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Abstract. Paleoclimate data assimilation (DA) is a promis-
ing technique to systematically combine the information
from climate model simulations and proxy records. Here,
we investigate the assimilation of tree-ring-width (TRW)
chronologies into an atmospheric global climate model us-
ing ensemble Kalman filter (EnKF) techniques and a process-
based tree-growth forward model as an observation operator.
Our results, within a perfect-model experiment setting, indi-
cate that the “online DA” approach did not outperform the
“off-line” one, despite its considerable additional implemen-
tation complexity. On the other hand, it was observed that
the nonlinear response of tree growth to surface temperature
and soil moisture does deteriorate the operation of the time-
averaged EnKF methodology. Moreover, for the first time we
show that this skill loss appears significantly sensitive to the
structure of the growth rate function, used to represent the
principle of limiting factors (PLF) within the forward model.
In general, our experiments showed that the error reduction
achieved by assimilating pseudo-TRW chronologies is mod-
ulated by the magnitude of the yearly internal variability in
the model. This result might help the dendrochronology com-
munity to optimize their sampling efforts.

1 Introduction

The low-frequency temporal variability in the climate sys-
tem cannot be estimated from the available time span of
instrumental climate records. Accordingly, paleoclimate re-
construction must necessarily rely on the use of the paleo-
climate proxy records. These natural archives exhibit sev-
eral problematic features, e.g., low time resolution, sparse

and irregular spatial distribution, complex nonlinear response
to climate, and high noise levels. Therefore the proper ex-
traction of the climate signal contained therein can often re-
main opaque (Evans et al., 2013). To date, many different
ideas have been proposed in order to link proxy records to
the paleoclimate conditions where they were created, e.g.,
data-driven statistical techniques, climate model hindcasts
and Bayesian probabilistic methods (see Crucifix, 2012, for
a recent review). Among this plethora of approaches, data
assimilation (DA) methodologies are today particularly ap-
pealing as they deliver estimates of paleoclimate quantities
by systematically combining the information of paleoclimate
records with the dynamical consistence of climate simula-
tions (Brönnimann, 2011; Hakim et al., 2016).

So far, several very diverse paleo-DA schemes have been
investigated, including pattern nudging (von Storch et al.,
2000), forcing singular vectors (Barkmeijer et al., 2003;
van der Schrier and Barkmeijer, 2005), 4D-Var (Paul and
Schäfer-Neth, 2005; Kurahashi-Nakamura et al., 2014), par-
ticle filters (Annan and Hargreaves, 2012; Dubinkina et al.,
2011; Dubinkina and Goosse, 2013; Mathiot et al., 2013;
Matsikaris et al., 2015) and ensemble Kalman filter tech-
niques (EnKF; Huntley and Hakim, 2010; Bhend et al., 2012;
Pendergrass et al., 2012; Steiger et al., 2014; see Hughes and
Ammann, 2009; Widmann et al., 2010; Hakim et al., 2013
for further references).

An important difference between paleo-DA and traditional
meteorological DA is that the assimilation period might
be very long compared to the timescales of the dynamical
model. Under these conditions, the randomizing action of
the chaotic model dynamics becomes dominant and conse-
quently the forecast appears completely de-correlated from
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the previous analysis state. This phenomenon, currently re-
ferred to as an “off-line regime”, has been observed in several
paleo-DA studies (Huntley and Hakim, 2010; Bhend et al.,
2012; Pendergrass et al., 2012; Matsikaris et al., 2015). Fur-
thermore, some recent studies have assumed the presence of
the off-line condition and accordingly have removed the re-
initialization step after assimilation altogether (Steiger et al.,
2014; Dee et al., 2016; Hakim et al., 2016). These types of
DA methodologies will be referred to in this paper as “off-
line DA” techniques, in order to contrast them with tradi-
tional “online DA” techniques, where the state of the model
is updated after the assimilation of observations. Note that
despite their lack of accumulation of observational informa-
tion over time, off-line DA methodologies have already been
shown to be more robust than traditional climate field recon-
struction (CFR) techniques based on orthogonal empirical
functions and stationarity assumptions (Steiger et al., 2014;
Hakim et al., 2016).

A typical assumption in most of the paleo-DA stud-
ies so far conducted is that the climate–proxy relation is
linear. Nonetheless, currently it is widely recognized that
climate proxies are the result of complex recording pro-
cesses, which can be of a physical, chemical and biologi-
cal nature. More realistic methodologies have been recently
sculpted by the paleoclimate community in order to investi-
gate the climate–proxy relationship, considering the distinct
processes whereby the climate signal is recorded in proxy
archives. Proxy forward modeling (Hughes et al., 2010;
Evans et al., 2013) appears to be one of the most promis-
ing methodologies in this area. In a proxy forward model the
climate forcing is used as input data for producing the ar-
tificial proxy records which can be directly compared with
the actual ones. One application of proxy forward models is
the prediction of the evolution of proxy archives (Vaganov
et al., 2006). They can also be applied within climate re-
construction strategies by using probabilistic inversion meth-
ods like Bayesian hierarchical modeling (Tolwinski-Ward,
2012), Markov Chain Monte Carlo (MCMC) (Boucher et al.,
2014) and DA (Hughes et al., 2010).

Several recent studies have investigated the applicabil-
ity of process-based forward models in a paleo-DA set-
ting (Hughes et al., 2010; Acevedo et al., 2015; Dee et al.,
2016; Hakim et al., 2016). Acevedo et al. (2015) (AC15,
hereafter) utilized the process-based tree-ring-width (TRW)
forward model Vaganov–Shashkin Lite (VSL) (Tolwinski-
Ward et al., 2011) and an online EnKF scheme to assimi-
late pseudo-TRW records into a chaotic two-scale dynami-
cal system. They found that the nonlinearities of the forward
model may deteriorate the performance of the EnKF. Fur-
thermore, they observed that this loss of skill may be ame-
liorated by means of a fuzzy logic (FL)-based extension of
the VSL model. Matsikaris et al. (2015) compared the off-
line and online implementations of a “degenerate particle fil-
ter” applied to a low-resolution Earth system model. They
found similar skill for both methods on the continental and

hemispheric scales. Nonetheless, they concluded that in the
off-line method the temporal consistency of the model is
lost. On the other hand, Dee et al. (2016) used three differ-
ent nonlinear proxy forward models (including VSL) and an
off-line EnKF scheme to assimilate TRW, coral and ice core
records into two different isotope-enabled atmospheric gen-
eral circulation model (AGCMs). They demonstrated that the
linear–univariate models for tree-ring width may not capture
the AGCM’s climate, especially for regions where the tree’s
growth is dominated by moisture.

This paper follows the rationale of AC15 but within a
more realistic scenario, where an AGCM is used as a dy-
namical system and the observational network resembles the
currently available TRW chronologies. The purpose of this
study is then to contribute to the present knowledge of paleo-
DA techniques by addressing the following two questions:

i. Does the off-line regime naturally appear for the assim-
ilation of TRW records into an AGCM?

ii. Is the FL-based extension of the VSL model still useful
to improve the performance of a time-averaged EnKF
technique when a climate model is used?

This study is structured as follows. In Sect. 2 we describe
the DA technique, the TRW forward model and the climate
model as well as the experimental setting used. Our numeri-
cal results are shown in Sect. 3, followed by a discussion in
Sect. 4.

2 Materials and methods

2.1 Data assimilation basics

In this paper, the term DA designates the process of estimat-
ing the state of a system using observations and the physical
laws governing the evolution of the system as represented
in a numerical model (Talagrand, 1997). In a typical DA
scheme, a dynamical model is integrated in time until ob-
servations become available. Afterwards, the predicted state,
also known as forecast, is “updated” using the observational
information in order to obtain a corrected state, also known
as the analysis. Finally, the model is re-initialized from the
analysis state and propagated in time until the next assimila-
tion time, completing the “analysis” cycle. DA methods have
evolved from very empirical approaches, such as Newtonian
relaxation, to probabilistic ones that attempt to estimate the
probability density function (PDF) of the model state condi-
tional on the observations (see Kalnay, 2003, Lahoz et al.,
2010 and Reich and Cotter, 2015, for reviews).

Among the currently available DA techniques, EnKF
(Burgers et al., 1998) occupies an outstanding position for
several reasons. It offers an appealing trade-off between ac-
curacy and computational expenses. It works robustly for
sparse observational networks and a moderate number of
ensemble members (Whitaker et al., 2009). Furthermore,
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EnKF’s implementation does not require any modification
of the model’s code and uncertainty estimates can be di-
rectly obtained from the ensemble spread (Hamill, 2006).
The main disadvantage of EnKF, within a paleoclimate set-
ting, is its inability to handle non-Gaussian PDFs, which can
easily arise from the nonlinearities of climate models and
observation operators. Recently, there have been several de-
velopments in the field of nonlinear DA for high-dimension
systems (Van Leeuwen et al., 2015); however, at the present
fully non-Gaussian DA techniques are still prohibitively ex-
pensive to run for general circulation climate models.

2.1.1 Kalman filter

Within the Kalman filter (KF) (Kalman, 1960), the PDF of
forecast state p(x) is assumed to be given by a Gaussian func-
tion with mean xf and covariance Pf :

p(x)∝ exp
(
−

1
2

(
x− xf

)T (
Pf
)−1(

x− xf
))
. (1)

The observations y(tj ) are also assumed to have Gaussian
errors and therefore the conditional probability of the obser-
vation vector y given the state x is

p (y | x)∝ exp
(
−

1
2

(
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)T
R−1

(
y− Ĥxf

))
, (2)

where Ĥ is the observation operator and R is the observation
error covariance matrix. Following the Bayes theorem, the
conditional probability of the state given the observations,
i.e., the analysis PDF, is

p (x | y)∝ exp
(
−
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Finally, assuming that Ĥ is a linear function, p (x | y) is also
a Gaussian function whose mean and covariance can be cal-
culated by the Kalman update equations (Lorenc, 1986):

xa
= xf +K

(
y− Ĥxf

)
, (4)

Pa
=
(
I−KĤ

)
Pf , (5)

where the Kalman gain matrix K is given by:

K= Pf Ĥ†
(

ĤPf Ĥ†
+R

)−1
. (6)

2.1.2 Ensemble Kalman filter

For realistic geophysical models, the dimensionality of the
model state can be very high and then the calculation and
storage of the covariance matrices can be prohibitively ex-
pensive. A solution to this problem is provided by the EnKF

(Evensen, 1994), which uses an ensemble of model states
(X(t)= (x1, . . .,xm)) to approximate KF equations.

Following this approach, the mean and covariance of the
forecast take the following form:

〈Xf 〉 =
1
m

m∑
i=1

xfi , Pf =
1

m− 1
X′f
(

X′f
)T
. (7)

Here X′f ∈R
n×m denotes the forecast ensemble deviation

matrix:

X′f = Xf −〈Xf 〉eT , (8)

where e= (1, . . .,1) ∈Rm. An analysis ensemble whose co-
variance satisfies Eq. (5) can be generated in different ways,
which can be classified into two main families: stochastic and
deterministic filters (Hamill, 2006).

In the stochastic approach an observational ensemble Y is
generated by adding realizations of the observational noise
to the observation vector y. The analysis ensemble is then
created by the following update equation:

Xa = Xf +K
(
Y− ĤXf

)
. (9)

In the deterministic approach, instead of creating an ensem-
ble of observations, the analysis mean and deviations are cal-
culated using update formulae which do not involve random
numbers (see Tippett et al., 2003 for further references).

A practical problem of EnKF schemes is that due to the
limited ensemble size, the forecast uncertainty is usually un-
derestimated. This leads to an excessive confidence in the
forecast, and after several assimilation cycles the observa-
tions may be completely ignored. This situation is normally
avoided by means of an ad hoc procedure known as “covari-
ance inflation”, where the forecast covariance matrix is mul-
tiplied by a constant greater than 1. Another undesired con-
sequence of the limited ensemble size is that the ensemble
state at any grid point will present non-negligible spurious
correlations with observations located far apart in space. This
difficulty is solved using another ad hoc procedure known as
“covariance localization”. Here, we utilize the R localization
(Hunt et al., 2007), where the entries of the observation error
covariance matrix are multiplied by a function that increases
exponentially with distance.

2.1.3 Time-averaged ensemble Kalman filter

The EnKF algorithm was initially designed to estimate the
instantaneous state of a model given instantaneous observa-
tions. As a consequence, EnKF cannot be directly applied
to paleoclimate data given that the observational information
present in proxy records is typically the average of a function
of the state over long time periods. A solution to this conflict
is provided by the time-averaged EnKF (Dirren and Hakim,
2005), where the instantaneous forecast is decomposed into
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its time-averaged part and the anomalies around it. After-
wards, the original EnKF update formula is used to assim-
ilate the time-averaged observations into the time-averaged
forecast, obtaining the time-averaged analysis. Finally, the
instantaneous analysis is form by adding the unaltered time-
averaged forecast anomalies to the time-averaged analysis.
This approach is based on the assumption that the observa-
tions can only contain time-averaged information (Dirren and
Hakim, 2005). If the time-averaged period is considerably
longer than the timescales of the dynamical model, which
may easily be the case for paleoclimate records, after assim-
ilation the ensemble spread can reach climatological levels,
leading to a complete lack of estimation skill for the forecast
quantities. This behavior, currently referred to as the off-line
regime, was first observed for the time-averaged EnKF ap-
plied to a quasi-geostrophic atmospheric jet model (Huntley
and Hakim, 2010; Pendergrass et al., 2012). Afterwards, sev-
eral studies used the simplified off-line time-averaged EnKF
approach with global climate models (Bhend et al., 2012;
Steiger et al., 2014; Dee et al., 2016) assuming the presence
of the off-line regime. However, to our knowledge, there had
not been numerical evidence of the onset of off-line condi-
tions for a full time-averaged EnKF algorithm applied to an
AGCM. As mentioned in the introduction, filling this knowl-
edge gap is one the objectives of this paper.

2.2 TRW forward model

The VSL model for TRW chronologies offers an
intermediate-complexity approach between ecophysio-
logical and completely data-driven models (Tolwinski-Ward
et al., 2011; Tolwinski-Ward, 2012), where the climate-
driven component of tree-ring growth is parameterized by
way of a simple representation of the principle of limiting
factors (PLF) (Fritts, 1976). The biological concept of PLF
states that the pace at which a plant develops is controlled
by the single basic growth resource, typically either energy
or water, that is in shortest supply. Within VSL the limiting
factors considered are near-surface air temperature (T )
and soil moisture (M). These variables influence tree-ring
growth via the “growth response” functions

gT =9

(
T − T L

T U− T L

)
(10)

and

gM =9

(
M −ML

MU−ML

)
, (11)

where 9 is the piece-wise linear “standard ramp” function
(Tolwinski-Ward et al., 2014)

9(u)=


0 if 0>u

u if 0< u61
1 if u > 1,

T L and ML denote minimum thresholds for temperature and
moisture below which there is no growth, and T U and MU

are upper thresholds above which tree growth is optimal. Af-
terwards, the growth rateGMIN is determined by the smallest
growth response, i.e.,

GMIN =min {gT,gM} . (12)

Finally, the yearly TRW valuesW are obtained by integrating
in time the growth rate modulated by the relative insolation
I :

Wn =

tn∫
tn−τ

GMIN(t)I (t)dt. (13)

Here n stands for the number of the year, tn is the time at the
end of the year n and τ is the length of the year (12 months).

Regarding DA, VSL presents two challenging nonlinear
aspects: (i) a “thresholded response” (Evans et al., 2013),
arising from the insensitivity of trees to climate variability
during dormancy and optimal growth, and (ii) “abrupt shift-
ing of recorded variable” (Acevedo et al., 2015), coming
from the structure of Eq. (12). There, the use of the minimum
function implies that tree growth at a particular time can be
limited by either temperature or moisture. Accordingly, tran-
sitions between growth limitation regimes necessarily hap-
pen in a sudden manner.

2.2.1 VSL from the fuzzy logic viewpoint

The term fuzzy logic was coined by Zadeh (1975) and refers
to a mathematical theory which has been very successful
in modeling complex systems involving imprecise data and
vague knowledge of the underlying mechanisms. Since its in-
troduction, FL has greatly influenced many disciplines, most
notably control theory (Nguyen et al., 2002). Within the en-
vironmental sciences, FL has been applied in ecological and
hydrological modeling (Marchini, 2011; Salski, 2006; Se,
2009). Regarding climate proxy forward modeling, AC15 re-
cently showed that the VSL model can be completely em-
bedded into the framework of FL. Within this reinterpreta-
tion, the growth response function gT (gM) corresponds to
the membership function to the set ST (SM) of optimal tem-
perature (moisture) conditions for tree growth. Temperature
(moisture) values lying below T L (ML) present null values
for gT (gM) and accordingly do not belong to ST (SM). On the
other hand, temperature (moisture) values lying above T U

(MU) lead to gT (gM) values equal to 1, meaning they belong
completely to ST (SM). All the other temperature (moisture)
conditions present growth responses between 0 and 1, and
consequently they are considered to belong partially to ST
(SM). This idea of partial membership is the basis of fuzzy
logic and the sets defined this way are called fuzzy sets. Fur-
thermore, the intersection of the fuzzy sets ST and SM is
again a fuzzy set ST∧M, whose membership function can be
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calculated by evaluating the minimum between GT and GM:

gT∧M =min {gT,gM} . (14)

Equation (14) is completely equivalent to the Eq. (13).
Then VSL’s growth rate function can be interpreted as the
membership function for the fuzzy intersection set ST∧M. In
FL theory, the minimum function (Eq. 14) is one of the most
popular representations of the intersection operation; how-
ever, it is not the only one as a whole family of appropriate
functions actually exist referred to as t-norms (see Nguyen
et al., 2002). In AC15 a number of t-norms was tested as
replacement for VSL’s growth rate function within a highly
simplified paleo-DA setting. In particular, it was found that
the product t-norm gT∧M = gT · gM might significantly im-
prove the performance of the time-averaged EnKF technique.
Accordingly, beside the minimum t-norm, we also consider
the product growth response VSL-Prod in this paper:

GPROD = gT · gM. (15)

An important aspect of the product growth response VSL-
Prod is the presence of an additional growth limitation
regime where T and M concurrently limit tree-ring growth.
This “co-limitation” regime allows a gradual transition be-
tween temperature- and moisture-limited growth limitation
regimes and accordingly a progressive alternation of the
recorded variable. Growth co-limitation was initially recog-
nized by Singh and Lal (1935), who called attention to the
limitations of the original formulation of the PLF due to
Blackman (1905). Within the ecological research commu-
nity, co-limitation has been widely acknowledged as an cru-
cial resource limitation phenomenon (Harpole et al., 2011),
with abundant observational support both in terrestrial (Ni-
inemets and Kull, 2005) and aquatic (Saito et al., 2008) envi-
ronments. Interestingly, within the vegetation modeling com-
munity the original PLF formulation is still the predominant
approach to model photosynthesis (Yin and Struik, 2009).

2.3 Experimental design

Following the rationale used in the experiments of AC15, we
conducted a set of DA experiments using the Simplified Pa-
rameterizations, primitivE-Equation DYnamics (SPEEDY)
model (Molteni, 2003) as a dynamical system and the VSL
forward model as an observation operator. The time-averaged
state of the atmosphere is estimated via the EnKF approach
of Dirren and Hakim (2005). In the following, we describe in
detail each of the components of our experimental setting.

2.3.1 Atmospheric general circulation model

The SPEEDY model (Molteni, 2003) is an intermediate-
complexity atmospheric general circulation model (AGCM)
comprising a spectral dynamical core and a set of simpli-
fied physical parameterizations, based on the same princi-
ples as state-of-the-art AGCM but tailored to work with just a

few vertical levels. Regarding the interaction with the ocean,
SPEEDY offers two possible configurations: (i) prescribed
ocean – sea surface temperature is directly imposed as forc-
ing; (ii) slab ocean – the atmospheric model is coupled to a
slab ocean model (q flux adjusted mixed layer model) forced
by climatological ocean dynamics. Despite its low resolu-
tion and the relatively low complexity of its parameteriza-
tions, SPEEDY still captures many observed global climate
features in a realistic way, while its computational cost is at
least 1 order of magnitude lower than the one of sophisti-
cated state-of-the-art AGCMs at the same horizontal resolu-
tion (Molteni, 2003). The latter makes SPEEDY especially
suitable for studies involving long ensemble runs, like the
ones necessary for this study.

2.3.2 DA technique

The SPEEDY model was embedded by Miyoshi (2005) into
the SPEEDY-LETKF framework, which offers a parallel im-
plementation of a local ensemble transform Kalman filter
(LETKF) (Hunt et al., 2007). Among the different types of
EnKF, LETKF is particularly promising for high-resolution
models given that the calculation of the analysis for a partic-
ular grid point requires only the information of the neighbor-
ing observations. Therefore, LETKF offers outstanding scal-
ability properties. SPEEDY-LETKF is an open-source soft-
ware which has already been used for several DA studies (Li
et al., 2009; Miyoshi, 2010; Lien et al., 2013; Ruiz et al.,
2013; Amezcua et al., 2014). Here, SPEEDY-LETKF was
extended to allow the assimilation of pseudo-TRW obser-
vations by means of either online or off-line time-averaged
EnKF methods.

For the experiments presented in this paper, we employed
ensembles of 24 members due to computational constraints.
We used a constant multiplicative inflation of 1 % after the
ensemble update and R localization via the following for-
mula:

Rloc = R · exp
(
(rh/2λh)2

+ (rv/2λv)2), (16)

where rh and rv stand for the horizontal and vertical dis-
tances, respectively. Their corresponding scaling parameters
were set to the values of λh = 500 km and λv = 0.4lnp.

2.3.3 Numerical experiments

We performed a set of Observation System Simulation Ex-
periments (OSSEs) (see Fig. 1), consisting of (i) a single
model trajectory xNature, referred to as “true” run or “na-
ture” run, that is used as a prediction target, (ii) pseudo-
observations created by applying the observation operator
to xNature and adding simulated observational noise, (iii) an
observationally constrained ensemble run XDA, where the
pseudo-observations are assimilated, and (iv) a free ensem-
ble run XFree, where no observations are assimilated and then
the ensemble just freely evolves under the action of the model
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Forecast Analysis

Ensemble
DA method

Nature run

Pseudo-observations

Online DA 
(with cycling)

Ensemble
members

“True” trajectory

Free ensemble run

Off-line DA 
(no cycling)

Observation
operator

+
noise

Figure 1. Schematic of a typical observation system simulation
experiment (OSSE) with ensemble online (with cycling) and off-
line (no-cycling) DA methods. t designates the time axis and X(Y )
denotes the model state (observation) space. Boxes with sharp
(rounded) corners represent data (processes). Red (green) vertical
bars indicate the forecast (analysis) spread. Vertical dotted lines rep-
resent the assimilation steps.

dynamics. XFree is intended to provide a benchmark of per-
formance, against which it is possible to assess the added
value of the DA scheme.

Initially, a 1-year-long spin-up run is performed starting
from 1 January 1860. Afterwards, the final state of this model
trajectory is used as the initial condition for a 150-year-long
nature (“true”) run. The ensemble runs with and without DA
are identically initialized from a set of states gathered from
the last 2 months of the spin-up run (lagged 2-day initializa-
tion). Note that the nature run and the different ensemble runs
are generated with the same time-varying forcing fields. Re-
garding the atmosphere–ocean coupling, we used SPEEDY’s
slab ocean configuration, motivated by the fact that the slow
variability in the slab ocean may lend predictability to the
atmosphere. In these conditions, the online DA technique
should have higher chances to outperform the off-line tech-
nique.

Figure 2. Station set resembling real TRW network from Breiten-
moser et al. (2014).

2.3.4 Observation generation

Pseudo-TRW observations are produced following VSL’s
formulation plus a final white noise addition step, in which
random draws from a Gaussian distribution are imposed on
the time-averaged observations. Noise levels are assessed by
means of the signal-to-noise ratio (SNR), given by the ra-
tio of the standard deviation of the unpolluted pseudo-TRW
observations to the standard deviation of the additive white
noise. Most of the results reported in Sect. 3 correspond to
the optimistic value SNR= 10, with the exception of the last
sensitivity study, which analyzes the dependency on observa-
tional noise levels. Regarding the geographical distribution
of the observations, we place a pseudo-TRW chronology at
every grid box where at least one actual TRW chronology
from the database of Breitenmoser et al. (2014) is present.
This strategy yields a realistic observational network com-
prising 257 stations (see Fig. 2).

Concerning the configuration of the observation operator,
we focus our study on the role of the growth rate function by
configuring VSL in such a way that no thresholded response
takes place. This is done by setting the upper and lower re-
sponse thresholds to the maximum (minimum) values during
the nature (true) run so that the response functions reduce to
linear rescaling operators. We consider three different growth
rate functions leading to three VSL configurations: (i) VSL-
T, where the growth rate is directly given by the growth re-
sponse to temperature (GT = gT); (ii) VSL-Min, where the
original “minimum” t-norm GMIN is used; and (iii) VSL-
Prod, where the FL-based “product” t-norm GPROD is uti-
lized. Note that within the setup described above, VSL-T
generates purely temperature-limited pseudo-chronologies,
while VSL-Min and VSL-Prod generate mixed ones, where
temperature and soil moisture determine tree-ring growth
pace.

Finally, respecting the soil moisture fields used to drive
the VSL model, we consider two options: (i) extracting soil
moisture time series from the climatological surface bound-
ary conditions of the SPEEDY model and (ii) using the pre-
cipitation and temperature output of SPEEDY as input for
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the leaky bucket model (LBM)1 (Huang et al., 1996), as it
is normally done with the VSL model. Note that with the
first option, the time series obtained present only intra-annual
variability (yearly periodicity), while with the second option
moisture time series do exhibit interannual variations.

2.3.5 Diagnostics

Thanks to the availability of the truth model evolution for our
OSSEs, the forecast and analysis skill of the ensemble runs
can be directly assessed. Given the annual resolution of TRW
chronologies, we study the filter performance for yearly aver-
aged values of near-surface temperatures. We focus our anal-
ysis on near-surface temperature due to the larger error re-
duction in this field as compared to other variables (e.g., hu-
midity, u wind, v wind) when DA is applied. The behavior
of ensemble runs is monitored by means of the root mean
square error (RMSE) for the ensemble means. The results
are shown as (1) time series of globally averaged tempera-
ture RMSE, (2) histograms of these time series and (3) maps
of time-averaged (150 years) temperature RMSEs.

3 Results

3.1 Unconstrained ensemble run

An AGCM is an example of a nonautonomous system, and
accordingly the evolution of its state is determined by both
the atmospheric dynamics and the external forcing. The in-
fluences of these two distinct factors can be disentangled to
some extent by considering atmospheric variability to be a
superposition of an internal component, caused by the intrin-
sic dynamics, and an external one, resulting from the vari-
ations in the boundary conditions (Deza et al., 2014). Un-
der this assumption, internal and external variability can be
separated by way of a free ensemble run, using the ensem-
ble mean as an estimate of the forced variability and the en-
semble spread as an estimate of the internal variability. Fol-
lowing this train of thought, Fig. 3a shows the magnitude
of the yearly internal variability in near-surface temperature.
Geographical regions around the Equator present negligible
yearly internal variability, which can be explained by the fact
that these areas are dominated by the daily cycle, and accord-
ingly the 1-year-long averaging strongly attenuates their in-
ternal variability. On the other hand, maximum spread values
occur at high latitudes around ±70◦. These yearly internal-
variability maxima can be related to planetary-scale patterns
fluctuating over timescales longer than 1 year, such as the
“annular modes” (Thompson and Wallace, 2000) and dis-
placements of the jet stream (Woollings et al., 2011). Regard-
ing the error of the free ensemble run, Fig. 3b shows that the
RMSE maxima clearly coincide with the internal-variability
maxima, given that quantities without internal variability can

1The LBM code was extracted from VSL v2_3 (ftp://ftp.ncdc.
noaa.gov/pub/data/paleo/softlib/vs-lite/).

be well described by an ensemble run without DA. From that,
it becomes clear that in our setting, DA can only be beneficial
to estimate quantities displaying significant yearly internal
variability.

3.2 Assimilating linear univariate time-averaged
observations

In order to focus on the comparison between online and
off-line DA techniques, we first consider the assimilation
of temperature-limited pseudo-chronologies produced with
VSL-T. Note that this observation operator generates linear
univariate time-averaged observations, and accordingly the
time-averaged EnKF must be in good conditions to operate,
given that no nonlinearities are present in the observation op-
erator.

Figure 4b and c show how the assimilation effectively re-
duces the error of the analysis for both online and off-line
methods. All areas adjacent to the observational network
show low RMSE values; however, it is important to high-
light that stations located in areas of strong yearly internal
variability are more efficient than the others at reducing the
error of the analysis quantities. An example of this is the
chronologies placed in Alaska, where RMSE reductions of
up to 1.5◦ take place. Conversely, stations situated in regions
with weak yearly internal variability do no lead to significant
error reductions, as is the case of the chronologies located in
the Himalaya area, where SPEEDY presents no significant
yearly temperature internal variability to be constrained via
DA. Therefore, we claim that the error reduction for anal-
ysis quantities is modulated by the magnitude of the yearly
internal variability at a specific site.

On the other hand, online forecast quantities do not present
significant error reductions, and consequently the online
time-averaged EnKF appears to work under the off-line
regime. This situation can be seen in Fig. 4a, which presents a
strong resemblance with Fig. 3b, corresponding to the RMSE
of the free ensemble run. Furthermore, looking at global
RMSE time series (Fig. 5), it is evident that the errors for
the online technique increase with time, as opposed to the
corresponding off-line quantities, which presented stable be-
havior all along the running time interval. Overall the off-line
DA methodology leads to lower error levels on the global
scale. The existence of this upward trend for online errors
might be attributed to an undesired effect arising from the
re-initialization of the ensemble after each assimilation step.
For all our online DA experiments we observed the afore-
mentioned lack of forecast skill. Consequently, for the rest
of this section we will focus on the off-line DA technique.

3.3 Assimilating mixed TRW chronologies

Here we analyze the role of the structure of the growth rate
function in the performance of the off-line DA scheme. Given
that both GMin and GProd are nonlinear functions, their use
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(a)

Figure 3. Yearly near-surface temperature spread (a) and
RMSE (b) for the free ensemble run.

within the observation operator degrades the operation of the
time-averaged EnKF, as it is illustrated by Fig. 6. Some ar-
eas displaying very low RMSE values for VSL-T, such as
Alaska, Siberia and central Asia, present considerably higher
error levels when VSL-Min or VSL-Prod are utilized. This
loss of skill to nonlinearities in the observation operator is
also apparent in the global RMSE time series, as can be seen
in Fig. 7, where VSL-T clearly outperforms the other two
observation operators.

Regarding the dependency on the representation of the
PLF, Fig. 6 shows that the use of VSL-Prod leads to con-
siderably lower RMSE values in central Europe and the east
coast of the United States. This edge of VSL-Prod over VSL-
Min is also observed on the global scale, as can be seen in
Fig. 7. These results concur with the ones of AC15, where
in a highly simplified paleo-DA setting the use of VSL-Prod
instead of VSL-Min appeared also beneficial to the perfor-
mance of the time-averaged EnKF technique. Concerning the
soil moisture fields, Fig. 8 shows how using the soil moisture
calculated by the LBM reduces the error levels of both VSL-
Min and VSL-Prod DA runs. However, these improvements
in filter performance are more significant for VSL-Min than
for VSL-Prod.

Finally, respecting the dependency of the filter perfor-
mance on the observational noise levels, Fig. 9 shows how
the off-line DA scheme is considerably effective for SNR
values higher than 1. Increasing further the observational
noise (reducing SNR) leads to a fast increase for the aver-

Figure 4. Yearly near-surface temperature RMSE for the ensemble
run constrained by VSL-T pseudo-TRW observations. (a) Online
forecast quantities, (b) online analysis quantities and (c) off-line
analysis quantities

aged global RMSE curve, which reaches the error levels of a
simulation without DA (free ensemble run) at SNR= 0.03.

4 Conclusions

Using the time-averaged EnKF methodology and a process-
based proxy forward model (VSL), we assimilated pseudo-
TRW chronologies in an AGCM (SPEEDY). Using a set of
perfect model experiments we studied two different aspects
of the paleo-DA problem: (i) the onset of the off-line regime
in the assimilation of observations averaged during long time
periods and (ii) the impact of a nonlinear observation oper-
ator on the performance of EnKF-based time-averaged DA
approaches.

Our online DA experiments in general showed no forecast-
ing skill, and accordingly they appear to operate under the
off-line regime. Moreover, they exhibited a detrimental in-
creasing error trend not present for our experiments with off-
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Figure 5. Global near-surface temperature RMSE for the forecast ensemble run constrained by VSL-T pseudo-TRW observation (red) and
the free ensemble run (black) for the analysis of online (green) and off-line (blue) DA. Panel (a) shows time series and panel (b) their
corresponding histograms. Horizontal lines represent the mean values.

Figure 6. Yearly near-surface temperature RMSE for the anal-
ysis of the ensemble runs using off-line DA and climatological
soil moisture. (a) Assimilating VSL-T pseudo-TRW observations,
(b) assimilating VSL-Min pseudo-TRW observations and (c) assim-
ilating VSL-Prod pseudo-TRW observations

line DA schemes, where no re-initialization of the model was
performed. In these conditions, the off-line time-averaged
EnKF appears to outperform its online counterpart. This re-
sult complements the studies of Huntley and Hakim (2010)
and Pendergrass et al. (2012), where the off-line regime
was observed to emerge within a DA setting comprising the
time-averaged EnKF and a quasi-geostrophic atmospheric jet
model. From our point of view, the off-line regime can arise
either from the dynamical model or from the DA scheme.
Regarding the dynamical model, the main reason for los-
ing forecast skill is that the period between consecutive ob-
servations considerably exceeds the predictability horizon of
the model, and accordingly the ensemble forecast completely
forgets the observational information assimilated at the anal-
ysis steps. For SPEEDY, due to its purely atmospheric nature,
the 1-year averaging period of TRW chronologies appears to
be considerably longer than its dynamical timescales. There-
fore, the appearance of the off-line regime is to be expected.
On the other hand, for more realistic climate models, there
is already evidence of processes with timescales longer than
1 year (Smith et al., 2012). Examples of these sources of slow
variability are (i) the “annular modes” (Thompson and Wal-
lace, 2000), which strongly affect climatic conditions in high
latitudes, (ii) the latitudinal oscillation of the cell structure,
which influences the position of the jet streams, and (iii) the
oscillations of the Intertropical Convergence Zone (ITCZ),
which greatly impacts humidity in several parts of the globe
(Holton and Hakim, 2013), as well as the El Niño–Southern
Oscillation (ENSO), which affects the climate of a large por-
tion of the tropical and subtropical areas. Consequently, we
consider that for more realistic paleo-DA settings using more
comprehensive Earth system models, the off-line regime is
less likely to arise. Regarding the DA scheme, a possible
reason for the appearance of the off-line regime is the time-
averaged update strategy (Dirren and Hakim, 2005), which
assumes complete decorrelation between time-averaged and
instantaneous variables. This condition might not be satisfied
by SPEEDY, and accordingly the estimation of instantaneous
quantities might be badly affected. Another limitation of the
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Figure 7. Global near-surface temperature RMSE for the off-line analysis of the ensemble runs constrained by VSL-Min (red), VSL-Prod
(green) and VSL-T (blue) pseudo-TRW observations. Climatological soil moisture is used to drive the VSL model. Horizontal lines represent
the mean values. Panel (b) shows the histograms of the time series.
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for the free ensemble run forecast (free) and the analysis of the off-
line DA runs using VSL-Min observation operator and climatolog-
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leaky bucket model (DA_MIN_LBM), VSL-Prod observation op-
erator and climatological soil moisture (DA_PROD), and VSL-Prod
observation operator and leaky bucket model (DA_PROD_LBM).
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Figure 9. Averaged global yearly near-surface temperature RMSE
for the analysis of the ensemble run with off-line DA, VSL-Min
observation operator and different signal-to-noise ratios. The green
star shows the corresponding value for the free run.

time-averaged EnKF is its reliance on Gaussianity. This as-
sumption might be easily violated in a climate model, for ex-
ample by definite positive quantities such as humidity. Con-
sequently non-Gaussianity might be also one of the culprits
of the onset of the off-line regime in our experiments.

Concerning the influence of nonlinearities in the observa-
tion operator, the performance of the off-line time-averaged
EnKF appeared to be significantly sensitive to the selection
of the t-norm used to represent the PLF. In our experiments,
the product t-norm outperformed the original minimum t-
norm, as previously observed for a two-scale Lorenz (1996)
model in AC15. Tolwinski-Ward et al. (2014) described trees
as fundamentally lossy2 recorders of climate, due to the inte-
grated nature of the information contained in them and the
standardization process used to minimize the non-climatic
effects on growth. In the same vein, we argue that the “abrupt
shifting” of the recorded variable (temperature or moisture)
– implied by the minimum function used in VSL’s original
formulation – might constitute an additional source of lossi-
ness, which can be reduced by resorting to an FL-based rep-
resentation of the PLF. In particular, for the product t-norm,
the existence of an additional co-limitation regime makes
a smoother shifting of the recorded variable possible. As a
cautionary remark, we want to highlight that the pseudo-
observations assimilated in our experiments present several
important limitations: (i) the thresholded response of trees to
temperature and moisture was not considered in order to fo-
cus on the role of the growth rate function; (ii) VSL’s param-
eters were set in a completely homogeneous fashion for all
the observational stations, whereas actual TRW networks are
strongly heterogeneous, comprising chronologies generated
under highly dissimilar growth limitation regimes. More re-
alistic TRW assimilation experiments will probably have to

2This adjective is currently used in information technology to
designate data encoding methods that lead to information loss from
the original version for the sake of reducing the amount of data
needed to store the content.
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address these issues as well as the necessity of considering
model errors by conducting imperfect model OSSEs.

Finally, we want to mention that the translation of VSL
into the FL language suggests other possible extensions for
VSL. (i) Growth response functions can be generalized using
the extensive knowledge on membership functions gathered
in the FL research community (Nguyen et al., 2002). In par-
ticular, it might be possible to tailor the shape of the growth
response functions so as to optimize the performance of VSL
regarding the particular application at hand, e.g., Gaussian
DA, as was done in this paper. (ii) Additional limiting fac-
tors, e.g., CO2 concentration, can be easily incorporated into
the fuzzy inference system by adding new rules designed to
express expert knowledge about the influence of these fac-
tors on tree growth. (iii) The intrinsic uncertainty regarding
VSLs parameters might be taken into account via the emerg-
ing theory of stochastic FL (Luhandjula and Gupta, 1996).
Furthermore, this ability of the FL approach to efficiently
simulate complex processes involving vaguely understood
mechanisms can be used in the development of new proxy
forward models as well as in the extension of the existing
ones.
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