

Supplement of

Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

Chris S. M. Turney et al.

Correspondence to: Chris S. M. Turney (c.turney@unsw.edu.au)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

2 Figure S1: Significant (p < 0.05) trends in sea surface temperature (SST °C/decade;

- 3 shading) and 925-hPa winds (vectors) for December-February (DJF), March-May
- 4 (MAM), June-August (JJA) and September-November (SON) since 1979.
- 5 Temperatures based on SSTs from the HadISST dataset (Rayner et al., 2003); winds
- 6 from ERA Interim (Dee et al., 2011). Overlaid in green are the main fronts of the
- 7 Antarctic Circumpolar Current (Sallée et al., 2012).

Figure S2: Austral summer (December-February) and winter (June-August) mean
regressions of sea surface temperature (SST) and 925-hPa winds (vectors) onto
different indices of the Southern Annular Mode (SAM) since 1979: the Climate
Prediction Centre (CPC)
(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtm)

<u>1</u>) and Marshall (2003). The results are consistent with similar analyses reported by

18 **Figure S3:** Austral summer (December-February) and winter (June-August) mean


```
20 Nino 3 and Nino 3.4 regions of the El Niño-Southern Oscillation since 1979. The
```

21 results are consistent with similar analyses reported by Ciasto and Thompson (2008).

Figure S4: Statistically significant spatial correlations between detrended and
deseasonalised Nino 3 sea surface temperature (*p*_{field} < 0.05) (Rayner et al., 2003) and
850 hPa height anomalies for September-November (SON) (A.), December-February
(DJF) (B.), March-May (MAM) (C.), and June-August (JJA) (D.) using ERA Interim
(Dee et al., 2011) for the period 1979-2015. Note: the tropical teleconnection is most
strongly expressed at high latitudes during the austral spring and summer.

Figure S5: Spatial correlations between detrended and deseasonalised Macquarie Island and Campbell Island mean monthly atmospheric temperatures (October-March) and sea surface temperature obtained using HadISST for the period 1979-2013 (Rayner et al., 2003) (Panels A and C respectively) and Reynolds v2 for the period 1982-2013 (Smith and Reynolds, 2005) (Panels B and D) ($p_{field} < 0.05$). The southwest Pacific (SW Pacific; 50-60°S, 150-170°E) and Nino 3 regions also shown.

Figure S6: Reverse pathway of the Antarctic Circumpolar Current (A.), Agulhas (B.)
and East Australian (C.) current particles that reach the southwest subantarctic region
east of 170°E and south of 45°S and transit time (D.). Note that the color axis for the
number of particles in Panel A. is different to Panels B. and C. Analysis undertaken
using Lagrangian particles in the eddy-resolving Japanese Ocean model For the Earth
Simulator (OFES) (Masumoto et al., 2004).

46 **Figure S7:** Area under the graph calculated from monthly mean temperatures obtained from

47 Macquarie Island and expressed relative to the AAE period (1912-1915).

53 54 Figure S9. October-March mean daily sunshine hours at Macquarie Island (source: Bureau of

55 Meteorology). Dashed line denotes mean value.

Figure S10: Friedman standardised *Dracophyllum* tree-ring chronology showing original data (black line) and running 30-year standard deviation (red line) (A.), values extreme year values from 1956, 1979 and 1986 removed and the previous year's data point duplicated (B.), and extreme year values removed and replaced with the decadal average (C.). Regardless of the extreme values during 1956, 1979 and 1986, the 30-year standard deviation trend remains the same.

Figure S11: Comparison of the 30-year running standard deviation (red lines) for the
different tree-ring index standardisation methods (black lines).

71 series from Campbell Island since CE 1870.

Figure S13: Annual (July-June) southwest Pacific Southern Ocean sea surface temperatures
(derived from HadISST) (Rayner et al., 2003) since CE 1870 (Panel A.) with spectral analysis
using Multi-Taper Method (MTM) (Panel B.) and extracted climate periodicities exceeding
99% significance (Panels C.-F.).

Figure S14: Hovmöller plots showing annual temperature anomaly, meridionally averaged
between 45° and 55°S (°C) using the HadISST (Panel A.) (Rayner et al., 2003) and the
Reynolds v2 (Panel B.) (Smith and Reynolds, 2005) SST datasets for the periods 1979 to
2014 and 1982 to 2014 respectively. The longitudes of dominant temperature changes across
the southwest Pacific subantarctic islands (SPS), the Amundsen and Bellingshausen seas
(ABS) and the south Atlantic subantarctic islands (SAS) are shown.

A. Macquarie Island

85

87 and Nino 3 (B.) (October-March) temperatures and meridional wind stress (850 hPa) (ERA

88 Interim; 1979 to 2013) (Dee et al., 2011). Significance $p_{field} < 0.05$. Note: positive correlations

89 identify regions of enhanced southerly airflow, blue, more northerly airflow.

92Figure S16: Spatial correlation between detrended and deseasonalised Nino 3 sea surface93temperature (Rayner et al., 2003) (October-March) and 850 hPa (A.) and 300 hPa (B.) vertical94velocity and 300 hPa height anomalies (C.) using ERA Interim (Dee et al., 2011) for the95period 1979-2015. Significance $p_{field} < 0.05$. Note: negative values indicate ascent during96warm SST anomalies in Nino 3.

97
 98 Figure S17: Spatial correlation between detrended and deseasonalised Macquarie Island air

- 99 temperature (October-December) and 850 hPa height anomalies lagging one (A.), two (B.)
- 100 and three (C.) months and leading one (D.), two (E.) and three (F.) months using ERA
- 101 Interim(Dee et al., 2011) for the period 1979-2014. Significance $p_{field} < 0.05$.

Figure S18: Thinned accumulation in West Antarctic coast ice cores Gomez (A.), Ferrigno
(B.) and Bryan Coast (C.) (Thomas et al., 2008; Thomas et al., 2015) with running 30-year
mean standard deviation (red line).

	Start	End	Count (days)	Percent
Daily mean sea level pressure	1941-07	1995-08	19719	100
Daily surface wind	1941-07	1995-08	19760	100
Daily air temperature	1941-07	1995-08	19762	100
	(Campbell Isla	and: AWS (#6174	-)
	Start	End	Count (days)	Percent
Daily mean sea level pressure	1991-10	continuing	9018	100
Daily surface wind	1991-10	continuing	9018	100
Daily air temperature	1991-10	continuing	9025	100
		Macqu	arie Island	
	Start	End	Count (days)	Percent
Daily mean sea level pressure	1948-05	continuing	24624	98.6
Daily surface wind	1948-05	continuing	24624	98.6
Daily air temperature	1948-05	continuing	24624	98.6

Campbell Island: Observations (#6172)

106

107 Table S1: Summary of mid to late twentieth century Campbell Island and Macquarie Island 108 climate data including duration of record (year and month) and percentage complete (sources: 109 Bureau of Meteorology and the New Zealand National Climate Database). Stations were 110 inspected and serviced annually. The 'Percent' values provide the completeness of 111 observations averaged over all months of record for the given station and observation type. 112 An automatic weather station (AWS; station number #6174) was installed on Campbell Island 113 in 1990. Sensor and site history of the Campbell Island stations #6172 and #6174 reveal no 114 significant data interruptions. For Macquarie Island the small amount of missing data (1.4%) 115 was mostly during the period CE 1948-1951. No complete months are missing from any of

- the datasets. The early twentieth century AAE data from Macquarie Island (1912-1915) can
- 117 be obtained from Newman (1929).

	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	Annual
AAE													
1912-1915	2.8	3.1	3.2	3.1	4.3	5.8	6.3	6.1	5.6	4.6	3.8	2.8	4.3
Bureau of													
Meteorology													
1949-1952	3.3	2.6	3.3	3.4	4.3	6.0	6.5	5.9	5.5	4.7	3.8	2.9	4.4
1953-1956	2.6	3.0	2.7	4.0	4.5	6.2	7.0	6.4	6.0	5.2	4.5	2.9	4.6
1957-1960	2.9	3.3	3.5	3.9	4.6	5.6	6.8	6.8	6.1	5.3	3.7	3.1	4.6
1961-1964	2.8	2.8	3.4	4.1	4.3	5.8	6.4	6.5	5.7	4.8	3.6	3.2	4.4
1965-1968	3.1	3.6	3.5	3.2	4.2	5.5	6.7	6.6	6.4 †	5.1	4.4	3.8*	4.7
1969-1972	3.5	3.7	2.5	3.3	4.7	6.2	7.2	7.2*	6.4	5.1	4.5	3.2	4.8
1973-1976	3.1	3.1	3.7	3.7	4.8	6.7	7.3	7.1*	6.6	5.3*	3.7	3.1	4.8*
1977-1980	4.3*	4.0*	3.9	4.1	4.5	6.2	7.4	7.5	6.8*	5.7*	4.7	3.7	5.2†
1981-1984	3.5	3.3	3.7	4.0	4.6	6.0	6.8	7.0	6.7	5.4	4.6	3.8*	4.9

1985-1988	3.4	3.5	3.3	4.5	5.2	6.7	7.9*	8.0*	6.7	5.5*	3.8	3.1	5.1*
1989-1992	3.6	3.3	4.0	4.2	5.0	5.8	7.5	6.9	6.2*	5.2	4.0	3.6	4.9
1993-1996	2.6	3.2	3.3	3.7	4.6	5.9	6.9	7.1*	6.6*	5.8*	4.6	2.7	4.7
1997-2000	3.6	3.1	4.2	4.0	4.5	6.1	7.0	7.1	6.1	5.0	4.5	3.6	4.9*
2001-2004	3.6	3.4	3.5	4.1	5.0	6.0	7.4	7.1	6.5 †	5. 7†	3.9	3.3	4.9*
2005-2008	2.9	3.6	3.5	3.8	4.4	6.6	7.1	7.2*	6.5 †	5.8*	4.7	3.3	4.9*
2009-2012	2.8	3.7	3.8	3.6	3.8	6.1	7.0	7.0*	6.4*	5.8*	4.9	3.2	4.8*

Table S2: Four-year binned monthly atmospheric temperatures for the Isthmus, Macquarie Island. Statistically-significant two-tailed t-tests

121 differences between the modern record and the original Australasian Antarctic Expedition (AAE) are given in bold: *p < 0.05 and $\dagger p < 0.01$.

	July	August	September	October	November	December	January	February	March	April	May	June	Annual
AAE													
1912-													
1915	3.4	3.6	3.8	4.1	5.1	6.3	6.6	5.7	5.3	4.8	3.9	3.5	4.7
Loewe													
1951-													
1954	3.6	3.5	3.8	3.8	5.4	6.7	7.3	7.2	6.7	5.8	4.7	3.8	5.2
1957,													
1962-													
1964	4.2	4.2	4.4	4.6	5.4	5.4	7.0	6.7	6.1	5.5	4.7	4.2	5.2
MODIS													
2001-													
2004	2.9	3.5	3.6	3.9	4.3	5.9	7.1	6.9	6.8*	5.3	5.4*	2.7	4.8
2005-													
2008	2.7	2.7	4.4	3.9	4.6	5.8	6.4	7.0*	6.4*	5.8	5.0	3.8	4.9

	2009-													
	2012	3.4	4.3	4.1	4.6	4.8	5.8	6.7	7.5*	6.9*	5.3	4.3	3.0	5.0
123														
124	Table S.	3: Four-y	year binne	d monthly sea	a surface te	mperature (S	ST) for Buck	tles Bay, M	Aacquarie Is	sland. Stat	istically-	significa	nt two-tai	led t-
125	difference	ces betwe	een the SS	Ts obtained o	during the 1	950s and 19	60s (Loewe,	1968, 1957	7) and MOI	DIS 4 km-1	resolved	l1 μm da	tytime sa	tellite
126	observat	tions to th	he original	l Australasiar	Antarctic 1	Expedition (A	AAE) are giv	en in bold:	: * <i>p<</i> 0.05. N	Note, the 1	950s and	1960s S	STs obta	ined from
127	Macquar	rie Island	l are repor	ted as month	ly averages	by Loewe (1	957, 1968), j	precluding	t-tests.					

Calibration Period	Variance Explained (%)	Pearson Correlation (r)	RE	Verification Period	Pearson Correlation (r)	RE	CE
"Early" 1949-1980	29.9	0.547	0.299	1981-2012	0.552	0.342	0.245
1st-differenced		0.571	0.285		0.619	0.298	0.297
"Late" 1981-2012	28.4	0.533	0.284	1949-1980	0.562	0.410	0.234
1st-differenced		0.639	0.323		0.542	0.289	0.291
Entire Period	31.3	0.559	0.291				
(1949-2012)							

Dracophyllum - Campbell Island temperature (°C, October-March)

Dracophyllum - Macquarie Island temperature (°C, October-March)

	Variance	Pearson	DE	Verification	Pearson	DE	CE
Calibration Period	Explained (%)	Correlation (r)	KE	Period	Correlation (r)	KE	CE
"Early" 1949-1980	25.7	0.507	0.257	1981-2012	0.449	0.277	-0.003
1st-differenced		0.534	0.262		0.557	0.234	0.232
"Late" 1981-2012	22.2	0.471	0.222	1949-1980	0.524	0.370	-0.478
1st-differenced		0.571	0.258		0.532	0.283	0.283
Entire Period	26.4	0.513	0.240				
(1949-2012)							

128

129 **Table S4**: Calibration and verification statistics for the *Dracophyllum* tree-ring reconstruction of 'growing-season' temperature on Campbell

130 and Macquarie islands (October-March).

CMIP5 model	Correlation to	Significance (p)
	reconstructed	
	Macquarie Island	
	temperature	
	(Oct-Mar)	
ACCESS1-0	0.001	0.9946
ACCESS1-3	0.070	0.2561
bcc-csm1-1	0.026	0.6751
bcc-csm1-1-m	-0.027	0.6601
BNU-ESM	-0.054	0.6142
CanESM2	-0.071	0.1412
CCSM4	0.050	0.2574
CESM1-BGC	-0.011	0.9179
CESM1-CAM5	-0.047	0.4531
CESM1-CAM5-1-	-0.088	0.1000
FV2		
CESM1-FASTCHEM	-0.038	0.5418
CESM1-WACCM	-0.014	0.8975
CMCC-CM	-0.072	0.5002
CMCC-CMS	-0.033	0.7611
CMCC-CESM	-0.134	0.2184

CNRM-CM5	-0.037	0.2770
CSIRO-Mk3-6-0	0.003	0.9271
EC-EARTH	0.002	0.9623
FGOALS-g2	-0.048	0.3097
FIO-ESM	-0.055	0.3747
GFDL-CM3	-0.006	0.8963
GFDL-ESM2G	0.103	0.0958
GFDL-ESM2M	-0.006	0.9584
GISS-E2-H p1	0.022	0.6807
GISS-E2-H p2	0.043	0.3760
GISS-E2-H p3	-0.023	0.6019
GISS-E2-H-CC p1	0.015	0.8915
GISS-E2-R p1	-0.009	0.8338
GISS-E2-R p2	-0.038	0.3843
GISS-E2-R p3	0.008	0.8622
GISS-E2-R-CC p1	0.015	0.8915
HadGEM2-AO	-0.006	0.9555
HadGEM2-CC	-0.067	0.5319
HadGEM2-ES	-0.114	0.0300
inmcm4	0.065	0.5538

IPSL-CM5A-LR	0.001	0.9793
IPSL-CM5A-MR	-0.032	0.6135
IPSL-CM5B-LR	0.174	0.0891
MIROC5	0.120	0.0097
MIROC-ESM	0.012	0.8470
MIROC-ESM-CHEM	-0.133	0.2194
MPI-ESM-LR	0.074	0.2269
MPI-ESM-MR	0.009	0.8858
MPI-ESM-P	0.011	0.8866
MRI-CGCM3	-0.090	0.1471
MRI-ESM1	0.069	0.5295
NorESM1-M	0.052	0.6339
NorESM1-ME	0.042	0.4934

131 **Table S5:** Correlations and significance between CMIP5 modelled surface air

132 temperatures centred over 52-57°S and 157-162°E (Taylor et al., 2011) and

133 reconstructed Macquarie Island temperatures (detrended and deseasonalised October-

134 March, CE 1871-2004). p < 0.05 given in bold. Note, HadGEM2-ES is inversely

135 correlated and MIROC5 has a correlation of only 0.12.

136

Tree-ring	F-test ratio		Bartlett's	
standardisation	of variances	<i>p</i> value	K-squared	<i>p</i> value
Friedman				
temperature	0.513	< 0.0055	7.7069	< 0.0055
reconstruction				
Friedman tree-ring	0.518	<0.0061	7 5201	<0.0061
index	0.518	<0.0001	1.3294	<0.0001
Medium spline tree-	0.5(1	<0.0159	5 0205	<0.0159
ring index	0.301	<0.0138	3.8283	~0.0138
Negative exponential	0.645	<0.0663	2 2757	<0.0662
tree-ring index	0.043	<0.0003	5.5752	~0.0002
Age depth spline	0.601	<0.0222	1 52 (2	<0.0222
tree-ring index	0.601	<0.0333	4.5363	< 0.0332

139 **Table S6:** Comparison of the variance across the tree-ring record (CE 1870-1940 vs

140 1941-2012), for different standardization methods and the Friedman temperature

141 reconstruction reported here. The second half of the twentieth century is significantly

142 larger (in all cases F and Bartlett's K-squared tests p < 0.07), suggesting a shift in

143 climate to one characterised by pervasive high variability, regardless of the

144 standardisation method used.

145

	Eastern rockhopper	Erect crested penguin
	(Eudyptes filholi)	(Eudyptes sclateri)
1978	50,000	115,000
1995	3,392	52,000
2011	2,475	42,689

- **Table S7:** Eastern rockhopper and Erect crested penguin populations on the
- 150 Antipodes Islands. In 1978 breeding pairs were counted whereas in 1995 and 2011
- 151 nests were the unit counted (Hiscock and Chilvers, 2014).

152	References
155	Ciasto, L. M., and Thompson, D. W. J.: Observations of large-scale ocean-atmosphere interaction in
155	the Southern Hemisphere, Journal of Climate, 21, 1244-1259, 10.1175/2007jcli1809.1, 2008.
156	Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
157	Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J.,
158	Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
159	Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
160	Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-
161	Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the
162	Royal Meteorological Society, 137, 553-597, 10.1002/qj.828, 2011.
163	Hiscock, J. A., and Chilvers, B. L.: Declining eastern rockhopper (Eudyptes filholi) and erect-crested
164	(E. sclateri) penguins on the Antipodes Islands, New Zealand, New Zealand Journal of Ecology, 38, 124-131,
165	2014.
166	Loewe, F.: A note on the sea water temperatures at Macquarie Island, Australian Meteorological
167	Magazine, 19, 60-61, 1957.
168	Loewe, F.: A further note on the sea water temperatures at Macquarie Island, Australian Meteorological
169	Magazine, 16, 118-119, 1968.
170	Marshall, G.: Trends in the Southern Annular Mode from observations and reanalyses, Journal of
171	Climate, 16, 4134-4143, 2003.
172	Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T.,
173	Mitsudera, H., Takahashi, K., Sakuma, H., and Yamagata, T.: A fifty-year eddy-resolving simulation of the
174	world ocean - Preliminary outcomes of OFES (OGCM for the Earth simulator), Journal of the Earth Simulator,
175	1, 35-56, 2004.
176	Newman, B. W.: Meteorology. Tabulated and Reduced Records of the Macquarie Island Station,
177	Sydney, 539, 1929.
178	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C.,
179	and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the
180	late nineteenth century, Journal of Geophysical Research: Atmospheres, 108, 4407,
181	doi:4410.1029/2002JD002670, 10.1029/2002JD002670, 2003.

182	Sallée, JB., Matear, R. J., Rintoul, S. R., and Lenton, A.: Localized subduction of anthropogenic
183	carbon dioxide in the Southern Hemisphere oceans, Nature Geoscience, 5, 579-584,
184	http://www.nature.com/ngeo/journal/v5/n8/abs/ngeo1523.html - supplementary-information,
185	2012.
186	Smith, T. M., and Reynolds, R. W.: A global merged land-air-sea surface temperature reconstruction
187	based on historical observations (1880-1997), Journal of Climate, 18, 2021-2036, 2005.
188	Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design,
189	Bulletin of the American Meteorological Society, 93, 485-498, 10.1175/BAMS-D-11-00094.1, 2011.
190	Thomas, E. R., Marshall, G. J., and McConnell, J. R.: A doubling in snow accumulation in the western
191	Antarctic Peninsula since 1850, Geophysical Research Letters, 35, doi: 10.1029/2007GL032529,
192	10.1029/2007GL032529, 2008.
193	Thomas, E. R., Hosking, J. S., Tuckwell, R. R., Warren, R., and Ludlow, E.: Twentieth century increase
194	in snowfall in coastal West Antarctica, Geophysical Research Letters, 42, 9387-9393, 2015.