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Abstract. Data assimilation (DA) has been successfully ap-
plied in the field of paleoclimatology to reconstruct past cli-
mate. However, data reconstructed from proxies have been
assimilated, as opposed to the actual proxy values. This pre-
vented full utilization of the information recorded in the
proxies.

This study examined the feasibility of proxy DA for pale-
oclimate reconstruction. Isotopic proxies (δ18O in ice cores,
corals, and tree-ring cellulose) were assimilated into mod-
els: an isotope-enabled general circulation model (GCM) and
forward proxy models, using offline data assimilation.

First, we examined the feasibility using an observation
system simulation experiment (OSSE). The analysis showed
a significant improvement compared with the first guess in
the reproducibility of isotope ratios in the proxies, as well as
the temperature and precipitation fields, when only the iso-
topic information was assimilated. The reconstruction skill
for temperature and precipitation was especially high at low
latitudes. This is due to the fact that isotopic proxies are
strongly influenced by temperature and/or precipitation at
low latitudes, which, in turn, are modulated by the El Niño–
Southern Oscillation (ENSO) on interannual timescales.

Subsequently, the proxy DA was conducted with real
proxy data. The reconstruction skill was decreased compared
to the OSSE. In particular, the decrease was significant over
the Indian Ocean, eastern Pacific, and the Atlantic Ocean
where the reproducibility of the proxy model was lower. By
changing the experimental design in a stepwise manner, the
decreased skill was suggested to be attributable to the misrep-
resentation of the atmospheric and proxy models and/or the
quality of the observations. Although there remains a lot to

improve proxy DA, the result adequately showed that proxy
DA is feasible enough to reconstruct past climate.

1 Introduction

Knowledge of past conditions is crucial for understanding
long-term climate variability. Historically, two approaches
have been used to reconstruct paleoclimate; one based on
the empirical evidence contained in proxy data, and the other
based on simulation with physically based climate models.
Recently, an alternative approach combining proxy data and
climate simulations using a data assimilation (DA) technique
has emerged. DA has long been used for forecasting weather
and is a well-established method. However, the DA algo-
rithms used for weather forecasts cannot be directly applied
to paleoclimate due to the different temporal resolution, spa-
tial extent, and type of information contained within obser-
vation data (Widmann et al., 2010). The temporal resolution
and spatial distribution of proxy data are significantly lower
(seasonal at best) and sparser than the present-day observa-
tions used for weather forecasts, and the information we can
get does not measure the direct states of climate (e.g., temper-
ature, wind, pressure), but represents proxies of those states
(e.g., tree-ring width, isotopic composition in ice sheets).
Thus, DA applied to paleoclimate is only loosely linked to
the methods used in the more mature field of weather fore-
casting, and it has been developed almost independently from
them.

Several DA methods have been proposed for paleoclimate
reconstruction (von Storch et al., 2000; van der Schrier et al.,
2005; Dirren and Hakim, 2005; Goosse et al., 2006; Bhend et
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al., 2012; Dubinkina and Goosse, 2013; Steiger et al., 2014),
and paleoclimate studies using DA have successfully deter-
mined the mechanisms behind climate changes (Crespin et
al., 2009; Goosse et al., 2010, 2012; Mathiot et al., 2013).
In previous studies, the variables used for assimilation have
been data reconstructed from proxies (e.g., surface air tem-
perature) because observation operators or forward models
for proxies have not been readily available. Hereafter, the DA
method that assimilates reconstructed data from proxies is re-
ferred to as reconstructed DA. Recently, proxy modelers have
developed and evaluated several forward models (e.g., Dee et
al., 2015, and references therein). Thanks to that, currently a
few studies have started attempting to assimilate proxy data
directly (Acevedo et al., 2016a, b; Dee et al., 2016).

The main advantage of proxy DA over reconstructed DA
is the richness of information used for assimilation. In pre-
vious studies, only a single reconstructed field was assimi-
lated. However, proxies are influenced by multiple variables.
Hence, the assimilation of a single variable does not use the
full information recorded in the proxies.

The reconstruction method itself also limits the amount of
information. The most commonly used climate reconstruc-
tion is an empirical and statistical method that relies on the
relationships between climate variables and proxies observed
in present-day observations. These relationships are then ap-
plied to the past climate proxies to reconstruct climate prior
to the instrumental period. Most of the studies using this ap-
proach assume that the relationship is linear. However, this
assumption imposes considerable limitations in which spe-
cific climate proxies can be used, and proxies that do not
satisfy the assumption have generally been omitted (e.g.,
PAGES 2k Consortium, 2013). Because information on pale-
oclimate is scarce, it is desirable to use as much information
as possible.

Furthermore, the reconstruction method also limits the
quality of information provided. The method also assumes
stationarity of the relationship between the climate and the
proxies. However, this assumption has been shown to be in-
valid for some cases (e.g., Schmidt et al., 2007; LeGrande
and Schmidt, 2009). In the case of reconstructed DA, the
assimilation of such questionable reconstructed data would
provide unrealistic results. In the case of proxy DA, however,
the skill of the assimilation is expected to be unchanged, pro-
vided the model can correctly simulate the non-stationarity.

The concept of proxy data assimilation is not new, and has
been proposed in previous studies (Hughes and Ammann,
2009; Evans et al., 2013; Yoshimura et al., 2014; Dee et al.,
2015). Yoshimura et al. (2014) demonstrated that the assimi-
lation of the stable water isotope ratios of vapor improves the
analysis for current weather forecasting. They performed an
observation system simulation experiment (OSSE) assuming
that isotopic observations from satellites were available ev-
ery 6 h. Because the isotope ratio of water is one of the most
frequently used climate proxies, this represents a significant
first step toward improving the performance of proxy data

assimilation in terms of identifying suitable variables for as-
similation. However, it is not yet clear whether it is feasible
to constrain climate only using isotopic proxies whose tem-
poral resolution and spatial coverage are much longer and
sparser than those of the specific study.

This study examined the feasibility of isotopic proxy
DA for the paleoclimate reconstruction on the interannual
timescale. Because the study represents one of the first at-
tempts to assimilate isotopic variables on this timescale, we
adopted the framework of an OSSE, as in previous climate
data assimilations (Annan and Hargreaves, 2012; Bhend et
al., 2012; Steiger et al., 2014; Acevedo et al., 2016b; Dee et
al., 2016). After the evaluation of proxy DA in the idealized
way, we conducted the study with “real” proxy DA. We in-
vestigated which factors decreased or increased the skill of
the proxy DA. As a measure of skill, we report the correla-
tion coefficient throughout the paper.

In this study, we used only oxygen isotopes (18O) as prox-
ies. The isotope ratio is expressed in delta notation (δ18O)
relative to Vienna Standard Mean Ocean Water (VSMOW)
throughout the paper. If the original data were expressed in
delta notation relative to Vienna Pee Dee Belemnite (VPDB),
they were converted to the VSMOW scale.

This paper is structured as follows. In the following sec-
tion, the data assimilation algorithm, models, data, and ex-
perimental design are presented. Section 3 shows the results
of the idealized experiment. Section 4 gives the results of the
real proxy DA. The discussion is presented in Sect. 5. Finally,
we present our conclusions in Sect. 6.

2 Materials and methods

2.1 Data assimilation algorithm

We used a variant of the ensemble Kalman filter (EnKF; see
Houtekamer and Zhang, 2016, and references therein): the
sequential ensemble square root filter (EnSRF; Whitaker and
Hamill, 2002). EnSRF updates the ensemble mean and the
anomalies from the ensemble mean separately, and processes
observations serially one at a time if the observations have
independent errors.

To assimilate time-averaged data, a slight modification
was made for the method following Bhend et al. (2012) and
Steiger et al. (2014). In the modified EnSRF, the analysis pro-
cedure is not cycled to the simulation (Bhend et al., 2012);
thus, the background ensembles can be constructed from ex-
isting climate model simulations (Huntley and Hakim, 2010;
Steiger et al., 2014). As such, we can assimilate data with
any temporal resolution coarser than the model outputs. In
this study, we focused on annual DA.

There are two ways to construct the background ensem-
ble in the approach mentioned above (hereafter offline DA):
one using ensemble runs as in weather forecasts (Bhend et
al., 2012; Acevedo et al., 2016a, b) and the other using a
single run (Steiger et al., 2014; Dee et al., 2016). The lat-
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ter uses the same background ensemble for every analysis
step. To reduce computational cost, we chose the latter way,
where the ensemble members are individual years. This sim-
plification was valid because the interannual variability in a
single run was inherently indistinguishable from the variabil-
ity in the annual mean within the ensemble of simulations in
which the initial conditions were perturbed, at least for atmo-
spheric variables. Thus, the background ensembles were the
same for all the reconstruction years and did not contain any
year-specific boundary conditions and forcing information;
hence, the background error covariance was constant over
time. Therefore, this study did not consider non-stationarity
between the proxies and climate. Despite the limitations of
the algorithm used in this study, it should be noted that the
proxy DA could address non-stationarity if one uses tempo-
rally varying background ensemble. We return to this point
in Sect. 5.

To control spurious long-distance correlations due to sam-
pling errors, a localization function proposed by Gaspari and
Cohn (1999) with a scale of 12 000 km was used. The de-
tailed procedure used for the algorithm is described in Steiger
et al. (2014).

2.2 Models

Isotope ratios recorded in ice cores, corals, and tree-ring cel-
lulose were assimilated. To assimilate these variables, for-
ward models for the variables are required. We used the for-
ward model developed by Liu et al. (2013, 2014) for corals,
and that of Roden et al. (2000) for tree-ring cellulose. We
assumed that the isotopic composition of ice cores was the
same as that of precipitation at the time of deposition. Note
that, in reality, the isotope ratio recorded in ice cores is not
always equal to that in precipitation due to post-depositional
processes (e.g., Schotterer et al., 2004). Because detailed
models that explicitly simulate the impact of all the processes
involved in determining the value of the ratio are not yet
available, we used the isotope ratio in precipitation for that
in ice cores to avoid adding unnecessary noise.

The isotopic composition in precipitation was simulated
using an atmospheric general circulation model (GCM) into
which the isotopic composition of vapor, cloud water, and
cloud ice are incorporated as prognostic variables. The model
explicitly simulates the isotopic composition with all the
details of the fractionation processes combined with atmo-
spheric dynamics and thermodynamics, as well as hydrolog-
ical cycles. Hence, the model simulates the isotopic compo-
sition consistent with the modeled climate. Although many
such models have been developed previously (Joussaume et
al., 1984, Jouzel et al., 1987; Hoffmann et al., 1998; Noone
and Simmonds, 2002; Schmidt et al., 2005; Lee et al., 2007;
Yoshimura et al., 2008; Risi et al., 2010; Werner et al., 2011),
we used a newly developed model (Okazaki and Yoshimura,
2017) based on the atmospheric component of MIROC5

(Watanabe et al., 2010). The spatial resolution was set to T42
(approximately 280 km) with 40 vertical layers.

The variability in δ18O recorded in coral skeleton arago-
nite (δ18Ocoral) depends on the calcification temperature and
local δ18O in sea water (δ18Osw) at the time of growth (Ep-
stein and Mayeda, 1953). Previous studies have modeled
δ18Ocoral as the linear combination of sea surface temper-
ature (SST) and δ18Osw (e.g., Julliet-Leclerc and Schmidt,
2001; Brown et al., 2006; Thompson et al., 2011), as follows:

δ18Ocoral = δ
18Osw+ aSST, (1)

where a is a constant which represents the slope between
δ18Ocoral and SST. In this study, the constant was uniformly
set to −0.22 ‰ ◦C−1 for all the corals, following Thomp-
son et al. (2011), and we used a model developed by Liu
et al. (2013, 2014) to predict δ18Osw. The model is an iso-
topic mass balance model that considers evaporation, pre-
cipitation, and mixing with deeper ocean water. The coral
model uses the monthly output of the isotope-enabled GCM
as its input, except for the isotope ratio of deeper ocean wa-
ter, which was obtained from observation-based gridded data
compiled by LeGrande and Schmidt (2006). After the model
calculates the monthly δ18Ocoral, it is arithmetically averaged
to provide the annual δ18Ocoral.

The isotope ratio in tree-ring cellulose (δ18Otree) was cal-
culated using a model developed by Roden et al. (2000).
In this model, δ18Otree is determined by the isotopic com-
position of the source water used by trees for photosyn-
thesis, and evaporative enrichment on leaves via transpira-
tion. In this study, the value of the isotopic composition in
the source water was arbitrarily assumed to be the moving
average, traced 3 months backward, of the isotopic com-
position in precipitation at the site. Again, the model used
the monthly output of the isotope-enabled GCM as its in-
put. After performing the tree-ring model calculation, the
monthly output was weighted using climatological net pri-
mary production (NPP) to calculate the annual average. The
NPP data were obtained from the US National Aeronautics
and Space Administration (NASA) Earth Observation web-
site (http://neo.sci.gsfc.nasa.gov).

Because the isotopic compositions of the proxies were
simulated using the output of the isotope-enabled GCM, their
horizontal resolution was the same as that of the GCM.

2.3 Experimental design

2.3.1 Control experiment

The first experiment served as a control (CTRL) experiment,
and used the framework of an OSSE. In the experiment, the
“simulation” and the “truth” (nature run) were simulated by
the same models, with the same forcing, but with different
initial conditions. Because the proxy models were driven by
the output of the GCM, the modeled proxies were consistent
with the modeled climate from the GCM. Thus, here we de-

www.clim-past.net/13/379/2017/ Clim. Past, 13, 379–393, 2017

http://neo.sci.gsfc.nasa.gov


382 A. Okazaki and K. Yoshimura: Development and evaluation of a system of proxy data assimilation

scribe the experimental design for the GCM. The GCM was
driven by observed SST and sea-ice data (HadISST; Rayner
et al., 2003), and historical anthropogenic (carbon dioxide,
methane, and ozone) and natural (total solar irradiance) forc-
ing factors. The simulation covered the period of 1871–2007
(137 years).

Although the simulation period included recent times cov-
ered by observational data, we assumed that the only variable
that could be obtained was the annual mean of δ18O in the
proxies. We based this assumption on the fact that we wished
to perform the DA for a period in which no direct measure-
ments were available, and there were only climate proxies
covering the period. Therefore, the temporal resolutions of
the “observations” and “simulations” were also annual, con-
sidering the typical temporal resolution of the proxies.

Observations were generated by adding Gaussian noise to
the truth. The spatial distribution of the observations mim-
icked that of the proxies. The spatial distributions of each
proxy for various periods are mapped in Fig. 1. As can be
seen from the figure, the distributions and the number of
proxies varied with time. However, for the sake of simplicity,
the distributions of the proxies were assumed to be constant
over time in the CTRL experiment (Fig. 1a). The size of the
observation errors will be discussed in Sect. 2.4.

The state vector consisted of five variables: surface air
temperature and amount of precipitation, as well as the iso-
topic composition in precipitation, coral, and tree-ring cellu-
lose. The first three variables were obtained from the isotope-
enabled GCM, and the other two variables were obtained
from the proxy models driven by the output of the GCM.

2.3.2 Real proxy data assimilation

The second (REAL) experiment assimilated proxy data sam-
pled in the real world. To mimic realistic conditions, SST
and sea-ice concentration data to be used as model forcing
were modified from observational to modeled data. In real-
ity, there were no direct observations available for the tar-
get period of the proxy DA. Therefore, to reliably evaluate
the feasibility of proxy DA, the first estimate should be con-
structed using modeled SST, as opposed to observed SST.
We used SST data from the historical run of the Coupled
Model Intercomparison Project Phase 5 (CMIP5; Taylor et
al., 2007) from the atmosphere–ocean coupled version of
MIROC5 (Watanabe et al., 2010) obtained from the CMIP5
data server (https://esgf-node.llnl.gov/search/cmip5/).

Because the experiment was not an OSSE, a nature run
was not necessary.

2.3.3 Sensitivity experiments

Four sensitivity experiments were conducted to test the ro-
bustness of the results of the proxy DA. In the first sensitiv-
ity experiment (CGCM), the simulation run was constructed
from the simulation forced by the modeled SST and sea ice

as in the REAL experiment. The other settings for the simu-
lation run were the same as those in the CTRL experiment.
The nature run was the same as that of the CTRL experi-
ment. Thus, this experiment investigated how the reconstruc-
tion skill of the results was decreased by using the simulated
SST compared to the CTRL.

In the second sensitivity experiment (VOBS), the experi-
mental design was the same as that in the CGCM, except for
the number of proxies that were assimilated. In the CGCM
experiment, the distribution and number of proxies were set
to be constant over time, as in the CTRL experiment. In the
VOBS experiment, the distribution and number of proxies
varied with time. Thus, this experiment investigated how the
reconstruction skill was decreased by changing the number
of proxies compared to the CGCM.

In the third sensitivity experiment (T2-Assim), recon-
structed surface temperature (Tr) was assimilated. The pur-
pose of the experiment was to compare the skill of the re-
constructed DA with that of the proxy DA. The experimental
design was the same as that in the CTRL experiment, except
for the variables that were assimilated. The reconstructed
temperature was generated with a linear regression model
of Tr = a+ b× δ

18O, where a and b are coefficients and
δ18O is the observed isotope ratio. The coefficients are cali-
brated with the observed isotope ratio and the true tempera-
ture in the CTRL for the period of 1871 to 1950 (80 years).
If the correlation between the isotope ratio and the tempera-
ture during the calibration period was not statistically signif-
icant (p < 0.10), the data were discarded following Mann et
al. (2008). This screening process reduced the available data
from 94 to 81 grid points.

The final sensitivity (M08) experiment was used to exam-
ine the sensitivity to the observation network. The experi-
mental design was the same as for the CTRL, except for the
spatial distribution of the proxy. The proxy network used in
the experiment was the same as that of Mann et al. (2008).
We assumed that isotopic information was available for all
the sites, even when this was not the case. For example, even
if only tree-ring width data were available at some of the sites
in Mann et al. (2008), in this experiment we assumed that
isotopic data recorded in tree-ring cellulose were available at
the site. The number of grids containing observations were
94 and 250 for the CTRL experiment and M08, respectively.
The T2-Assim and the M08 were compared with CTRL.

The experimental designs are summarized in Table 1.

2.4 Observation data

We used paleoclimate data archived at the National Oceanic
and Atmospheric Administration (NOAA; https://www.ncdc.
noaa.gov/data-access/paleoclimatology-data) and data used
in the PAGES 2k Consortium (2013). Additionally, 22 tree-
ring cellulose and 7 ice core data sets were collected sepa-
rately from published papers. We only used oxygen isotopic
data (18O) whose temporal resolution was higher than an-
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Figure 1. Spatial distribution of proxies (δ18O in ice cores, corals, and tree-ring cellulose, denoted by blue, pink, and green, respectively).
(a) Proxies spanning at least 1 year during 1871–2000 are mapped. (b) The number of proxies is depicted as a function of time. (c–h) The
spatial distributions of the proxies are mapped for (c) 1871, (d) 1900, (e) 1930, (f) 1960, (g) 1990, and (h) 2007.

nual; proxies whose resolution was lower than annual were
excluded. The full list of proxies used in this study is given in
the Supplement. Following Crespin et al. (2009) and Goosse
et al. (2010), all proxy records were first normalized and then
averaged onto a T42 grid box to eliminate model bias and
produce a regional grid box composite. To compare the re-
sults from each experiment effectively, the assimilated vari-
ables were all normalized in both the simulation and nature
runs, as well as in the observations in all the experiments.

Errors were added to the truth in a normalized manner
to provide the observation for all the experiment other than
REAL. The normalized error was uniformly set to 0.50 for
all the proxies. This was based on the measurement error of
δ18O in ice cores being reported to range from 0.05 to 0.2 ‰
(e.g., Rhodes et al., 2012; Takeuchi et al., 2014), and the cor-

responding normalized error (measurement error divided by
standard deviation of proxy) then ranges from 0.03 to 0.1,
with an average of 0.06. Similarly, the measurement error
of δ18O in coral ranges from 0.03 to 0.11 ‰ (e.g., Asami et
al., 2004; Goodkin et al., 2008), and the corresponding nor-
malized error ranges from 0.24 to 1.1, with an average of
0.53. The measurement error of δ18O in tree-ring cellulose
ranges from 0.1 to 0.3 ‰ (e.g., Managave et al., 2011; Young
et al., 2015), and the corresponding normalized error ranges
from 0.08 to 0.55, with an average of 0.28. In practice, due
to the error of representativeness and that in observation op-
erator, it is common to increase the observation errors to en-
sure that the analysis functions effectively (Yoshimura et al.,
2014). Furthermore, the measurement errors were not always
available; therefore, a uniform value of 0.5 was used for all
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Table 1. Experimental designs. The observation network used in the CTRL experiment is denoted as Orig.

SST data to drive SST data to drive Assimilated variable Observation Missing
simulation run truth run network data

CTRL HadISST HadISST Simulated δ18O Orig w/o missing
CGCM Modeled SST HadISST Simulated δ18O Orig w/o missing
VOBS Modeled SST HadISST Simulated δ18O Orig w/ missing
REAL Modeled SST – Observed δ18O Orig w/ missing
T2-Assim HadISST HadISST Reconstructed T2 from simulated δ18O Orig w/o missing
M08 HadISST HadISST Simulated δ18O M08 w/o missing

Figure 2. Annual mean δ18O in corals at a location where observational data were available (1◦ N, 157◦W) for (a) background and (b) anal-
ysis. The black line indicates the truth, gray lines indicate ensemble members, and green line indicates the ensemble mean.

the proxies. The corresponding signal-to-noise ratio (SNR)
is 2.0. The errors are assumed to be independent for all the
experiments.

3 Results from the OSSE

The time series of the first estimation, the analysis, and the
truth for δ18O in corals are compared as an example in
Fig. 2 at a location where observational data were available
(1◦ N, 157◦W). Because the first estimate was the same for
all reconstruction years, it is drawn as horizontal lines. Af-
ter the assimilation, the analysis agreed well with the truth
(R = 0.96, p < 0.001). This confirmed that the assimilation
performed well. We then examined how accurately the other
variables were reconstructed by assimilating isotopic infor-
mation. Figure 2 also shows the time series of surface air
temperature and precipitation for the same site. There was a
clear agreement between the analysis and the truth for both
variables (R = 0.92 and 0.88, respectively, for temperature
and precipitation). This indicated that temperature and pre-
cipitation were effectively reconstructed by assimilating iso-
topic variables at this site. This was because the isotope ratio

in corals has a signature not only from temperature as given
in Eq. (1) but also precipitation (Liu et al., 2013); the correla-
tion with δ18Ocoral was −0.88 (p < 0.001) for both tempera-
ture and precipitation, respectively. This example shows that
the isotopic proxy records more than one variable.

Figure 3 maps the correlation coefficients between the
analysis and the truth for the isotope ratio, temperature, and
precipitation for 1970–1999. Because the first estimate was
constant over time, the temporal correlation between the first
estimate and the truth was zero everywhere. Thus, a positive
correlation indicated that the DA improved the simulation.

The correlation for δ18O in precipitation were high at the
observation sites, regardless of the proxy type. This was be-
cause δ18O in both corals and trees is affected by the iso-
topic composition in precipitated water derived from sea wa-
ter or soil water. The correlation for δ18O in tree-ring cel-
lulose were also high at the observation sites. On the other
hand, the high correlation for δ18O in corals were not lim-
ited around the observation sites but were generally high at
low to midlatitudes. Similarly, the correlation was high at low
to midlatitudes for surface temperature. The correlation was
also statistically significant (p < 0.05) around the observa-
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Figure 3. Temporal correlation between the analysis and the truth. The green dots represent the location of the proxy sampling site. The
hatched areas indicate where the correlation is not statistically significant (p > 0.05).

tion sites in high latitude. In contrast, closely correlated areas
were restricted to low latitude for precipitation.

How can the spatial distribution of the correlation pattern
be explained; i.e., what do the proxies represent? To investi-
gate this question, empirical orthogonal function (EOF) anal-
ysis was conducted for the simulated δ18O in precipitation,
corals, and tree-ring cellulose. Only grids that contained ob-
servations were included in the analysis. The variables were
centered around their means before the analysis. The data
covered the period 1871–2007. The EOF patterns and tempo-
ral correlations between surface temperature and the charac-
teristic evolution of EOF or the principal components (PCs)
of the first mode of each proxy are shown in Fig. 4.

The first mode of δ18O in ice core explains 14.3 % of the
total variance and it is the only significant mode according to
North et al.’s (1982) rule of thumb (the first and the second
mode were indistinguishable). The maximum loadings were
in Greenland and Antarctica, where temperature increase has
been observed for the past hundred years (e.g., Hartmann et
al., 2013). Indeed, the PC1 shows the significant trend and is
correlated with global mean surface temperature (R = 0.44,
p < 0.001). Therefore, it is legitimate to regard ice core data

as a proxy of global temperature as revealed from observa-
tion (Schneider and Noone, 2007).

The first modes of δ18O in corals, and tree-ring cellu-
lose represent El Niño–Southern Oscillation (ENSO). The
explained variance of the first modes of δ18O in corals and
tree-ring cellulose was 44.2 and 19.0 %, respectively. The
maximum loadings occurred in the central Pacific for corals,
and Tibet for tree-ring cellulose. The temporal correlation
between the PC1s and NINO3 index was 0.95 and 0.37 for
corals and tree-ring cellulose, respectively. Because the iso-
topic composition in corals is influenced by sea temperature,
it is expected that the δ18O in corals from the central Pa-
cific records the ENSO signature. Interestingly, the analysis
revealed that the δ18O in tree-ring cellulose was also influ-
enced by ENSO; hence, this proxy contributes to the recon-
struction of temperature and precipitation over the tropical
Pacific. Indeed, many previous studies have reported the link
between δ18O in tree-ring cellulose and ENSO (Sano et al.,
2012; Xu et al., 2011, 2013, 2015). Xu et al. (2011) inferred
that the link is caused by the association between ENSO
and Indian monsoon rainfall (e.g., Rasmusson and Carpen-
ter, 1983). The positive phase of ENSO results in a decrease
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Figure 4. First mode of EOF and the correlation between PC1 and temperature for (a, d) ice cores, (b, e) corals, and (c, f) tree-ring cellulose.

in summer monsoon rainfall in India, which leads to dry con-
ditions in summer. The decrease in precipitation leads to iso-
topically enriched precipitation, and the dry conditions en-
hance the enrichment of water in leaves. Correspondingly,
the δ18O in tree-ring cellulose becomes heavier than normal
in the positive phase of ENSO. Due to the relationships be-
tween the coral and tree-ring cellulose data and ENSO, the
correlation coefficient between the analysis and the truth for
the NINO3 index was as high as 0.95 (p < 0.001).

Although EOF analysis did not reveal any other signifi-
cant correlation between PCs and climate indices, climate in-
dices for the North Atlantic Oscillation and Southern Annu-
lar Mode calculated using the reconstructed data were signif-
icantly correlated with the truth (0.59 and 0.46, respectively).

4 Real proxy data assimilation

Based on the results of the idealized experiment described
in the previous section, we performed a “real” proxy DA,
in which sampled and measured data in the real world were
assimilated.

The temporal correlation between the analysis and obser-
vations for temperature and precipitation are shown in Fig. 5d

and h. The observations were obtained from HadCRUT3
(Brohan et al., 2006) for temperature, and GHCN-Monthly
Version 3 (Peterson and Vose, 1997) for precipitation.

Although the real proxy DA had reasonable skill, it was in-
ferior relative to the CTRL experiment. We investigated the
cause of the decreased skill using the outputs of the sensitiv-
ity experiments. The design of the experiments was changed
in a stepwise fashion to more realistic conditions of proxy
data assimilation from the idealized conditions. The correla-
tions between the analysis and the truth, or the observation,
for the experiments are shown in Fig. 5. The truths for the
CGCM and VOBS experiments were the same as those for
the CTRL experiment. The global mean correlation coeffi-
cients for temperature, precipitation, and NINO3 in the ex-
periments are summarized in Fig. 6. Note that the correlation
was averaged in the same domain for all the experiments to
take into account the differences in representativeness.

In the CGCM experiment, the temporal correlations be-
tween the analysis and the truth were similar to those in
the CTRL experiment for both temperature and precipita-
tion (Fig. 5b, f). This indicates that ENSO and its impacts
were well represented in the modeled SST used to construct
the “simulation”. Watanabe et al. (2010) reported similar
modeled SST and observational values for the amplitude of
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Figure 5. Temporal correlation between the analysis and the truth for (a–d) temperature and (e–h) precipitation, for each experiment. The
green dots represent the location of the proxy sampling site. The hatched areas indicate where the correlation is not statistically significant
(p > 0.05).

Figure 6. Temporal correlation between the analysis and the truth
for each experiment for 1970–1999. The values for temperature and
precipitation are the global mean of the temporal correlations.

ENSO measured by the NINO3 index, and the spatial pat-
terns of the temperature and precipitation fields regressed on
the NINO3 time series (see Figs. 13 and 14 in their report).

Because the number of proxies for assimilation differed
from that in the CGCM experiment, it was not straightfor-
ward to compare the results of the REAL experiment with
those of the CGCM experiment. To enable an effective com-
parison of the results, the same number of proxies was assim-
ilated in the VOBS experiment as in the REAL experiment
and the same settings were used as in the CGCM experiment
for the other variables. Consequently, the performance of the
assimilation of the VOBS experiment was similar to that of
the CGCM experiment for 1970–1999.
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Figure 7. Temporal correlations between the analysis and the truth for (a, c) temperature and (b, d) precipitation, for (a, b) CTRL and (b,
d) T2-Assim. The green dots represent the location of the proxy sampling site. The hatched areas mean that the correlation is not statistically
significant (p > 0.05).

When the REAL and VOBS experiments were compared,
the correlation coefficients for temperature were significantly
decreased over the Indian Ocean, eastern Pacific, and At-
lantic Ocean. These areas corresponded to areas of low re-
producibility in the coral model (Liu et al., 2014). The ef-
fects of sea current and river flow in these areas, which were
not included in the coral model, were deemed to be consider-
able. Although we cannot attribute all the decreased skill to
the coral model, the reproducibility of δ18O in corals in these
areas requires improvement to enhance the performance of
the assimilation.

5 Discussion

5.1 Comparison with the reconstructed temperature
assimilation

Hughes and Ammann (2009) recommended assimilating
measured proxy data, as opposed to reconstructed data de-
rived from the proxy data. This subsection compares the re-
sults from the CTRL and T2-Assim experiments.

Figure 7 shows the spatial distribution of the correlation
coefficients for temperature and precipitation between the
truth and the analysis for each experiment. As a whole, the
reconstruction skill was slightly degraded in T2-Assim com-
pared with CTRL with the global mean correlation coef-
ficients for temperature (precipitation) of 0.50 (0.30), 0.45
(0.23), for CTRL and T2-Assim, respectively. On the other
hand, the skill of proxy DA was not always better than that

Figure 8. Signal-to-noise ratio (SNR) of the reconstructed temper-
ature from the observation used in CTRL.

of T2-Assim (e.g., temperature in tropical Atlantic Ocean).
Those pros and cons can be explained by the difference in
the observation error and the structure of Kalman gain. Fig-
ure 8 shows the SNR of the Tr ranging from 0.22 to 1.6 with
and average of 0.65. Accordingly, the observation error is
larger than that of CTRL everywhere, and this resulted in the
reduction of the reconstruction skill. On the other hand, the
better skill in T2-Assim should be owing to the difference
in Kalman gain. The Kalman gain determines analysis incre-
ments by spreading the information in observations through
the covariance between the prior and the prior-estimated ob-
servations. We found that the correlations between the prior
(temperature) and the prior-estimated observation (tempera-
ture and δ18O for T2-Assim and CTRL, respectively) were
consistently higher in T2-Assim than in CTRL (not shown)
as Dee et al. (2016) showed. Thus, the information in the ob-
servations was more effectively spread to the analysis in T2-
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Figure 9. Temporal correlations in North America between the analysis and the truth for (a, b) temperature, and (c, d) precipitation, for
experiments using different proxy networks. The green dots represent the location of the proxy sampling site. The hatched areas indicate
where the correlation is not statistically significant (p > 0.05).

Assim, and this resulted in the improved skill. Note that the
screening process hardly hampered the reconstruction skill,
because even if the reconstructed temperature was fully used
(i.e., not screened), the skill was almost the same as T2-
Assim.

Conducting similar experiments, Dee et al. (2016) also
concluded that the reconstruction skill was almost the same
among proxy DA and reconstructed DA if the relation be-
tween the reconstructed variable and the proxy is linear. As
isotope-enabled GCMs (Schmidt et al., 2007; LeGrande and
Schmidt, 2009) and observations and models for tree-ring
width (D’Arrigo et al., 2008; Evans et al., 2014; Dee et al.,
2016) have demonstrated, however, the relations between the
proxies and climate are nonlinear and non-stationary as well.
Thus, it is difficult to expect that the skill of reconstructed
DA will be the same as that of proxy DA if we have the well-
defined forward proxy models (Hughes and Ammann, 2009).
Although the current models are far from perfect as implied
in Sect. 4.2, the assimilation of proxy data will offer a useful
tool for the reconstruction of paleoclimate, in which the re-
lationship between the proxies and climate constructed with
the present-day conditions does not apply.

5.2 Sensitivity to the distribution of the proxies

The skill of the proxy DA was relatively low over Eurasia
and North America, even in the idealized experiment. It was
unclear whether this was because of limitations in the proxy
data assimilation or the scant distribution of the proxies. This
subsection investigates the reasons for the relatively low re-

producibility in these areas by comparing the results of the
CTRL and M08 experiments, focusing on North America.
The number of grids for which proxy data were available
over North America was 11 and 126 for the CTRL and M08,
respectively.

The results for North America are shown in Fig. 9. The fig-
ure shows the temporal correlation coefficients between the
analysis and the truth for surface air temperature and pre-
cipitation. The correlation coefficients were calculated for
1970–1999. The skill was high in the area in which the prox-
ies were densely distributed for both variables. The values of
the coefficients averaged over the United States (30–50◦ N,
80–120◦W) were 0.69 and 0.58 for temperature and precipi-
tation, respectively. Compared to the coefficients of 0.23 and
0.21, respectively, in the CTRL experiment, the skill was en-
hanced for both variables. This implies that the performance
of the reconstruction was strongly dependent on the distribu-
tion of the proxy data. Taking into consideration that proxy
DA can assimilate not only proxy data but also reconstructed
data, proxy DA can take advantage of the use of increasingly
large amounts of data. Although it is beyond the scope of this
study, the combined use of these data is expected to improve
the performance of proxy DA.

6 Conclusion and summary

The feasibility of using proxy DA for paleoclimate recon-
struction was examined in both idealized and real condi-
tion experiments. The idealized (CTRL) experiment had high
skill at low latitudes due to the dependency of coral data on
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temperature and precipitation in these regions, and the cor-
relation between ENSO and δ18O in corals in Pacific and
tree-ring cellulose in Tibet. Encouraged by the results, real
proxy DA was performed, where the simulation run was con-
structed from the simulation forced by the modeled SST, and
the real (observed) proxy data were assimilated into the sim-
ulation (REAL experiment). The skill of the reconstruction
decreased compared to CTRL.

To investigate the reason for the relatively low skill in
REAL compared to CTRL, we performed additional experi-
ments: CGCM and VOBS. The imperfect SST used to drive
the CGCM experiment resulted in a slight reduction of the
skill compared to the CTRL experiment with perfect SST.
This was because ENSO, which is the most important mode
for the reconstruction, was well represented in the modeled
SST. The result is encouraging because to apply the DA sys-
tem to reconstruct ages where no instrumental observation is
available, we must rely on SST simulated by a coupled GCM.
Similarly, assimilating the unfixed number of the observation
only slightly decreased the reconstruction skill as shown in
the comparison between CGCM and VOBS.

From the suite of experiments, more than half of the differ-
ence between CTRL and REAL remained unexplained. This
remaining difference can have a lot of origins: e.g., errors in
the isotope-incorporated atmospheric GCM, the proxy mod-
els, and the proxy data. The errors in the models include
model biases and missing or overly simplified model com-
ponents. For instance, the coral model does not take into ac-
count the impact of ocean current or river runoff in this study.
Furthermore, post-depositional processes for simulating iso-
tope ratio in ice core were not included at all. Those pro-
cesses should be included to enable more efficient utilization
of all the data. The errors in proxy data include misrepresen-
tation of the targeted temporal and/or spatial scales. It is also
possible that the data were highly distorted by non-climatic
factors. Thus, a thorough quality control, similar to the pro-
cedures used in weather forecasting, should be conducted be-
fore assimilation (e.g., Appendix B of Compo et al., 2011).
At this stage, it is difficult to show the relative contributions
of each factor to the degraded skill in REAL, it is necessary
to estimate the impact of structural errors in models as done
in Dee et al. (2016).

Although the skill of proxy DA is dependent on the repro-
ducibility of the models and the number and quality of the
observations, the results suggest that it is feasible to constrain
climate using only proxies. In particular, ENSO and ENSO-
related variations in temperature and precipitation should be
reliably reconstructed even with the current proxy DA sys-
tem and proxy network used in this study because the corre-
lation coefficient between the analysis and the observations
was as high as 0.83 in the REAL experiment. Although the
reconstruction of ENSO is dependent on data from corals,
and the time span covered by corals is relatively short (a few
hundred years), ENSO can still be reliably reconstructed due

to its global impact, as was demonstrated in the relationship
between isotopes in tree-ring cellulose from Tibet.

Moreover, we expect that the reproducibility will increase
as more proxy data become available because it was heavily
dependent on the spatial distribution. Given that proxy DA
can assimilate both proxy data and data reconstructed from
proxy, and that the reconstruction skill in reconstructed DA
is slightly superior to proxy DA, the combined use of the
two types of data is beneficial for the performance. In that
case, care must be taken not to assimilate dependent informa-
tion (e.g., proxy data and reconstructed data from the same
proxy).

The DA algorithm used in this study did not consider non-
stationarity among proxies and climate variables because
the Kalman gain was constant over time. To address non-
stationarity, the Kalman gain for a specific reconstruction
year should be constructed for several tens of years before
and after that year. Nevertheless, EnKF can only capture
linear relationships between observations and the modeled
state. The use of other algorithms, such as particle filter (e.g.,
van Leeuwen, 2009), or four-dimensional variational assim-
ilation (e.g., Rabier et al., 2000) should be investigated in
future studies for scenarios where nonlinearity is not neg-
ligible. Thus, it is important in future studies to investigate
non-stationarity and nonlinearity among proxies and climate
variables to identify suitable algorithms for proxy DA.
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