice values (6KBP).
Each proxy is weighted first by its standard error.
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Figure 8. (a) 36-year RMSE (K) of the analysis for summer (JJA)
and (b) the field mean RMSE (K) of the analysis and the free ensem-
ble for summer (JJA). Red squares indicate the mean of RMSEs.

Then the weighted mean is calculated by

x =

∑n
i=1

(
xiσ
−2
i

)
∑n
i=1σ

−2
i

. (20)

The uncertainty of the weighted mean is given then by

σ 2
x =

1∑n
i=1σ

−2
i

, (21)

where σ is the standard error. Figure 13 shows the schematic
of weighting the observations with respect to their standard
errors.

Finally, for the model, the 25-year time average is as-
signed as the expected value and the standard deviation from
the mean as the uncertainty measure. Figure 14 shows the
schematic of the approach. Please note that, here, a single
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Figure 9. (a) 36-year RMSE (K) of the analysis for winter (DJF)
and (b) the field mean RMSE (K) of the analysis and the free ensem-
ble run for winter (DJF). Red squares indicate the mean of RMSEs.

model run of 25 years is used as the background. We assume
that each year of the model simulation could serve as an en-
semble member for the target time slice (6KBP). Therefore,
the analysis is done for a single step using the background
information of the 25 years. Figure 15a shows the analy-
sis results for summer T2M temperature anomalies from the
preindustrial time (6KBP–0.2KBP) over Europe obtained by
the application of approach (a) for averaging the proxy data.
The testing proxy data are represented by circles, while their
standard error is represented as superimposed squares. The
analysis and the proxy show a good agreement, especially for
proxy records with low standard error. In contrast, the model
forecast (without assimilation) and the proxies (Fig. 15b)
show little agreement. The assimilated reconstructions are
shown in Fig. 16. The positive anomalous region over Ro-
mania in the analysis is due to the cluster of proxy data with
low standard error over this region. By applying method (b)
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Figure 10. Yearly field mean RMSE (K) of the ensemble mean
(white line) and analysis (black line) for winter (a) and for sum-
mer (b). Shadings show the ensemble members and dashed lines
indicate the linear trends.

for averaging, the analysis pattern is very similar to the previ-
ous method (Figs. 17 and 18). Overall, we conclude that the
proposed DA approach contributes to the error reduction in
the analysis values for which the pure model outputs might
not capture the local patterns.

We have to mention that the analysis presented here is
based on the combination of the proxy reconstructions and
the climate model, and any interpretation of the patterns
should take into account the uncertainties provided by these
two sources of information. Several factors have driven our
decision to apply the proposed DA method to this partic-
ular paleoclimate case study. Among these, the most im-
portant one was the attempt to contribute to the reconstruc-
tion of summer temperatures over the Mediterranean region
at the mid-Holocene. This has been the subject of a long-
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Figure 11. (a) 36-year-averaged RMSE of the analysis using
40 random states as background; (b) field mean of RMSE from the
free ensemble (shading shows the ensemble spread, the white line
the mean) and from the analysis using random background states
(red line). Dashed lines are the linear fits and the blue line shows
the 0.3 K RMSE value (plotted only for comparison of the trends).

standing debate within the paleoclimate community: on the
one hand, climate model simulations (Braconnot et al., 2007;
Fischer and Jungclaus, 2011; Bonfils et al., 2004; Russo and
Cubasch, 2016) and some reconstructions based on specific
proxy types (such as chironomids, Samartin et al., 2017) have
shown that the area was characterized by warmer summer
conditions with respect to present day; on the other hand, cli-
mate reconstructions based on other proxies, in particular the
ones based on pollen data (Cheddadi et al., 1996; Davis et al.,
2003; Mauri et al., 2015), have given support to the idea of
opposite, colder conditions over the area.

This dualism seemed to be finally solved in a recent study
by Samartin et al. (2017), in which they showed that summer
temperatures reconstructed from chironomids over northern
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Figure 12. Schematic showing the weights for observations with
respect to their distance to the target year. A time window of
1000 years is chosen. The observations are weighted depending on
their distances to the reference time.
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Figure 13. Schematic showing the weights for observations with
respect to their standard error. A time window of 1000 years is cho-
sen. The red dots represent the proxies in the 1000-year time win-
dow and the green dot represents the weighted mean.

Italy were higher at the mid-Holocene compared to present
times. This pattern was also captured by other proxy records
from different parts of the Mediterranean area and the re-
sults of climate models. Indeed, they criticized temperature
reconstructions based on pollen data for this region due to the
fact that Mediterranean vegetation is mainly controlled by ef-
fective precipitation rather than temperatures. Our results are
in agreement with Samartin et al. (2017) over northern Italy
and the Alpine region despite the presence of heterogeneous
colder conditions over southern Europe. Indeed, we believe
that this complicated puzzle is not solved yet and more ef-
forts should be put into joint cooperation among different
proxy experts and climate modelers. We emphasize the fact
that data assimilation could be considered a very useful tool
for the syntheses of different climate records and physical
representation of the climate system. This could offer a more
reliable picture than individual proxy datasets or a single cli-
mate simulation.

Time

X
M
od
el

Proxy

1
¾ µ

Figure 14. Schematic showing how the expected value (the mean)
and the deviation from the mean for the time slice simulation are
selected. The model simulation is 25 years long. The green line rep-
resents the model state.

(a) Analysis

(b) Model

Figure 15. DA results of T2M during summer at 6KBP using
weighted arithmetic mean by time distances: (a) analysis values
along with the testing observations (circles) and their standard error
(squares). Values with an error covariance of analysis greater than
0.9 are masked out from analysis and (b) the model forecast.
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Figure 16. Weighted arithmetic mean using time distances: anoma-
lies (6KBP–0.2KBP) of assimilated observations (circles) super-
posed on their standard errors (squares) with values in K. Color bar
of the standard errors as in Fig. 15a.

4 Conclusion and discussion

Using a computationally fast DA approach, we assimilated
pseudo-observations and real observations within an ensem-
ble of precomputed RCM simulations. The ensemble is cre-
ated by slightly perturbing the boundary and initial condi-
tions of its members via the domain-shifting method. In the
framework of a perfect model experiment the performance
of free ensemble and analysis quantities is evaluated. Such
experiments facilitate the estimation of observation, back-
ground, and analysis error. In the first set of experiments, we
conducted an ensemble of 20 simulations driven by ERA-
Interim for the duration of 10 years. The nearest-neighbor
interpolation is applied as the observation operator plus a
random white noise with known standard deviation to create
a set of pseudo-observations from the nature run. Pseudo-
observations are assimilated within the ensemble of RCM
runs by means of the OI approach. By conducting a set of
simulations using four perturbed members and a nature run,
we repeated the perfect model experiment for a time expan-
sion of 36 years. This allowed us to draw conclusions on
the time evolution of the DA skill for a typical climatolog-
ical period (more than 30 years). In a final step, we assim-
ilated pollen-based temperature reconstructions of the mid-
Holocene precomputed RCM simulation with a 25-year du-
ration at 0.44◦ horizontal resolution and compared the results
with a test dataset.

The comparison of ensemble mean of COSMO-CLM
model outputs and the pseudo-observations shows that the
model seems to be well tuned for central Europe. A region of
significant model bias for both the winter and summer sea-
sons is located over the east side of the domain. This area
is located far from the ocean where the ERA-Interim data
are prescribed (no coupled ocean was implemented). There-

(a) Analysis

(b) Model

Figure 17. DA results of T2M during summer at 6KBP using
weighted arithmetic mean by standard errors: (a) analysis values
along with the testing observations (circles) and their standard error
(squares). Values with an error covariance of analysis greater than
0.9 are masked out from analysis and (b) the model forecast.

fore, we speculate that the model generates more variabilities
and is free to evolve over this region (answer to question (i)
in the Introduction). Furthermore, we iterated the DA experi-
ment on different values of correlation length for the summer
and winter to find the optimal correlation length quantity. The
optimum radius of correlation is found to be 1.7◦ (∼ 190 km)
for summer (JJA) and 2.1◦ (∼ 230 km) for winter (answer to
question (ii) in the Introduction). Afterward, we showed that
the skill of OI is linearly influenced by the SNRs used to
create the noisy observations (answer to question (iv) in the
Introduction).

Our experiments showed that the ensemble OI is useful
for conducting an analysis of seasonally averaged quanti-
ties (answer to question (iii) in the Introduction). Despite the
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Figure 18. Weighted arithmetic mean using standard errors:
anomalies (6KBP–0.2KBP) of assimilated observations (circles) su-
perposed on their standard errors (squares) with values in K. Color
bar of the standard errors as in Fig. 17a.

inhomogeneity of the observation distribution over the do-
main, the analysis presents error reduction over most of the
domain. For a small ensemble with a longer integration pe-
riod of 36 years, the analysis significantly outperforms the
ensemble mean. However, for the winter season, the analysis
error increases with time and it consists of the same rising
trend as in the error of the ensemble mean. For the summer-
time the trend was removed in the analysis. This was previ-
ously observed in the study of Acevedo et al. (2017) by as-
similating summertime tree ring width pseudo-observations
in an AGCM using the EnKF. However, our simulations are
very short compared to the one of Acevedo et al. (2017). Us-
ing a random climatology from a large climate simulation
pool as the background instead of using an ensemble simula-
tion at the observation period, following Steiger et al. (2014)
and Dee et al. (2016), has removed the winter RMSE trend.
However, the mean RMSE value was not significantly re-
duced compared to the background. For the real-world ex-
periment, the magnitude of the analysis skills might have
been influenced by using the climate of a single run for the
background state. As long RCM runs are now available (i.e.,
this study; Russo and Cubasch, 2016; Fallah et al., 2016; the
Coordinated Downscaling Experiment – European Domain,
EURO-CORDEX), which can serve as a large climate analog
for the background state, we suggest further DA experiments
to reconstruct high-resolution climate fields given the time-
averaged observations.

In this paper inverse model outputs (temperature recon-
structions) are exerted directly. In a real-world experiment,
it is recommended to use proxy system models (PSMs) to
remove the simplistic assumptions of inverse climate mod-
eling and let the assimilation take place at the observation
space instead of the model space (Dee et al., 2016; Dolman
and Laepple, 2018). However, there is a huge gap in the re-

cent knowledge of PSMs and more efforts should be made to
move the knowledge of forward proxy modeling one step for-
ward (Acevedo et al., 2017). For example, a previous study
(Acevedo et al., 2017) using a proxy forward model showed
that the error reduction for other model values like precip-
itation was not significant. In such setups, the success of
paleo-DA is largely affected by the skill of the proxy forward
model.

A major drawback of our experiment is the linearity as-
sumption of the forecast model and the Gaussianity of the
observation and model errors. In OI the background error
covariance is usually prescribed and calculated once during
the entire assimilation procedure. Our experiment showed
that although the spread of the ensemble increases slightly in
time, each individual member and the ensemble mean show a
similar trend. This similar behavior of the members might be
due to the systematic behavior of the CCLM. We suggest a
multi-model ensemble approach to account for a wider range
of internal variabilities. However, conducting such experi-
ments is prohibitively expensive with today’s computational
powers.
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