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 1	
Text 1 2	
Period before 1300 CE 3	

We note a weaker correlation between our record and the PDO-reconstruction (Macdonald 4	

et al., 2005) prior to ~1300 CE during a period that corresponds broadly with a thick 5	

erosive layer dated ~1300 CE in the varve chronology (Lapointe et al., 2012) (Fig. S6). 6	

This layer has been suggested to be the consequence of a mass movement deposit in a 7	

recent study (Normandeau et al., 2016a). However, this event is also relatively 8	

synchronous with an unprecedented negative anomaly in the reconstructed PDO occurring 9	

around 1296 CE (Macdonald et al., 2005). Cross-correlation between these two proxy 10	

records shows a significant correlation between 993-1299 CE when VT is shifted by 45 11	

years (CBEL lags PDO by 45 years, r = -0.20, p < 0.001; Fig. S7), suggesting that the large 12	

debris flow at ~1300 CE likely eroded 45 varves. It is worth noting that the tree-ring based 13	

PDO reconstruction values prior to 1300 CE are almost constantly negative. Moreover, the 14	

period encompassing 1000-1300 CE is characterized by periods of massive droughts in the 15	

southwestern USA, causing a deficit of soil-water recharge and possibly widespread tree 16	

mortality in this region (Williams et al., 2013). In any case, the low distribution of tree-17	

rings prior to 1300 CE impedes a good understanding of the climate in the Northern 18	

latitudes (Wilson et al., 2015).  19	



 20	
Figure S1. Sea-ice cover anomalies in relation to PDO phases during summer and 21	
autumn. Correlation between PDO (Huang et al., 2015) and sea-ice anomalies from 22	
ERA-Interim (Dee et al., 2011) for June-August (a), August-October (b), and 23	
September-November (c) during 1979-2016. Black asterisk denotes Cape Bounty.  24	
 25	

 26	
Figure S2. Correlation between the 98th percentile at CBEL (Lapointe et al. 2012) 27	
and the NPI during September-November (Trenberth and Hurrell 1994) for the past 28	
100 years.  29	
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 30	

 31	
Figure S3. Cross-correlation between annual PC1 of reconstructed PDOs 32	
(MacDonald and Case 2005, D’Arrigo et al. 2001, Gedalof and Smith 2001) versus 33	
annual CBEL varve thickness from 1700-1900. Maximum correlation is reached at 34	
18 year lag, that is CBEL leads the PDO reconstructions.  35	
 36	
 37	

 38	
Figure S4. Large turbidite showing erosive features. The black lines indicate the 39	
thickness of the layer (1.34 cm) dated to 1446 CE. The backscattered electron 40	
image acquired at the scanning electron microscope shows the base of the turbidite 41	
(red square). Core # CBEV1, depth from top: 101.88 cm.  42	
 43	

PC1 of PDOs versus CBEL VT



 44	
Figure S5. Comparison between CBEL varve thickness and the Pacific 45	

Decadal Oscillation (Macdonald et al., 2005) over the last ~700 years. Bold lines 46	
are 25-year low-pass filter. Grey shading (b) indicates the 28 years eroded varves 47	
at CBEL.  48	
 49	

 50	
 51	

 52	
Figure S6. Largest debris flow deposit dated to ~1300 CE. The backscattered 53	
electron image acquired at the scanning electron microscope shows the base of the 54	
debris flow (red square). Core # CBEV1, depth from top: 130.14 cm.  55	
 56	
 57	
 58	
 59	
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 61	
Figure S7. Varve thickness versus reconstructed PDO(Macdonald et al., 2005) 62	
during the Medieval Climate Anomaly. Bold lines are 25-year low-pass filter. 63	
Varve thickness is shifted 45 years earlier.   64	
 65	

 66	
Figure S8. p-values for the correlations between (raw and filtered) 67	

reconstructed PDOs and CBEL VT using a nonparametric stationary bootstrap 68	
(1000 iterations). Red line is the 95% confidence levels.		69	
 70	
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 72	
 73	
 74	
Figure S9. Same as Figure 6a, but for all year-round except SON (as it is in the 75	
main text). (a) averaged January-March, (b) February-April, (c) March-May, (d) 76	
April-June, (e) May-July, (f) June-August, (g) July-September, (h) August-October, 77	
(i) October-December, (j) November-January and (k) December-February.  78	
 79	

 80	
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 88	
Figure S10. North Pacific influences on temperature anomalies in the western 89	
Canadian Arctic. (a), Spatial correlation between July-September PDO index and 90	
July-September surface temperature (Dee et al., 2011) for 1979-2016. (b), as in (a), 91	
but for the North Pacific Index (Trenberth et al., 1994). 92	
 93	
 94	
 95	

 96	
Figure S11. Summer sea ice extent covering 84°- 67°N / 100° W - 170° E 97	
compared to the 98th percentile at CBEL.  98	
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