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Abstract. Because of the relatively brief observational
record, the climate dynamics that drive multiyear to cen-
tennial hydroclimate variability are not adequately charac-
terized and understood. Paleoclimate reconstructions based
on data assimilation (DA) optimally fuse paleoclimate prox-
ies with the dynamical constraints of climate models, thus
providing a coherent dynamical picture of the past. DA is
therefore an important new tool for elucidating the mecha-
nisms of hydroclimate variability over the last several mil-
lennia. But DA has so far remained untested for global hy-
droclimate reconstructions. Here we explore whether or not
DA can be used to skillfully reconstruct global hydroclimate
variability along with the driving climate dynamics. Through
a set of idealized pseudoproxy experiments, we find that an
established DA reconstruction approach can in principle be
used to reconstruct hydroclimate at both annual and sea-
sonal timescales. We find that the skill of such reconstruc-
tions is generally highest near the proxy sites. This set of re-
construction experiments is specifically designed to estimate
a realistic upper bound for the skill of this DA approach.
Importantly, this experimental framework allows us to see
where and for what variables the reconstruction approach
may never achieve high skill. In particular for tree rings,
we find that hydroclimate reconstructions depend critically
on moisture-sensitive trees, while temperature reconstruc-
tions depend critically on temperature-sensitive trees. Real-
world DA-based reconstructions will therefore likely require
a spatial mixture of temperature- and moisture-sensitive trees
to reconstruct both temperature and hydroclimate variables.
Additionally, we illustrate how DA can be used to elucidate
the dynamical mechanisms of drought with two examples:
tropical drivers of multiyear droughts in the North American

Southwest and in equatorial East Africa. This work thus pro-
vides a foundation for future DA-based hydroclimate recon-
structions using real-proxy networks while also highlighting
the utility of this important tool for hydroclimate research.

1 Introduction

Hydroclimate extremes, including persistent droughts and
pluvials, can have extensive impacts on human welfare and
agricultural production. While the frequency of such ex-
tremes is estimated to increase with global warming (e.g.,
Battisti and Naylor, 2009; B. I. Cook et al., 2015; Ault et al.,
2016), it is unclear if the underlying climate dynamics of
such events are accurately produced in climate model sim-
ulations (e.g., Coats et al., 2016; Cook et al., 2016; Steven-
son et al., 2016). The approximately 100-year observational
record also limits our ability to understand the mechanisms
of these events because this time interval does not capture
the full range of hydroclimate extreme events and it poorly
characterizes multidecadal to centennial variability. A canon-
ical example is the multidecadal “megadroughts” that were a
prominent though infrequent feature of the climate system
over the past 2000 years in western North America and Eu-
rope (Cook et al., 2010b, 2016; E. R. Cook et al., 2015).
Of particular concern is that many of these drought events
were more persistent than any of the droughts observed over
the historical era (Cook et al., 2010b). Reconstructing hydro-
climate variables along with their driving dynamics would
therefore provide a critical perspective and allow for im-
proved characterizations of such high-impact events.
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While hydroclimate reconstructions exist over many dif-
ferent timescales and resolutions (e.g., Tierney et al., 2008,
2011; Masson-Delmotte et al., 2013), hydroclimate recon-
structions over the Common Era (the past two thousand
years) are particularly important because this time period al-
lows for seasonal- and annual-timescale reconstructions over
much of the globe (Bradley, 2014; Smerdon et al., 2017). Hy-
droclimate reconstructions for the Common Era have been
performed for localized regions, such as for snowpack and
precipitation in specific mountain ranges (e.g., Belmecheri
et al., 2016; Neukom et al., 2015) or for the streamflow of
particular rivers (e.g., Jacoby Jr., 1976; Cook et al., 2013).
On continental scales, gridded “drought atlases” targeting the
Palmer drought severity index (PDSI) have been derived over
portions of North America (Cook et al., 2007; Stahle et al.,
2016), Europe (E. R. Cook et al., 2015), Southeastern Asia
(Cook et al., 2010a), and Australia and New Zealand (Palmer
etal., 2015). Despite these regional successes, no truly global
hydroclimate reconstructions have been attempted.

The goal of this work is to demonstrate and test the ap-
plication of data assimilation (DA) for global hydroclimate
reconstructions. DA is a method that optimally fuses proxy
information with the dynamical constraints of climate mod-
els (Goosse et al., 2012; Steiger et al., 2014; Hakim et al.,
2016). We lay this groundwork by performing a set of syn-
thetic “pseudoproxy” reconstructions that estimate a realistic
upper bound on reconstruction skill: given the current proxy
networks and state-of-the-art climate models, we ask whether
or not it is possible to skillfully reconstruct hydroclimate
variables and their related dynamics. Pseudoproxy experi-
ments provide a test of the reconstruction methodology while
controlling for uncontrolled and sometimes unknown factors
that pervade real-proxy reconstructions (see Smerdon, 2012,
for a review). Pseudoproxy experiments have been success-
fully used to test the skill and characteristics of several recon-
struction methodologies, including DA, and reconstructed
variables such as temperature and precipitation (e.g., Mann
et al., 2005, 2007; Christiansen et al., 2009; Smerdon et al.,
2011; Werner et al., 2013; Steiger et al., 2014; Wang et al.,
2014, 2015; Gémez-Navarro et al., 2015). The present pseu-
doproxy reconstruction work will help to focus future DA
reconstruction efforts on the variables, timescales, and ge-
ographic areas that are most likely to be successfully recon-
structed. This paper also showcases the new kinds of analyses
that are possible with the dynamical atmosphere—ocean vari-
ables from a DA-based climate reconstruction. We first ana-
lyze the pseudoproxy reconstructions by focusing on global-
scale temperature and hydroclimate indices. We then move
into specific analyses of the mechanisms of drought in the
North American Southwest and equatorial East Africa.
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2 Experimental framework

2.1 DA methodology

We employ a DA technique that optimally combines observa-
tions (in this context, proxy data) with climate model states.
The model provides an initial, or prior, state estimate that is
updated in a Bayesian sense based on the observations and an
estimate of the errors in both the observations and the prior.
The prior may contain any climate model variables of inter-
est. The updated prior, called the posterior, is the estimate
of the climate state given the observations and the error esti-
mates. The basic state update equations of DA (e.g., Kalnay,
2003, Chap. 5) are given by

xy = xp+ K[y — H(xp)l, ey

where xy, is the prior (or “background”) estimate of the state
vector and x, is the posterior (or “analysis”) state vector. Ob-
servations (or proxies) are contained in vector y. The obser-
vations are estimated by the prior through H(x}), which is in
general a nonlinear vector-valued observation operator that
maps xp from the state space to the observation space. The
Kalman gain matrix K can be written as

K = BH'[HBH" + R]', )

where B is the prior covariance matrix, R is the error co-
variance matrix for the proxy data, and H is the linearization
of H about the mean value of the prior. Specifically, we use
an ensemble square root filter (Whitaker and Hamill, 2002)
to compute Eq. (1). We also note that Eq. (1) assumes that
¥, Xp, and H(xp) are Gaussian distributed and that their er-
rors are unbiased. The reconstruction process works by es-
sentially computing an optimal linear fit between the initial
guess of the climate state (the prior xy,) and the proxies (y).
This process involves iteratively computing Eq. (1) for each
year of the reconstruction to arrive at ensemble estimates (the
posterior x,) of the climate for each year. In any given year of
the reconstruction, x, is the probability distribution of states
that are consistent with the proxy observations and errors and
the prior distribution; therefore it is the full probability dis-
tribution of x, that represents the probabilistic reconstruction
of the climate state. In the time series figures herein, we show
the mean of x,, with uncertainty estimates derived from the
posterior distribution. For more mathematical details of the
reconstruction methodology and the precise calculation pro-
cedure, see the Appendix of Steiger et al. (2014).

As in previous studies (Steiger et al., 2014, 2017; Hakim
et al., 2016; Steiger and Hakim, 2016; Dee et al., 2016) we
use an “offline” DA approach in which the prior distribu-
tion is drawn from existing climate model simulations. For
this approach, the ensemble members are seasonally or an-
nually averaged climate states instead of an ensemble of in-
dependently running model simulations, as in “online” DA.
In principle, the ensemble members can be drawn from a sin-
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gle long simulation, multiple simulations, or even from sim-
ulations of a collection of climate models; the only impor-
tant requirement is that the prior be climatologically repre-
sentative of what one is trying to reconstruct (e.g., to recon-
struct a year with a large volcanic eruption, the prior should
contain ensemble members that come from simulation years
with large volcanic eruptions). Because of how the prior is
constructed here, it does not contain year-specific forcings
or boundary conditions, information which appears to be su-
perfluous according to many previous reconstructions exper-
iments (Steiger et al., 2014, 2017; Hakim et al., 2016; Steiger
and Hakim, 2016; Dee et al., 2016; Okazaki and Yoshimura,
2017). The reconstruction process is also performed for each
year independently such that no information is propagated
forward in time. As discussed in Steiger et al. (2014, 2017)
and Hakim et al. (2016), the offline approach is well suited
to a paleoclimate context in which it has been shown to be
highly skillful at annual timescales (Hakim et al., 2016) with-
out the immense computational costs of a traditional online
approach. Moreover, tests of offline vs. online approaches
for paleoclimate have so far shown no improvement in re-
construction skill with an online method (Matsikaris et al.,
2015; Acevedo et al., 2017).

2.2 Climate model simulations

Here we explore hydroclimate reconstructions using DA with
a series of pseudoproxy experiments. For these experiments,
we employ two full-forcing simulations of the Community
Earth System Model from the Last Millennium Ensemble
Project (CESM LME; Otto-Bliesner et al., 2016). These
CESM simulations used ~ 2° atmosphere and land compo-
nents and ~ 1° ocean and sea ice components. The simu-
lations were run from the years 850 to 1850 CE using esti-
mates of the transient evolution of solar intensity, volcanic
emissions, greenhouse gases, aerosols, land-use conditions,
and orbital parameters. The simulations were given identical
forcings but differed by round-off error in the initial atmo-
spheric state; this difference was sufficient to generate sim-
ulations with different time histories (e.g., Nino 3.4 indices
from the two simulations we use here have an annual average
correlation of 0.097). These simulations provide the climate
states for our prior ensembles and the climate inputs for the
pseudoproxies: the pseudoproxies, y, are generated for the
CESM LME simulation 10, while the prior, xp, and the prior
estimate of the pseudoproxies, H(xp), are from simulation 9.
In other words, simulation 10 plays the role of the actual cli-
mate in a real-world reconstruction setting; the pseudoprox-
ies are all derived from that simulation, while simulation 9
generates the ensemble of states that define the prior. We use
two different simulations in this way so that there is no over-
lap between the specific prior states and the reconstructed
climate states.
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2.3 Pseudoproxy construction

We generate realistic pseudoproxies via process (or forward)
models for each proxy type (see Evans et al., 2013, for a
review), which transform the simulated climate signal (e.g.,
temperature, precipitation) into synthetic proxy observations.
For the pseudoproxy experiments, we construct pseudo-tree-
ring width and an approximation of pseudo-coral 5'80. We
only consider these two proxy types because they have estab-
lished proxy system models and because they represent the
majority of proxies in global databases (e.g., 92 % of proxies
in the PAGES2k network; PAGES2k Consortium, 2017). Be-
cause our experimental construction defines an upper limit
on reconstruction skill, we do not consider age uncertainties,
which would act to degrade reconstruction skill and are not
applicable for the tree-ring proxies that constitute the major-
ity of the proxy network. We use the pseudoproxy network
shown in Fig. 1, which is based on the updated PAGES2k
network of real, global proxy data (PAGES2k Consortium,
2017). In this pseudoproxy network, we created only one
pseudoproxy per climate model grid cell, though in real-
proxy reconstructions there would be the possibility of hav-
ing multiple proxies within a given grid cell. Reconstruc-
tions were performed using both pseudo-tree and pseudo-
coral proxies together and also using pseudo-trees alone.

We generated 160 pseudo-tree-ring widths using the
model VS-lite (Tolwinski-Ward et al., 2011), which uses
monthly temperature and precipitation from the CESM LME
simulations to calculate tree-ring width time series at each
pseudo-tree-ring location. This model accounts for the sea-
sonal dependence of tree growth via simple parameteriza-
tions of temperature and moisture threshold responses at
monthly scales and latitudinal light availability. We esti-
mated the four growth parameters of VS-lite for each pseudo-
tree location using the real PAGES2k tree-ring width data
(PAGES2k Consortium, 2017), the monthly observational
temperature and precipitation data of CRU TS3.23 (Harris
et al., 2014), and the VS-lite parameter estimation code from
Tolwinski-Ward et al. (2013). Note also that because this
proxy system model takes care of the averaging timescale
of each individual tree, there is no need to define a rigid
timescale imposed on all tree sites (e.g., all trees in the North-
ern Hemisphere reflect only June—July—August temperature).

We generated 55 pseudo-coral §'80 values through the lin-
ear proxy system model of Thompson et al. (2011), which for
a given coral proxy can be written as

8"8Opseudo-coral = @1SST + a2SSS + ¢, 3)

where SST is local, annually averaged sea surface temper-
ature and SSS is local, annually averaged sea surface salin-
ity. We estimated the parameters a; and a, based on the real
coral proxies in the PAGES2k database and annual (defined
as April to the next March) SST and SSS from the ocean re-
analysis dataset SODA (Carton and Giese, 2008). Note that
the CESM simulations are not isotope enabled and the coral
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proxy system model only requires SST and SSS to create
coral §'80 pseudoproxies.

Within the formulations for both the pseudo-tree-ring
widths and pseudo-coral 6!80, each have realistic param-
eters estimated with real-proxy and historical data but are
driven offline by climate time series inputs from the CESM
LME simulations, viz., 2m air temperature, total precipita-
tion, SST, and SSS. While the combination of the climate
simulation output and the proxy system models produce sin-
gle proxy values for a given year, these values represent
the many short timescale processes included in the climate
model simulations, such as daily weather events.

We additionally note a special issue regarding the use of
the VS-lite proxy system model within our Kalman-filter-
based DA method: we find the output of VS-lite for some
locations to be strictly non-Gaussian. This is important be-
cause Eq. (1) assumes that y and H(xp) are Gaussian. In
preliminary work, we observed “filter divergence” (in which
the state estimate diverges unrealistically away from the true
state) for small prior ensembles when using VS-lite pseu-
doproxies. We have not observed this effect with the proxy
system models for corals or ice cores (Dee et al., 2016;
Steiger et al., 2017). A common though ad hoc way of deal-
ing with filter divergence is to employ covariance localiza-
tion that smooths out spurious long-range correlations, acts
to boost the “effective” ensemble size, and tends to reduce
non-Gaussian issues (Houtekamer and Mitchell, 1998). Us-
ing covariance localization is unattractive, however, because
it is ad hoc and ensemble sizes can be very large in an of-
fline DA approach. We therefore found that to avoid fil-
ter divergence we needed over 500 ensemble members in
our prior. We did not find much sensitivity to the results
with ensemble sizes between about 600 and 1000 mem-
bers (e.g., maximum changes of 0.05 in the correlation skill
of the global mean temperature reconstructions). We there-
fore performed the reconstructions with 1000 members, the
maximum available years for the CESM LME simulations.
This does not limit future real-proxy reconstructions be-
cause of the many millennial-length climate model simu-
lations available (Fernandez-Donado et al., 2013; Masson-
Delmotte et al., 2013), but it did require that we use the
CESM LME in the present pseudoproxy experiments be-
cause it is the only high-resolution, CMIP5/PMIP3-class cli-
mate model with multiple millennial-length simulations that
are publicly available.

A further idealization in these reconstructions is that we
consider only measurement error. Specifically, we add white
noise with a standard deviation of 0.01 (approximate width
measurement uncertainty) to the pseudo-tree-ring time series
that already have a variance equal to 1 and 0.1 (approxi-
mate isotope measurement uncertainty) to the pseudo-coral
time series that are in units of per mil; the diagonal elements
of R are 0.012 for pseudo-trees and 0.1% for pseudo-corals.
This choice is motivated by our interest in the best-case sce-
nario so as to estimate an upper bound for DA-based re-
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constructions. Our choice is also motivated by the fact that
quantifying errors in nonlinear proxy system models like
VS-lite is nontrivial (Evans et al., 2014), and thus we can
have more confidence in an upper-bound reconstruction skill
estimate than a “most-realistic” skill estimate. However, in
the context of traditional regression-based reconstruction ap-
proaches, multivariate signals in proxies are “noise.” For ref-
erence, when the no-noise-added tree-ring and coral pseudo-
proxies are compared against the climate model PDSI and
SST, respectively, the tree rings have a mean signal-to-noise
ratio (SNR) of 0.46 with a standard deviation of 0.50 and
the corals have a mean SNR of 0.41 with a standard de-
viation of 0.23 (calculated following Mann et al. (2007),
SNR = |p|/+/1 — p2, where p is the correlation between the
proxy and the nearest grid point climate variable time se-
ries). These SNRs are therefore typical of estimates for real
proxies and are comparable to the SNRs adopted in pseu-
doproxy contexts that test traditional regression approaches
(Wang et al., 2014).

2.4 Reconstruction procedure and experiments

Here we employ a “perfect model” framework in which the
same underlying climate model is used for both the prior
and the “true” climate model state. The prior, xp, consists of
all the climate states at their relevant resolutions (including
monthly, seasonal, and annual resolutions as defined below)
from the CESM LME simulation number 9. Using this prior,
we reconstruct the corresponding annual and seasonal states
of simulation 10 based only on our prior and the pseudoprox-
ies that are generated from simulation 10. Despite the ideal-
ization of the perfect model framework, previous DA-based
reconstruction work has shown similar results using differ-
ent climate models in both pseudoproxy and real-proxy re-
constructions that did not assume a perfect model framework
(Hakim et al., 2016; Dee et al., 2016; Steiger et al., 2017).
These studies saw similar basin and continent-wide patterns
and magnitudes of reconstruction skill.

For the reconstructions, the annual states are constructed
out of monthly CESM LME output averaged from April
to the next calendar year’s March. This annual average is
chosen to account for the seasonal cycle of a global net-
work of proxies and climate phenomena like the El Nifio—
Southern Oscillation (ENSO), the continuity of which would
be ignored with a calendar year average. The seasonal states
we use are June—July—August (JJA) and December—January—
February (DJF) averages of the monthly climate variables.

We include the following global variables in our state vec-
tors: 2 m air temperature, the Palmer drought severity index
(PDSI), and the standardized precipitation evapotranspira-
tion index (SPEI) using a 12-month decaying exponential
weighting kernel (Begueria et al., 2014) chosen to closely
resemble the timescale of PDSI. Both PDSI and SPEI were
computed using the Penman—Monteith equation for poten-
tial evapotranspiration and monthly climate model output of
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0 Tree-ring records
% Coral records

Figure 1. Pseudoproxy network used in this study based on the PAGES2k global database of tree-ring and coral records (PAGES2k Con-
sortium, 2017), and the drought regions explored in this study, with the North American Southwest in blue and equatorial East Africa in

purple.

precipitation, 2 m temperature, vapor pressure, net surface ra-
diation, surface pressure, and surface wind (estimated from
10m down to 2 m using the wind profile power law). Here
we focus on PDSI and SPEI because they are so widely used
for current drought monitoring and historical drought recon-
structions. In addition to these global variables, we also in-
clude the following index variables: the location of the in-
tertropical convergence zone (ITCZ) defined by the precip-
itation centroid (center of mass) of the zonal mean tropical
precipitation (20° N to 20° S; Frierson and Hwang, 2012) and
the monthly Nino 3.4 index. Note that both of these vari-
ables are computed upfront and included as index variables
in the prior state vector rather than being post-processed from
reconstructed spatial climate fields (both approaches give
equivalent results); this was done simply to save computa-
tional memory and speed up the reconstructions.

As in previous work (Hakim et al., 2016; Steiger and
Hakim, 2016; Dee et al., 2016; Steiger et al., 2017), we quan-
tify uncertainty in our reconstructions through a combination
of Monte Carlo sampling of the proxy network and account-
ing for the spread in the posterior distribution, x,. Each 1000-
year reconstruction is repeated 25 times in a Monte Carlo
fashion by sampling 75 % of the pseudoproxy network for
each reconstruction iteration (we only perform 25 iterations
because the small pseudoproxy errors lead to very similar
reconstructions). This gives us 25 equally likely reconstruc-
tions that each come with a 1000-member posterior ensem-
ble estimate for each year of the reconstruction. Because this
generates very large data files, we save the ensemble mean
for each year of the Monte Carlo iterations and the full pos-
terior ensembles for only one of the iterations. This yields
two distributions for each year based on the proxy network
sampling and the spread in climate model states. We compute
the standard deviation of each of these distributions and add
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them in quadrature, giving us the final uncertainty estimates
for all of the variables in space and time. For this particu-
lar experimental setup, we note that it is actually only neces-
sary to save one full posterior ensemble because the posterior
spread depends only on the spread in the prior, the spread in
the prior estimate of the proxies, the proxy error estimates,
and the number of proxies (see, for example, Eqs. A2-A4
in Steiger et al., 2014), each of which are identical for all
the Monte Carlo iterations. The upshot is that the ensemble
spread (but not the ensemble mean) is identical for each year
and each reconstruction iteration.

All of the reconstruction experiments here have been de-
signed to show upper-bound skill estimates. This experimen-
tal framework allows us to highlight what is theoretically
possible while also making falsifiable claims about what is
impossible to reconstruct. To summarize, experimental ide-
alizations discussed previously include the following: a “per-
fect model” setup in which the covariance structures of B are
derived from the same climate model (but not the same sim-
ulation) as the truth and A is known perfectly; and low ex-
perimental error, where R represents only measurement er-
ror, is based on white noise and is assumed to be diagonal
(proxy errors are uncorrelated). In a real reconstruction, the
climate model covariances will not be identical to the covari-
ance structures of Earth’s climate, the proxy system model H
will be imperfectly known, and proxies will include “errors”
that do not reflect climate variability and are larger than mea-
surement errors (Evans et al., 2013). Using this DA approach,
previous studies have looked at the effects of each of these
idealizations within a pseudoproxy framework (Steiger et al.,
2014, 2017; Dee et al., 2016). These studies show that the
uncertainties related to the imperfect climate models, proxy
system models, and proxies will likely act to degrade recon-
struction skill but not to the point at which DA-based recon-
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structions provide no meaningful information. However, be-
cause such experiments are synthetically constructed, there is
significant uncertainty about their fidelity to the real climate
reconstruction problem; for example, Dee et al. (2016) used
a model of intermediate complexity to reconstruct a simula-
tion from a state-of-the-art coupled model to test the effect
of inexact model covariance structures of the prior, but it is
unclear how representative this comparison is to a real-world
reconstruction. Working within a more idealized context cir-
cumvents such issues but also affects the framing and inter-
pretation of the results. These upper-bound skill estimates
indicate what is theoretically possible and are most useful in
showing which regions and variables lack skill and are thus
likely unreconstructable.

3 Gilobal reconstruction skill assessment

We first assess the spatial temperature reconstructions in
Fig. 2, which shows the skill of the reconstruction at each
grid point using the metrics of correlation (r) and the mean
continuous ranked probability skill score (CRPSS). Seasonal
(JJA and DJF) and annual reconstructions are organized by
column. Correlation is computed using only the reconstruc-
tion mean time series at each grid point, while the CRPSS
metric accounts for both the mean grid point time series
and the grid point uncertainty estimates. CRPSS is based
on the continuous ranked probability score (CRPS), which
is a “strictly proper” scoring rule that accounts for the skill
of the entire posterior reconstruction distribution (Gneiting
and Raftery, 2007); because the posterior ensemble estimates
are normally distributed, we use Eq. (5) from Gneiting et al.
(2005), which is given by

crps = o {yn 200w — 1] +260m - %] *
where y, = (y — u)/o, with y being the true value, w is the
mean of the posterior ensemble estimate, o is the standard
deviation of the posterior ensemble, and ¢(y,,) and ®(y,) are
respectively the normal probability density function and the
normal cumulative distribution function of y,. All of our uses
of Eq. (4) are for time series, either individual or grid point.
We therefore compute the mean of all the time-step values
and denote it as CRPS. The skill score version, CRPSS, is the
reconstructed CRPS computed with respect to the CRPS of a
reference distribution, CRPSS = 1 — CRPS¢./CRPS,f, here
the initial uninformed prior; positive CRPSS indicates that
the reconstructed distribution is more skillful for this metric
than the uninformed prior. CRPSS is a much more stringent
skill metric than correlation, so we focus most of our atten-
tion on CRPSS.

Returning again to Fig. 2 and focusing on the CRPSS re-
sults, we note that skill is highest in the densest proxy re-
gions. Comparing the first and second columns in Fig. 2,
skill is also much higher near the pseudo-trees during their
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primary growing season (note that the full growing season
for each pseudo-tree site is not preset but determined by VS-
lite based on the local temperature and moisture conditions
that allow or suppress growth). Despite these seasonal de-
pendencies, the annual mean temperature reconstructions in
the third column of Fig. 2 are skillful (positive CRPSS) de-
spite the fact that the pseudo-trees are not responsive to the
full annual cycle of climate. This is possible because the
DA algorithm can exploit climate field covariance informa-
tion across timescales; see Steiger and Hakim (2016) and
note that, for example, ENSO and the approximately 500-
day thermal timescale of the global ocean mixed layer (Lint-
ner and Neelin, 2008) are physical features of the climate
system that can retain information across seasonal and an-
nual timescales. The skill of the temperature reconstructions
in Fig. 2 is high across the tropics and is not solely depen-
dent on the presence of corals there, though they do improve
tropical reconstructions (see Sect. 4.1).

One more subtle feature of Fig. 2 is that not all proxy loca-
tions show similar local temperature reconstruction skill, par-
ticularly for the pseudo-tree rings. This suggests that certain
pseudoproxy locations provide more local information about
temperature than other locations. Importantly, the tree-ring
proxy system model VS-lite explicitly models how much of a
given site’s growth is affected by either temperature or mois-
ture limitations (the two growth-controlling factors modeled
by VS-lite). Following Tolwinski-Ward et al. (2013), we used
VS-lite’s growth responses (optional outputs of VS-lite) to
calculate which locations were either moisture or tempera-
ture limited, expressed here by a “moisture limitation frac-
tion,” as shown in Fig. 3. Specifically, we computed the
fraction of summer months over the entire simulation in
which the growth response to soil moisture was less than the
growth response to temperature; summer is defined as JJA
in the Northern Hemisphere and DJF in the Southern Hemi-
sphere. Values of this fraction approaching zero indicate a
temperature-limited site, while values approaching one indi-
cate a moisture-limited site.

Comparison of moisture limitation fractions with the re-
construction skill estimates in Fig. 2 shows that the locations
with the highest CRPSS skill values correspond to locations
that are most temperature limited. For instance, the four tree-
ring sites in Arctic Russia reveal a range of temperature- or
moisture-limited responses. The CRPSS regional values in
JJA follow these sensitivities, namely the most temperature-
limited proxy generates the highest regional skill, while the
easternmost proxy that is moisture limited is associated with
the lowest regional skill. This generally holds for other iso-
lated locations or clusters of similarly limited trees, such as
for the cluster of temperature-limited sites in Fennoscandia
or the cluster of moisture-limited sites in the Pamir moun-
tain range. Note that the identification of certain moisture-
or temperature-limited sites is primarily due to the CESM
model simulation output, so the identifications here may not
correspond perfectly to the related real-world proxy sites.
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Figure 2. Reconstruction skill for 2m air temperature. Rows show the skill metrics of correlation () and the mean continuous ranked
probability skill score (CRPSS). These skill metrics are computed for the entire 1000-year reconstruction against the true grid point time
series, CESM LME simulation 10. Columns show the reconstruction skill for June—July—August (JJA) and December—January—February
(DJF) seasonal means and the annual mean from April to the next calendar year’s March. Pseudo-tree sites are indicated by blue squares,

and pseudo-corals are indicated by blue circles.
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Figure 3. Moisture limitation fraction for each pseudo-tree ring,
with green values indicating more moisture-limited sites and red
values indicating more temperature-limited sites. A value of 0 in-
dicates a pseudo-tree site that is completely temperature limited,
while a value of 1 indicates a completely moisture-limited site.

Figures 4 and 5 show the skill of the reconstructed PDSI
and SPEI. Both indices behave very similarly, with slightly
higher skill values for SPEI (e.g., over boreal Canada and
Russia for JJA correlation and CRPSS). Similar to the tem-
perature reconstruction, the higher skill values tend to be
local to the proxy sites, especially for the CRPSS metric.
This result particularly holds for the areas of single moisture-
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limited proxies or clusters thereof. These dependencies are
again illustrated by comparing Figs. 3, 4, and 5 around
the four Arctic Russia sites where skill is increased around
the moisture-limited locations, particularly for the far east-
ern proxy in that region. Similarly, the cluster of moisture-
limited sites in the Pamir mountain range is associated with
increased skill there and westward to the Caspian Sea. In
contrast, the arc of Himalayan pseudo-tree rings is largely
temperature limited, and despite their density they have low
CRPSS skill values for the PDSI and SPEI reconstructions.
We also note that the skill over Australia and the equatorial
regions is not dependent on the presence of the pseudo-corals
(not shown), which is consistent with some of the findings
of real-proxy drought reconstructions (Palmer et al., 2015)
that indicate the long covariance length scales in these re-
gions. Similar to the temperature reconstructions, Figs. 4 and
5 show that skillful annual reconstructions of hydroclimate
are in principle possible in this DA framework despite the
fact that the pseudo-trees are primarily responding to grow-
ing season conditions. This result may be due in part to the
persistence built into the drought indices.

Because the reconstructions shown here provide an upper-
bound skill estimate, we expect Figs. 2, 4, and 5 to be most
useful in showing where and why the reconstructions lack
skill. If skill is limited under idealized conditions, it is un-
likely that increased skill would be achieved in real recon-
structions. In this case CRPSS is more useful because cor-
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Figure 4. Reconstruction skill, correlation (), and the mean continuous ranked probability skill score (CRPSS) for the Palmer drought

severity index (PDSI); cf. Fig. 2.

relation is less stringent in that it only tracks the phase of
the mean reconstruction and results in generally quite high
correlations for most locations and seasons. The compar-
isons we have so far made between Fig. 3 and the skill
metrics in Figs. 2, 4, and 5 illustrate a general rule that
without moisture-sensitive trees skillful PDSI or SPEI re-
constructions are unlikely; similarly, without temperature-
sensitive trees skillful temperature reconstructions are un-
likely. This might at first appear to be an obvious observation.
It is nevertheless important to recall that PDSI and SPEI are
both dependent on temperature through their incorporation
of potential evapotranspiration. Therefore it might be possi-
ble in principle for tree rings to reconstruct both temperature
and moisture indices equally well regardless of whether the
trees are moisture or temperature limited. To the contrary,
our experiments suggest that this is not the case. Based on
these experimental results, we recommend that future DA-
based hydroclimate reconstructions use a spatial mixture of
temperature- and moisture-sensitive trees if the goal is to re-
construct both temperature and hydroclimate indices (as hap-
pens to be the case over western North America in our ex-
periments). Where this is impossible, our pseudoproxy ex-
periments suggest that reconstruction skill will be signifi-
cantly diminished for the target variable not represented by
the proxy network.

4 Regional hydroclimate reconstructions

Given the above demonstrations of global reconstruction
skill, we now showcase two regional examples that explore
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the driving dynamics of multiyear droughts in the North
American Southwest and equatorial East Africa within the
pseudoproxy reconstructions.

4.1 North American Southwest multiyear drought

We first focus on the dynamical mechanisms of multiyear
droughts in the North American Southwest. The choice of
this region is motivated by the local reconstruction skill seen
in Figs. 4 and 5 and because several established theories exist
about the dynamical drivers of drought in this region (e.g.,
Seager et al., 2005; Seager and Hoerling, 2014). Figure 6
shows the time series reconstruction of JJA PDSI in the North
American Southwest region defined by the land area within
the latitudinal range of 25-42.5° N and the longitudinal range
of 125-105°W as previously used in Coats et al. (2013,
2015) and indicated by the blue box in Fig. 1. In Fig. 6, the
five most severe droughts are highlighted for both the recon-
struction and the truth; overlap is indicated by the slightly
darker purple highlights. The cumulative drought severity is
ranked by the sum of persistently negative PDSI values rel-
ative to an 11-year moving average (Meehl and Hu, 2006).
Very similar results were found using an alternative defini-
tion of drought that commences after two consecutive years
of negative PDSI values and continues until two consecutive
years of positive PDSI values (Coats et al., 2013). Consis-
tent with the spatial drought reconstructions shown in Figs. 4
and 5, this North American Southwest regional average re-
construction has high skill, » =0.90 and CRPSS =0.57 (we
note that for a single time series verification, CRPSS reduces
to the skill score version of the mean absolute error, which
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Figure 5. Reconstruction skill, correlation (r), and the mean continuous ranked probability skill score (CRPSS) for the standardized precip-
itation evapotranspiration index (SPEI) with a 12-month decaying exponential weighting kernel; cf. Figs. 2 and 4.
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Figure 6. North American Southwest area-averaged JJA PDSI
in the reconstruction mean (purple) and the climate model truth
(black). Both time series have been smoothed with an 11-year mov-
ing average (Meehl and Hu, 2006). The skill metrics of correlation
(r) and the mean continuous ranked probability skill score (CRPSS)
for the smoothed time series are shown in the lower left corner. The
five most severe multiyear droughts over this period are highlighted
in corresponding colors. Reconstruction error estimates, similar to
those shown in Fig. 8, have been left off to clearly show the severe
drought highlighting.

we have computed here); the reconstruction using pseudo-
trees alone has skill values of » =0.89 and CRPSS =0.54
(not shown). Despite the high skill of the overall reconstruc-
tion, it is challenging to consistently identify the rank of the
most severe droughts based on the imperfect reconstruction;
this is true not only for the top 5 droughts, but also for the
top 10 and 15. This is due to the fact that drought identifi-
cation and ranking procedures (Meehl and Hu, 2006; Coats
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et al., 2013) tend to be sensitive to the precise zero crossings
of the hydroclimate time series that set the beginning or end-
ing of a drought (thus affecting both the identification and
subsequent ranking); for example, the mid- to late-1300s-era
drought in Fig. 6 is cut short in the reconstruction because of
a zero crossing of the PDSI values near the middle of the true
drought.

Given the established teleconnection between Pacific SST
anomalies and hydroclimate variability in North America
(Seager and Hoerling, 2014), we reconstruct the Nino 3.4
index and assess its relationship to North American South-
west multiyear droughts in CESM. As part of the reconstruc-
tion experiments, we reconstructed monthly Nino 3.4 with
both pseudo-trees and pseudo-corals and as a separate recon-
struction just with pseudo-trees. Figure 7 shows the power
spectra of the true Nino 3.4 time series along with the two
reconstruction types. As a representative example of the re-
construction, Fig. 8 shows the monthly Nino 3.4 time se-
ries during the most severe drought during the reconstruction
(this short interval was shown for clarity). Skill scores for
the entire monthly time series for the experiment assimilat-
ing both pseudo-trees and pseudo-corals were r =0.97 and
CRPSS =0.78, while for the experiment with pseudo-trees
alone the skill values were r =0.87 and CRPSS = 0.53. Tak-
ing both Fig. 7 and Fig. 8 together, the pseudoproxy frame-
work indicates that it is possible to skillfully reconstruct the
monthly Nino 3.4 index and to potentially do so without coral
proxies. The monthly skill associated with the Nino 3.4 re-
construction is likely because monthly values sufficiently co-
vary with the annual proxy observations such that the recon-
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Figure 7. Power spectral density of the true model Nino 3.4 index
time series along with the reconstructions based on pseudo-trees
and pseudo-corals (purple) and pseudo-trees alone (green).

struction can provide meaningful monthly states for this vari-
able (Tardif et al., 2014; Steiger and Hakim, 2016). The re-
sults of the reconstructions using pseudo-trees alone is also
particularly important given that coral records are generally
short and not extant over more than a few centuries.

As an analysis of the relationship between North Ameri-
can Southwest drought variability and ENSO, Fig. 9 shows
the monthly percent occurrence of El Nifio or La Nifia states
during the 15 most severe multiyear droughts (spanning
droughts of 9 to 38 years in length). The El Nifio and La
Nifia states are defined as the months for which the SST
anomaly exceeds 0.5 and —0.5°C, respectively. Figure 9a
shows how the percent occurrence for each drought recon-
struction compares to the true percent occurrence, while
Fig. 9b shows the distribution of all 15 droughts for the truth
and the two reconstructions. This figure illustrates that in
the CESM LME simulation, multiyear droughts are associ-
ated with an above-average occurrence of La Niifia states.
This relationship is consistent with observations and histori-
cal model simulations, which show that cooler La Nifia-like
SSTs in the tropical Pacific tend to shift the storm track over
North America polewards, leading to a drying of the Amer-
ican Southwest (Seager and Hoerling, 2014). In a paleocli-
mate context, it has also been inferred that increased inci-
dences of La Nifia events have likely driven megadroughts
in western North America over the last 1000 years (Coats
etal., 2016). Additionally, last-millennium simulations of the
CESM model have also been shown to have the strongest
relationship between ENSO and drought in the American
Southwest compared to other CMIP5-class models (Coats
et al., 2015, 2016). These results thus collectively indicate
that drought reconstructions and specific driving dynamics
can be successfully investigated within a DA-based recon-
struction.
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Figure 8. Monthly reconstruction of Nino 3.4 index during the most
severe drought period in the reconstruction (a) using both pseudo-
trees and pseudo-corals and (b) using only pseudo-trees. The 2o
uncertainty estimates are derived from both the Monte Carlo recon-
struction iterations and the posterior distribution; see Sect. 2.4 for
details.

4.2 Equatorial East Africa multiyear drought

The next reconstruction illustration we consider is multi-
year drought in equatorial East Africa. Specifically, we ex-
plore where drought is occurring and its plausible large-scale
drivers according to the CESM LME simulations. Similar
to the results shown in Sect. 4.1, we use drought dynamics
in East Africa as an example of what can be reconstructed
using the DA method. We additionally provide a dynamical
analysis that would be the starting point for a region-specific
analysis that could be performed based on a real-proxy re-
construction. The choice of this region is motivated by the
observation that the spatial drought index reconstructions,
Figs. 4 and 5, show skillful drought reconstructions in East-
ern Africa and because tropical dynamics and variables are
generally better reconstructed than midlatitude variables and
dynamics in global, DA-based reconstructions (see, for ex-
ample, Fig. 2 and Steiger et al., 2014; Hakim et al., 2016).
For this analysis we assess how shifts in East African
tropical circulation relate to multiyear droughts. An exten-
sive number of paleoclimate studies have broadly interpreted
tropical or even extratropical hydrologic changes to shifts
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Figure 9. (a) Monthly percent occurrence of El Nifio or La Nifia states during the 15 most severe multiyear droughts. The occurrences are
computed as a percentage of the total number of months in a given drought. Dashed lines indicate the average percent occurrence of El Nifio
(red) or La Nifia (blue) in the CESM LME simulation 10. (b) Box plot distribution summaries of the monthly percent occurrence of El Nifio
or La Nifia states shown in panel (a). Light gray lines indicate the means and the darker colors indicate 1 standard deviation of the data,
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Figure 10. The latitude locations of the zonal mean multiyear drought and precipitation centroids (PrCent) for both the truth and the
reconstruction over equatorial East Africa. Panel (a) shows the centroid locations as a function of drought severity rank, while panel (b) has
the same information but more clearly shows the negative correlation between the locations of drought and precipitation centroids.

in the ITCZ (see Chiang and Friedman, 2012, for a re-
view). Here we explore how a common indicator of the lo-
cation of the ITCZ, the zonal precipitation centroid (Frier-
son and Hwang, 2012), is related the location of East African
droughts. We calculate the precipitation centroid as the center
of mass of the zonal mean precipitation within the latitudinal
range of 20° N-20° S and the longitudinal range of 28-52° E;
as seen in Fig. 1 this boxed area is centered over Eastern
Africa and includes precipitation over both land and ocean.
We construct a similar drought location index by computing
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the centroid of the zonal mean negative SPEI values over the
continental African land area within this East African box.
We use SPEI for this region because some work indicates that
it may be better suited to drought assessments in East Africa
than PDSI (Ntale and Gan, 2003), though the results shown
in this section are not dependent on the choice of drought
variable.

Figure 10a shows the mean latitudinal locations of the 15
most severe multiyear droughts in equatorial East Africa for
both the reconstruction and the model truth. Additionally,
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this figure shows the mean latitudinal location of the pre-
cipitation centroid averaged over each of the drought peri-
ods. The locations of the two centroids are well matched to
the truth in the reconstruction. Furthermore, Fig. 10b shows
that these two centroids are negatively correlated (in both the
truth and the reconstructions), indicating that as the average
precipitation shifts south in CESM, drought occurs in the
north and vice versa. Because the zonal mean precipitation
is strongly peaked in the annual mean with more variability
in the wings of the zonal mean distribution, small changes in
the precipitation centroid can lead to larger changes in the lo-
cation of drought (Fig. 10a). Similar to the results presented
for North America, these collective results for East Africa
further illustrate the utility of DA-based reconstructions and
their potential to test specific hypotheses, such as the hypoth-
esis that shifts in the ITCZ can drive multiyear droughts.

5 Conclusions

Using DA for hydroclimate reconstructions is a new area of
research. The aim of this paper was therefore to explore some
foundational aspects of global hydroclimate reconstructions
using DA. Through a set of pseudoproxy reconstruction ex-
periments, we estimated a realistic upper bound on hydro-
climate reconstruction skill for a global pseudoproxy net-
work based on pseudo-tree rings and corals. Unlike most
pseudoproxy experiments that use statistical noise perturba-
tions for proxy construction, the pseudo-tree rings and corals
were generated here using established proxy system models.
These models are physically based and account for multiple
climatic factors in proxy development.

Because these reconstruction experiments have been de-
signed as upper-bound skill estimates, the results are most
useful in showing where and for which variables the recon-
structions lack skill. This framing allows us to highlight what
is theoretically possible while also making falsifiable claims
about what is impossible to reconstruct given current proxy
networks. In our experiments we find that skill is highest in
the tropics and in regions local to proxy sampling, in ac-
cordance with many previous pseudoproxy and real-proxy
reconstructions that focused on temperature or other non-
hydroclimate variables (e.g., Smerdon, 2012; Steiger et al.,
2014; Hakim et al., 2016; Anchukaitis et al., 2017). For tree
rings (which constitute the majority of annually resolved
proxies) we also find that local reconstruction skill depends
on the moisture or temperature sensitivity of particular tree-
ring proxies: moisture-sensitive trees are necessary for skill-
ful PDSI or SPEI reconstructions, and temperature-sensitive
trees are similarly necessary for skillful temperature recon-
structions. The covariability of moisture and temperature is
not sufficiently strong for our DA approach to reconstruct
both variables equally well from a given tree. Based on these
results, we recommend that future DA-based hydroclimate
reconstructions use a spatial mixture of temperature- and
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moisture-sensitive trees if the goal is to reconstruct both tem-
perature and hydroclimate indices. Importantly, we also per-
formed seasonal and monthly reconstructions and found that
it is in principle possible to reconstruct non-growing season
or annual mean climate variables in many regions using DA.
We also found that it is possible to reconstruct a monthly
Nino 3.4 index.

Two regional climate dynamics analyses also explored the
key drivers of hydroclimate extremes in the North American
Southwest and equatorial East Africa. These regional exam-
ples highlight how DA-based reconstructions could in gen-
eral be used to find the dynamical drivers of hydroclimate
extremes. This information-added benefit from DA-based re-
constructions is very important given that dynamical infor-
mation is difficult to simultaneously obtain from a traditional
reconstruction. Based on these results, the application of DA
to the PAGES2k network may yield skillful hydroclimate
reconstructions that will deepen our current understanding
of decadal to centennial hydroclimate variability. We find
that this approach can potentially yield dynamical insights
about regions that have not been previously well character-
ized, such as Africa.
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