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Abstract. This work proposes a daily high-resolution proba-

bilistic reconstruction of precipitation and temperature fields

in France over the 1871–2012 period built on the NOAA

Twentieth Century global extended atmospheric reanalysis

(20CR). The objective is to fill in the spatial and temporal

data gaps in surface observations in order to improve our

knowledge on the local-scale climate variability from the late

nineteenth century onwards.

The SANDHY (Stepwise ANalogue Downscaling method

for HYdrology) statistical downscaling method, initially de-

veloped for quantitative precipitation forecast, is used here

to bridge the scale gap between large-scale 20CR predictors

and local-scale predictands from the Safran high-resolution

near-surface reanalysis, available from 1958 onwards only.

SANDHY provides a daily ensemble of 125 analogue dates

over the 1871–2012 period for 608 climatically homoge-

neous zones paving France. Large precipitation biases in

intermediary seasons are shown to occur in regions with

high seasonal asymmetry like the Mediterranean. Moreover,

winter and summer temperatures are respectively over- and

under-estimated over the whole of France.

Two analogue subselection methods are therefore devel-

oped with the aim of keeping the structure of the SANDHY

method unchanged while reducing those seasonal biases. The

calendar selection keeps the analogues closest to the target

calendar day. The stepwise selection applies two new anal-

ogy steps based on similarity of the sea surface temperature

(SST) and the large-scale 2 m temperature (T ). Comparisons

to the Safran reanalysis over 1959–2007 and to homoge-

nized series over the whole twentieth century show that bi-

ases in the interannual cycle of precipitation and temperature

are reduced with both methods. The stepwise subselection

moreover leads to a large improvement of interannual cor-

relation and reduction of errors in seasonal temperature time

series. When the calendar subselection is an easily applicable

method suitable in a quantitative precipitation forecast con-

text, the stepwise subselection method allows for potential

season shifts and SST trends and is therefore better suited

for climate reconstructions and climate change studies.

The probabilistic downscaling of 20CR over the period

1871–2012 with the SANDHY probabilistic downscaling

method combined with the stepwise subselection thus consti-

tutes a perfect framework for assessing the recent observed

meteorological events but also future events projected by cli-

mate change impact studies and putting them in a historical

perspective.

1 Introduction

Studying the influence of different modes of climate vari-

ability on hydrometeorological events like droughts and low

flows requires numerous, long and reliable series to derive

robust relationships with predictive capacity (see, e.g. Giun-

toli et al., 2013; Boé and Habets, 2014). However, even in

a data-rich country like France, few local observations cov-

ering the entire twentieth century are currently available in

databases, as shown by Fig. 1. Less than one precipitation

station per 600 km2 was available on average between 1871

and 1930. The number of temperature observations shows an

increase after 1950 only. The data sparseness before 1950

does not only come from the low number of meteorological
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observations but also from their poor spatial coverage in spite

of recent data rescue efforts (Moisselin and Jourdain, 2007).

The recent release of global reanalyses extending backwards

to the late nineteenth century provides some exciting oppor-

tunities to overcome the limitations of such an observation

sparseness and to increase our understanding of local-scale

climate variability. Global reanalyses, providing atmospheric

data at coarse spatial and fine temporal resolutions, can be

used to reconstruct local climate. A downscaling step is how-

ever required to bridge the gap from the reanalysis scale to

the scale relevant for catchment hydrology for example. This

can be done using statistical methods that establish a relation-

ship between large-scale predictors from the global reanal-

yses and observed local-scale predictands, and the present

work indeed follows this path.

Statistical downscaling methods have been widely used

in France in various contexts, like quantitative precipitation

forecast (see, e.g., Ben Daoud et al., 2011; Marty et al.,

2012) or climate change impact studies (see, e.g., Timbal

et al., 2003; Boé and Terray, 2008; Quintana-Seguí et al.,

2011). Applications in reconstruction contexts were until re-

cently limited by the availability of large-scale predictors

from global reanalyses that covered only the second part of

the twentieth century. As a consequence, existing studies for

earlier periods generally focused on a specific event using

rescued predictor observations. Yiou et al. (2014) for exam-

ple reconstructed meteorological variables over the North At-

lantic region during the Laki volcanic eruption in 1783 based

on a specific gridded data set (Kington, 1988). Auffray et al.

(2011) reconstructed hydrometeorological conditions having

led to the 1859 flood of the Isere river (French Alps) based on

purposely rescued pressure data. The release of the two ex-

tended global reanalyses – the Twentieth Century Reanalysis

(20CR, Compo et al., 2011) and the European Reanalysis of

the Twentieth Century (ERA-20C Poli et al., 2013) – span-

ning the entire twentieth century (respectively since 1871 and

1900) opens new ways to derive continuous time series of

local weather thanks to downscaling methods. The 20CR re-

analysis has already been downscaled for specific regions,

as the south-eastern US by DiNapoli and Misra (2012) and

Misra et al. (2013) using dynamical downscaling, the North

East of Spain by Turco et al. (2014) using statistical down-

scaling, or the Durance river basin by Kuentz et al. (2013,

2015) using probabilistic statistical downscaling. It has also

been recently used for downscaling wave climate over lo-

cations in the North-Eastern Atlantic (Camus et al., 2014)

or station wind speed in Spain (Kirchner-Bossi et al., 2013).

Few studies have been performed at a country scale, with the

exception of Minvielle et al. (2015) who used a determinis-

tic statistical downscaling approach optimized over France as

a whole.

This paper proposes a daily high-resolution downscaling

of the 20CR reanalysis to reconstruct precipitation and tem-

perature gridded series from 1871 over France. Compared to

previous downscaling studies, this experiment has three main

combined specificities: (1) the 20CR reanalysis is down-

scaled for the whole of mainland France and Corsica; (2) it is

performed with SANDHY (Stepwise ANalogue Downscal-

ing method for HYdrology, Ben Daoud et al., 2011, 2016;

Radanovics et al., 2013), a statistical downscaling method lo-

cally optimized over 608 zones paving France to take into ac-

count regional climate features; (3) the downscaling method

provides 25-member ensemble reconstructed fields to reflect

the uncertainty in the downscaling step.

The first objective of this paper is to present refine-

ment steps through post-processing methods of the standard

SANDHY method that were required in this context of his-

torical reconstruction. Indeed, SANDHY has been mainly

used in contexts of quantitative precipitation forecasting

(Ben Daoud et al., 2011, 2016) and reanalysis of recent past

precipitation (Radanovics et al., 2013). This is moreover the

first time that this method is tested for downscaling tem-

perature. The second objective is to test the quality of re-

constructed ensemble fields with respect to different data

sets including long homogenized series. The last objective

is to illustrate some characteristics of the probabilistic recon-

structed data sets through examples in both the temporal and

spatial aspects.

The paper is structured as follows. Section 2 introduces the

different reanalysis and observation data sets used during all

the steps of the study. Section 3 describes the downscaling

method SANDHY, the two alternative post-processing meth-

ods developed here as well as the performance scores used to

assess the quality of the reconstruction. Section 4 compares

reconstructed precipitation and temperature fields to different

data sets, over a recent period as well as across the twentieth

century. Examples of these reconstructions are then provided

in Sect. 5 and results are finally discussed in Sect. 6.

2 Data

This section presents the large-scale data sets providing the

large-scale atmospheric and oceanic data as well as the local-

scale data sets providing the local-scale meteorological data

used in this study.

2.1 NOAA Twentieth Century Reanalysis

Version 2 of 20CR (Compo et al., 2011) from the National

Oceanic and Atmospheric Administration (NOAA) is used

here as the source for atmospheric predictors in the down-

scaling step. Outputs from this global atmospheric reanaly-

sis are available at 2.0◦ spatial resolution and 6 hourly tem-

poral resolution from the 1 January 1871 to present. This

reanalysis is the first global reanalysis spanning the entire

twentieth century and only using the 6-hourly sea level pres-

sure (SLP) from the International Surface Pressure Databank

(ISPD v2.2.4, Compo et al., 2010) for the assimilation step

and the monthly sea surface temperature (SST) and sea-ice

concentration fields from the Hadley Centre global sea ice
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Figure 1. Evolution of the monthly averaged number of available precipitation and temperature stations in the Météo-France database (as of

March 2015) since 1871.

and sea surface temperature (HadISST, Rayner et al., 2003)

as boundary conditions. The feasibility of such a reanaly-

sis has been demonstrated by Compo et al. (2006) and this

choice has been done to avoid non-climatic bias due to the

assimilation of observations from different systems. Outputs

are available as either the original 56-member ensemble de-

rived from the Ensemble Kalman Filter assimilation process

or as the single ensemble mean. In this study, only the lat-

ter was used, as in all other downscaling applications to date.

This will be further discussed in Sect. 6.

Six-hourly predictor variables from 20CR used by the

SANDHY statistical downscaling method are the tempera-

ture at 925 and 600 hPa, the geopotential height at 1000 and

500 hPa, the vertical velocity at 850 hPa, the precipitable wa-

ter content and the relative humidity at 850 hPa. The large-

scale 2 m temperature (T ) is also used as an additional pre-

dictor in the stepwise post-processing method described in

Sect. 3.3.

2.2 NOAA Extended Reanalysis sea surface

temperature

The second large-scale data set considered in this study is

the NOAA Extended Reanalysis sea surface temperature ver-

sion 3b (ERSST, Smith and Reynolds, 2003; Smith et al.,

2008). This reanalysis is a global monthly sea surface tem-

perature reanalysis, available at a 2.0◦ spatial resolution since

the 1 January 1854. This reanalysis is derived from the Com-

prehensive Ocean–Atmosphere Data set release 2 (COADS,

Woodruff et al., 1998) with missing data filled in by statis-

tical methods. Like 20CR, this version does not use satellite

data to avoid homogeneity biases.

ERSST provides the SST predictor used in the stepwise se-

lection (see Sect. 3.3). A spline interpolation of the monthly

means is considered to derive time series at the daily time

step required by the downscaling method.

2.3 Safran

Safran French near-surface reanalysis data are used as pre-

dictands in the downscaling step. Safran is a meteorological

reanalysis available at an 8 km spatial resolution and at the

hourly temporal resolution from the 1 August 1958 to present

(Vidal et al., 2010a). This data set has been computed us-

ing the Safran analysis system (Quintana-Seguí et al., 2008)

which performs an optimal interpolation between all avail-

able surface observations in the Météo-France database and

first-guess from the ERA-40 reanalysis (Uppala et al., 2005)

for each of the 608 climatically homogeneous zones mapped

in Fig. 2. A temporal interpolation step followed by a spa-

tial interpolation step using an 8 km resolution orography are

applied to obtain hourly data on a regular grid over France.

Vidal et al. (2010a) performed a detailed validation of the

gridded Safran data set with both dependent and independent

data. They showed that the errors on precipitation are low

and constant over the 1958–2008 period. Errors on temper-

ature are decreasing with the increasing number of available

surface observations.

Daily precipitation is the predictand used in the SANDHY

downscaling method. In this application and for the first time,

temperature values from the analogue days are also consid-

ered for reconstructing downscaled temperature.

2.4 Surface observations

Raw meteorological surface observations are used here only

for qualitative and limited comparison to reconstructed fields

in Sect. 5.2. Long homogenized series are here favoured for

quantitatively assessing the long-term quality and temporal

homogeneity of meteorological reconstructions. Indeed, sur-

face observations are generally affected by inhomogeneities

due to their environment modifications over time. The French

homogenized series (Moisselin et al., 2002; Moisselin and

Schneider, 2002) have been derived using a statistical pro-

cedure detecting breaks and outliers (Caussinus and Mestre,

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Figure 2. Map of the 608 climatologically homogeneous zones de-

fined in the Safran data set. Coloured zones highlight case study

zones used in Sect. 4: Finistère in Brittany and Cévennes in the

Massif Central mountain range.

2004). Such series have been widely used for example for

regional climate change detection (see e.g. Spagnoli et al.,

2002; Ribes et al., 2010). The 323 monthly precipitation se-

ries and 65 monthly time series of minimum and maximum

temperature spanning the whole twentieth century have been

retained here. Monthly mean temperature time series have

been obtained by averaging minimum and maximum tem-

perature as done by Moisselin et al. (2002). Their locations

are shown in Fig. 3. Note that no homogenized series are

available in Corsica.

3 Methods

This section first presents the SANDHY downscaling

method and the two post-processing methods developed.

Synthetic diagrams in Appendix A summarize the differ-

ent methodological steps described in this section as well as

their sequence. The performance scores used in the following

study are then presented.

3.1 SANDHY

The SANDHY method (Ben Daoud et al., 2011) follows an

analogue approach based on the idea introduced by Lorenz

(1969) that similar atmospheric situations lead to similar lo-

cal effects. The analogue approach uses two concurrent data

sets over an archive period, from a large-scale reanalysis and

a local-scale meteorological data set. The large-scale reanal-

ysis should also be available over the period to reconstruct,

called the target period. Large-scale predictors (like atmo-
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Figure 3. Spatial coverage of the available precipitation and tem-

perature homogenized series produced by Météo-France during the

full 1900–2000 period in France.

spheric circulation patterns) from any date in the target pe-

riod are compared to those of the archive period and dates

with the most similar predictors are chosen as analogues.

Local-scale variables (or predictands) like precipitation or

temperature from the analogue dates are taken as plausible

values for the target date. Numerous applications of the ana-

logue method with different parametrizations have been de-

veloped over the last decades, notably in France (see, e.g.,

Dayon et al., 2015; Chardon et al., 2014; Yiou et al., 2014).

Most of them use a unique analogy distance computed from

one or several predictors to find the most relevant analogues,

on the contrary to SANDHY that uses a stepwise approach

where analogue subsets are sequentially refined with respect

to different predictors.

Clim. Past, 12, 635–662, 2016 www.clim-past.net/12/635/2016/



L. Caillouet et al.: Probabilistic downscaling of 20CR over France 639

The SANDHY method is described by four analogy lev-

els optimized by Ben Daoud et al. (2011, 2016) on the Seine

and Saône basins and summarized in Table 1. The predic-

tand considered is daily precipitation, as the initial aim of

this method was quantitative precipitation forecast. The first

step is a selection of N analogue days on temperature at 925

and 600 hPa with the exclusion of a 4-day window around

the target date. N is taken as 100× the number of years in the

archive period. The second step is a selection on geopotential

height at 500 and 1000 hPa with 170 analogue days retained.

The third step selects 70 analogues thanks to an analogy on

vertical velocity at 850 hPa and the final step selects 25 ana-

logues on humidity, considered as the product of the pre-

cipitable water content and the relative humidity at 850 hPa.

Predictors were extracted from ERA-40 and the precipitation

predictand from Safran. The similarity criterion used for the

analogy levels on temperature, vertical velocity and humidity

is the Euclidean distance, with equal weights when different

pressure levels are used. The analogy on geopotential height

is measured through the similarity between fields shape with

the Teweles and Wobus (1954) criterion. The synthetic di-

agram in Fig. A1 summarizes the different steps described

above.

The spatial domain for a predictor where the analogy is

looked for (spatial extent and position) should be defined

and potentially optimized for each of the 608 climatically

homogeneous zones shown in Fig. 2, considered as individ-

ual target locations, following Radanovics et al. (2013). The

predictor domain for the first, third and fourth analogy levels

is chosen as the closest large-scale grid point to each zone.

Radanovics et al. (2013) moreover optimized the geopoten-

tial predictor domains with an algorithm of growing rectan-

gular domains, leading to the selection of five near-optimum

domains for each zone in France. The performance crite-

rion for the optimization was the continuous ranked prob-

ability score (CRPS Brown, 1974; Matheson and Winkler,

1976), widely used for probabilistic verification forecast. Do-

mains found from neighbouring zones were also considered

if they provide a better performance. The different downscal-

ing steps are therefore applied 5 times using a different pre-

dictor domain at each run, thus providing 125 analogue days

for each target date and each climatically homogeneous zone

in France.

3.2 Application of SANDHY for reconstruction

In this work, 20CR variables are used as predictors whereas

Safran precipitation is kept as predictand. The predictor do-

mains per climatically homogeneous zones have been here

re-optimized over the same 20-year period as in Radanovics

et al. (2013) – 1 August 1982 to 31 July 2002 – but with

20CR predictors in order to use the same reanalysis in all

steps of the downscaling method. The target period consid-

ered is the whole period spanned by 20CR data, i.e. 1 Jan-

uary 1871 to 31 December 2012. Following Minvielle et al.

(2015), the archive period has been chosen as the 50-year pe-

riod running from 1 August 1958 to 31 July 2008 in order

to maximize the pool of analogue situations. This specific

period has previously been the target of several climatologi-

cal assessments (see e.g. Vidal et al., 2010a, b). Reconstruc-

tions are expressed as an ensemble of 125 equally plausible

gridded precipitation and temperature series over the whole

1871–2012 period, combining analogue days independently

from one zone to another and from one day to the next. This

set-up will be further discussed in Sect. 6.4.

Previous applications, including optimization, used ERA-

40 variables as predictors. Tests preliminary to this work

showed that the overall performance of SANDHY outputs in

terms of CRPS are lower (around 0.05 mm day−1 on average)

when using 20CR variables as predictors. These tests also

showed that the precipitation for intermediary seasons in ar-

eas with a high seasonal asymmetry – e.g., Mediterranean ar-

eas including the Cévennes zone highlighted in blue in Fig. 2

– is not well simulated, with an over-estimation of precipi-

tation in spring and an under-estimation of precipitation in

autumn. It is important to note that these biases also occur

using predictors from ERA-40. Moreover, winter and sum-

mer temperatures are respectively over- and under-estimated.

This last result was not unexpected since SANDHY predic-

tors were chosen for their strong relation to precipitation, and

not temperature.

Post-processing approaches were therefore explored with

the aim of keeping unchanged the structure of the SANDHY

method while reducing those seasonal biases. Two analogue

subselection methods were thus developed: for each target

date, a specific number of analogue dates are retained among

the 125 available ones.

3.3 Subselection methods

Subselection methods described below attempt to retain

a number of analogues called N2 out of the initial 125 ones.

When two successive subselection levels are used, the num-

ber of analogues are called N1 (N1≤ 125) then N2, with

N2≤N1. The synthetic diagram in Fig. A2 summarizes the

different steps described below.

3.3.1 First predictor domain selection

The first method considered is the benchmark method against

which the actual subselection methods described in the sub-

sections below are tested. Radanovics et al. (2013) demon-

strated that the five predictor domains optimized locally lead

to very similar performances and can be considered as near-

optimal. This benchmark subselection thus consists in re-

taining only the 25 analogue dates derived from the optimal

predictor domain per zone. In the following, this method is

called first domain selection.

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Table 1. Characteristics of SANDHY predictors. N depends on the length of the archive period.

Predictor Pressure level (hPa) and time (UTC) Similarity criterion Number of analogues

Temperature 925 at +36 h, 600 at +12 h Euclidean distance N

Geopotential 1000 at +12 h, 500 at +24 h Teweles and Wobus Score 170

Vertical velocity 850 at +6 h +12 h +18 h +24 h Euclidean distance 70

Humidity (PWC×RH) 850 at +12 h +24 h Euclidean distance 25

3.3.2 Calendar selection

The second method considered is a calendar selection that

keeps the N2 analogues closest to the target calendar day.

N2 has been optimized to 25, based on the France-averaged

skill score in root mean square error (RMSE) over precipi-

tation and temperature monthly time series, with respect to

the benchmark first domain selection (see Appendix C). This

calendar approach had been initially included in the precur-

sors of the SANDHY method where the search for analogue

dates were restricted within a four-month window around the

target date (Obled et al., 2002; Bontron and Obled, 2005).

Ben Daoud et al. (2011) subsequently replaced this prelimi-

nary calendar step by a selection on large-scale temperature

in order not to rule out potentially relevant analogue situa-

tions from one intermediary season to another and actually

achieve better overall performances in terms of CRPS. In the

following, this method is called calendar selection.

3.3.3 Stepwise selection

The third method follows the stepwise approach at the heart

of SANDHY by adding two analogy levels, a first one on SST

and a second one on the T . The SST and the T have been

chosen because of their influence on both local precipitation

or temperature.

The influence of the SST on continental precipitation

has been studied for years, and according to Gimeno et al.

(2010), 10 % of water evaporated from the oceans is trans-

ported to continents where it precipitates. To give some ex-

amples, Wilby (2001) used the North Atlantic ocean tem-

perature as predictor in a downscaling method to reconstruct

precipitation in the UK. Colman and Davey (1999) used the

preceding winter North Atlantic ocean temperature to predict

summer temperature, rainfall and pressure in Europe. van der

Ent and Savenije (2013) identified the sources of continental

precipitation and showed that the North Atlantic ocean and

the Mediterranean sea are the regions contributing the most

to European continental precipitation. Gimeno et al. (2010)

identified what oceanic regions affect the most continental

regions in terms of oceanic moisture. The North Atlantic

ocean affects Europe in winter whereas the Mediterranean

sea rather affects Europe in summer, and they both have an

equal influence on Europe in spring and autumn.

Precipitation is not the only variable affected by the SST.

Hoerling and Kumar (2003) and Cassou et al. (2005) demon-

strated the contribution of the SST on the 2003 summer

heat wave. Large-scale T , which contains direct information

about the seasonal cycle of local temperature, is also selected

to correct the local-scale temperature with a second subselec-

tion level. The other possible combination, with the T as first

level and the SST as second level has also been studied but

resulted in lower performances (not shown).

In practice, for each target date, the N1 analogue days giv-

ing the closest simulated SST to the observed one in terms

of Euclidean distance are selected among the 125 available.

Then, the N2 analogue days giving the closest simulated T

to the observed one – also in terms of Euclidean distance –

are selected among the N1 available. N1 and N2 have been

optimized to respectively 80 and 25 (see Appendix C). For

the sake of consistency over France and parsimony of the

stepwise subselection method parameters, a single common

grid point is considered for deriving the ERSST SST time

series used for computing the SST analogy for all climati-

cally homogeneous zones in France. This point has been cho-

sen based on its highest correlation with precipitation over

France (see Appendix B). It is located in the Atlantic ocean

south of Brittany (4◦W, 46◦ N). The grid point for deriving

the time series for computing the T analogy is chosen as

the closest land grid point to each climatically homogeneous

zone, following the approach used for levels 1, 3 and 4 in the

standard SANDHY method.

In the following, this method is called stepwise selection.

3.4 Performance indicators

The quality of precipitation and temperature reconstructions

from the different methods described above was first assessed

in terms of interannual regime by looking at annual and sea-

sonal bias, and at the temporal evolution of root mean square

error (RMSE). Rank correlation on annual and seasonal se-

ries were also computed to look at the natural variability de-

rived from the hydrometeorological chain 20CR-SANDHY-

subselection. All above indicators aimed at comparing recon-

structions (1) to Safran pseudo-observations over the second

part of the twentieth century, and (2) to homogenized series

over the whole century.

An evaluation at multiple temporal scales of the three se-

lection methods against Safran data has also been devised
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Figure 4. Precipitation and temperature interannual regimes be-

tween 1959 and 2007 for the Finistère case study zone from Safran

and the three subselection methods, through their 25 individual re-

alizations.

based on the continuous ranked probability score (CRPS) as:

CRPS=

∞∫
−∞

[F (x)−H 0
xobs

(x)]2dx, (1)

where F (x) is the simulated cumulative distribution function

of the variable x, x0
obs the observed value and H 0

xobs
(x) the

Heaviside function of x− x0
obs. This score is equivalent to

the mean absolute error in a deterministic context. The CRPS

was computed for each selection method at the daily monthly

and annual scales and for each climatically homogeneous

zone, and over the 1 August 1958–31 July 2008 archive pe-

riod with reference to Safran data. The continuous ranked

probability skill score (CRPSS) is used here for comparing

zones with different climatological characteristics. It is com-

puted as:

CRPSS= 1−
CRPS

CRPSclim

, (2)

where CRPSclim is the reference climatological distribu-

tion over the archive period. For the daily timescale, the

CRPSclim is calculated over the archive period using data

from±60 days around the target date to take seasonality into

account, as in Radanovics et al. (2013). This score is only

used to compare the different subselection methods to each

other. Therefore, the number of days chosen to compute the

CRPSclim does not change the relative evaluation of the dif-

ferent methods and only serves to normalize results among
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Figure 5. As for Fig. 4 but for the Cévennes case study zone.

zones with different magnitudes of precipitation and/or tem-

perature values, and thus with different magnitudes of CRPS.

For the monthly timescale, it is calculated from the interan-

nual distribution of values from the specific month consid-

ered over the archive period. For the annual timescale, it is

calculated from the interannual distribution of annual val-

ues over the archive period. The CRPSS thus expresses the

skill of each selection method with respect to the information

given by the climatology.

4 Performance assessment of the subselection

methods

This section presents the assessment of reconstructed precip-

itation and temperature fields using SANDHY and the three

subselection methods described in Sect. 3.3. As mentioned

above, it consists of two parts: (1) a detailed spatial assess-

ment with respect to Safran data over the 1959–2007 period,

and (2) a more focused temporal assessment over the 1900–

2000 period with respect to homogenized series.

4.1 Comparison to Safran

Figure 4 shows the precipitation and temperature interannual

regimes for the Finistère case study zone (see Fig. 2) from

Safran data as well as from the reconstructions based on

the three subselection methods. Raw outputs from SANDHY

(first domain selection) show a slight underestimation of pre-

cipitation in autumn and winter and a too flat seasonal cycle

of temperature, as already mentioned in Sect. 3.2. Both the

calendar and stepwise methods improve the temperature cy-
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Figure 6. Median of annual and seasonal temperature bias between Safran and the three subselection methods for the 1959–2007 period.

Red corresponds to an overestimation of the reconstructed temperature. Minimum bias of −1.0◦C for the first domain selection in summer

and maximum bias of 1.7◦C for the first domain selection in winter.

cle, while only the calendar selection slightly improves the

precipitation signal.

Figure 5 shows corresponding results for the Cévennes

case study zone. The first domain selection shows a bias in

the temperature signal similar to the other case study zone,

and strong biases in precipitation in the two intermediary

seasons. The latter is mainly due to the strong seasonal cy-

cle in this region (see Vidal et al., 2010a) and the fact that

SANDHY resamples analogue dates based on the tempera-

ture without considering the actual target season. As a conse-

quence, a target date in spring may have analogue dates from

autumn where precipitation is higher on average, leading to

the positive bias in reconstructed spring precipitation. Both

the calendar and the stepwise methods manage to drastically

reduce such precipitation biases and to correct the tempera-

ture cycle.

Figure 6 extends the above results to the whole of France

by showing the median annual and seasonal temperature bias

from the three subselection methods. When all methods have

a very low bias at the annual timescale, raw SANDHY out-

puts (first domain selection) show a strong positive (resp.

negative) bias in winter (resp. summer), more pronounced in

the northern part of the country. Both the calendar and step-

wise methods bring sizeable improvements in all seasons and

generally limits absolute biases under 0.5 ◦C except in winter

in the northern half of France.
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L. Caillouet et al.: Probabilistic downscaling of 20CR over France 643

First domain Calendar Stepwise

Year
S

pring
S

um
m

er
A

utum
n

W
inter

Bias (%)
 
20
 
10
 
0
 
−10
 
−20

Figure 7. As for Fig. 6, but for precipitation. Red corresponds to an underestimation for precipitation. Minimum bias of −34 % for the first

domain selection in autumn and maximum bias of 41 % for the first domain selection in spring.

Figure 7 shows in a similar way the precipitation bias

from the three subselection methods. At the annual scale, bi-

ases are generally around −10 % (with a minimum around

−20 % and a maximum around +5 %), with a slight overes-

timation in the Cévennes area and an underestimation else-

where, more pronounced around the Mediterranean. Raw

SANDHY outputs (first domain selection) show substantial

biases in all seasons, with an overestimation in spring around

the Cévennes area, the Atlantic and Mediterranean coasts and

an underestimation in summer (except in the Cévennes area),

autumn (except in the most eastern part of the country) and

winter (except along the south-western coast). These spatial

patterns are generally preserved by the stepwise selection but

with reduced intensity. The calendar selection shows a sim-

ilar spatial pattern in summer and winter but also more ho-

mogeneous biases over France in spring and autumn. This is

most noticeable in spring when the calendar selection mainly

shows absolute values under 10 %. The three methods show

the same spatial pattern for the annual biases. In autumn, the

calendar selection performs better than the stepwise selection

while the opposite is observed in summer. Finally, relatively

little improvement is proposed by the calendar and stepwise

methods in summer (except in the Cévennes area) and winter

(except along the Mediterranean coast).

The assessment of subselection methods in terms of in-

terannual variability of temperature is shown in Fig. 8. The

lowest rank correlation values are generally found in sum-

mer (especially in the eastern part of the country), followed
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Figure 8. Median of the annual and seasonal temperature rank correlation between Safran all subselection methods for the 1959–2007

period. Minimum value of 0.35 for the first domain selection (year) and maximum value of 0.97 for the stepwise selection (year).

by autumn. For the first domain selection, values may reach

0.9 only in some regions in both spring and winter. Using

the calendar selection does not provide any improvement and

even reduces correlations in summer. On the other hand, the

stepwise selection generates much higher correlations in all

seasons all over the country, with values in spring and winter

generally above 0.9, and a 0.1 to 0.2 improvement in summer

with respect to raw SANDHY outputs.

Figure 9 shows the rank correlations in precipitation be-

tween Safran and the three subselection methods. The high-

est correlations are found in winter with values above 0.9

along the Atlantic coast, the north-east and the Alps. This

spatial pattern – along with lower values around the Mediter-

ranean and in the Loire and Allier valleys on the lee side

of Massif Central mountains – may be found in all sea-

sons. Summer correlations are generally under 0.6, presum-

ably due to the prominence of convective events hardly ex-

plainable by large-scale predictors during this specific sea-

son. Correlations are very similar between the three methods,

with only slight local differences hardly detectable on Fig. 9.

The above comparisons were only based on median values

from the 25 realizations of each subselection method. Fig-

ure 10 now provides a probabilistic assessment of the quality

of the reconstructions at different timescales by comparing

the CRPSS (see Eq. 2) of raw SANDHY outputs (first do-

main selection) to the other subselection methods, for both

temperature and precipitation. Considering precipitation at

the daily timescale, CRPSS values are lower using the two

Clim. Past, 12, 635–662, 2016 www.clim-past.net/12/635/2016/
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Figure 9. As for Fig. 8, but for precipitation. Minimum value of 0.19 for the first domain selection in summer and maximum value of 0.92

for the first domain selection in winter.

subselection methods rather than the first domain selection.

Further investigations show that higher reliability values are

obtained when considering the CRPS decomposition (Hers-

bach, 2000). Indeed, the two subselection methods lead to

a more drastic selection of precipitation values than simply

taking the first domain selection, which is representative of

the 125 available values. As a consequence and because of

the slight annual precipitation bias (see Fig. 7), observed

values are more often outside the simulations range when

the calendar and stepwise selection are considered. At larger

timescales, the skill in reconstructing precipitation is gen-

erally slightly increased when using either the calendar or

stepwise selections. Note that the average skill for all three

methods is higher at the monthly timescale than at the daily

or annual scale.

The bottom row of Fig. 10 shows CRPSS results for tem-

perature. At the daily and monthly timescales, CRPSS val-

ues are strongly increased – and interestingly spatially ho-

mogenized over France – when using either the calendar and

stepwise selections with respect to the first domain selection.

The picture is rather different at the annual timescale, with

only the stepwise selection generating higher skill scores

without however homogenizing values spatially. The CRPSS

increase is much stronger for the stepwise selection at all

timescales, with an improvement of around 0.25 with respect

to the first domain selection at the daily timescale, and up

to 0.5 at the monthly timescale. It has to be noted that nega-
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Figure 10. Daily, monthly and annual precipitation and temperature CRPSS for the calendar and stepwise methods compared to the first

domain selection over the 1959–2007 period. One point for each climatically homogeneous zone mapped in Fig. 2.

tive CRPSS values are generated by the stepwise selection

for a few specific and spatially scattered zones at the an-

nual scale for temperature. A thorough investigation on these

zones showed that the recent warming trend observed every-

where else in France is actually simulated by the stepwise

selection while not being present on these Safran time series

(not shown). This presumably originates from the inhomo-

geneities in Safran data that have already been documented

by Vidal et al. (2010a) and that result from the evolution of

the density of surface observations analysed by the system.

Except for the CRPSS, this section mainly compared

the different subselection methods (First domain, Calendar

and Stepwise) to Safran at the monthly/seasonal timescales

where differences are the most prominent and improvements

first needed. A comparison of daily cumulative distribution

functions points to a similar overestimation of dry days what-

ever the method considered. Concerning daily temperatures,

conclusions are very similar to those drawn from monthly

temperatures (not shown).

4.2 Comparison to homogenized series

Figure 11 shows the annual and seasonal rank correlation

of temperature between homogenized series described in

Sect. 2.4 and all three subselection methods. Seasonal and

spatial patterns follow the same conclusions highlighted by

Fig. 8 over the 1959–2007 period. Correlations are indeed

improved in a similar way by using the stepwise selection

compared to the other two methods. Correlation values for

the stepwise selection are around 0.05 lower than the ones

with Safran data (1959–2007) plotted in Fig. 8 for all sea-

sons except winter.

The annual and seasonal rank correlation of precipita-

tion between homogenized series and the three subselection

methods are shown in Fig. 12. Correlations are very simi-

lar amongst the three methods, like they were with Safran as

a reference over a shorter and recent period (see Fig. 8). Val-

ues from all seasons are again slightly lower (around 0.05)

than the ones obtained with reference to Safran over the

1959–2007 period.

The evolution of the RMSE for both Safran time series and

the reconstructions with all three subselection methods, us-

ing the homogenized series as a reference, are presented in

Fig. 13. Monthly RMSE are first calculated and then aver-

aged yearly for each realization. To have an idea of the aver-

age daily error for precipitation, the RMSE in mm year−1 is

divided by the number of days in each corresponding year to

get an RMSE in mm day−1. Ribbons then show the range be-

tween minimum and maximum annual values of the 25 real-

izations from each method. Looking first at precipitation re-

sults, reconstruction errors are relatively constant over time,

with an average value around 1.3 mmday−1. Errors are how-

Clim. Past, 12, 635–662, 2016 www.clim-past.net/12/635/2016/
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Figure 11. Median of the annual and seasonal temperature rank correlation between homogenized series and all three subselection methods

for the 1900–2000 period. Minimum correlation of 0.58 for the first domain selection in winter and maximum correlation of 0.95 for the

stepwise selection in winter.

ever slightly higher before the 1940s. It is important to note

that Safran errors account for more than one-third of recon-

struction errors. These errors have been documented by Vidal

et al. (2010a) and stems mainly from the spatial interpolation

step of the analysis system, but also in part here from the tem-

poral inhomogeneities in Safran input data. Note that RMSE

values provided by Vidal et al. (2010a) and Quintana-Seguí

et al. (2008) were respectively computed at the daily and

hourly timescale and are thus not directly comparable to the

ones in Fig. 13 that are computed at the monthly timescale.

The stepwise selection generates slightly lower errors than

the two other methods.

The picture is quite different for temperature. Figure 13

indeed shows large differences between the three selection

methods, with an average RMSE of 1.3 ◦C for the first do-

main selection, 1.1 ◦C for the calendar selection, and 1.0 ◦C

for the stepwise selection. The latter even reaches 0.9 ◦C over

1959–2000 where Safran errors are around 0.8 ◦C. The step-

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Figure 12. As for Fig. 11 but for precipitation. Minimum correlation of 0.10 for the calendar selection in summer and maximum correlation

of 0.91 for the first domain selection in winter.

wise selection thus clearly outperforms the other two meth-

ods for temperature, with errors of the same order of magni-

tude as Safran itself.

5 Reconstruction examples

This section presents two examples of reconstructed precip-

itation and temperature through the stepwise selection. This

specific method has been selected for its higher performance

compared to the other subselection methods (see Sect. 4).

This section aims at providing qualitative insights on the re-

constructed outputs and at looking in more detail into fea-

tures along (1) the local-scale temporal dimension and (2) the

spatial dimension for a temporal snapshot. The focus is here

on the monthly and/or seasonal timescale at which recon-

structions are expected to deliver relevant additional infor-

mation.
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Figure 13. Temporal evolution of the precipitation and temperature RMSE for both Safran and the reconstructions with all three subselection

methods, with the homogenized series as a reference. Values are initially computed at the monthly timescale. See text for details.

5.1 Temporal reconstruction: time series at Paris

Montsouris

Paris Montsouris is a station with available data since 1873

with good quality data due to the low number of detected

breaks over the years (Moisselin et al., 2002). This station

has for example been used by Slonosky (2002) to reconstruct

3 centuries of precipitation data in Paris blended from dif-

ferent sources. Homogenized temperature and precipitation

data from this station have also been used to perform climate

variability assessments (Dieppois et al., 2013; Lüdecke et al.,

2013). It is included in the list of homogenized stations de-

scribed in Sect. 2.4 and used in Sect. 4.2.

Figure 14 compares annual and seasonal evolution of

temperature from the Paris Montsouris homogenized series,

Safran data and the range of reconstructed series from the

stepwise selection. The variability is very satisfactorily sim-

ulated at the annual timescale, in coherence with Figs. 8 and

11. The uncertainty in reconstructions seems however un-

derestimated, with observations being too often out of the

range of the 25 realizations. Winter temperature reconstruc-

tions moreover suffer from a hot bias, leading to a system-

atic overestimation of temperature in cold years. However,

the recent trend in spring temperature is well captured by the

reconstruction method.

Some more information may be drawn from examining

specific features of the seasonal time series. Some extremely

cold seasons are reasonably well simulated, like winter and

spring 1963 (see e.g. Greatbatch et al., 2015). The temper-

ature for other events like the extremely cold winter 1879–

1880, and especially December 1879 (Angot, 1881) are how-

ever largely overestimated with, for example, an overestima-

tion of approximately 4 ◦C in December 1879. In this par-

ticular case, this may be due to the peculiar convergence of

meteorological features (snow cover feedback, temperature

inversion, etc., see U., 1884; Angot, 1881) that may hardly

be captured by 20CR and/or our downscaling method. Ex-

tremely hot seasons are generally well simulated, especially

recent summers like 1976 (Brochet, 1977) or 2003 (Trigo

et al., 2005), but also much older events like spring 1893

(Plumandon, 1893).

Figure 15 shows the corresponding evolution of precip-

itation for Paris Montsouris. As for temperature, the inter-

annual variability is satisfactorily simulated at the annual

timescale, in coherence with Figs. 9 and 12. The main differ-

ence lies in the uncertainty range which is much higher than

for temperature, leading to a quite reliable reconstructed en-

semble. The reconstruction method has unsurprisingly diffi-

culties in simulating the extreme wet autumn of 1896 (Mas-

cart, 1898). Nevertheless, other extreme events like the dry

summer 1949 (Sanson, 1950) or the exceptionally dry year

of 1921 (Duband et al., 2004) are well simulated, even if ob-

served values are consistently overestimated considering the

median of the simulations.

For both precipitation and temperature, springs and sum-

mers around year 2000 are underestimated in comparison to

homogenized time series. This specific discrepancy may be

related to soil-atmosphere retroactions which are not taken

into account in the one-way downscaling approach consid-

ered.

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Figure 14. Paris Montsouris temperature homogenized time series, corresponding Safran data and reconstructed series from the stepwise

selection at the annual and seasonal timescales over the 1871–2012 time period. Grey and blue ribbons define the range and the interquartile

range, respectively, of values from all 25 realizations from the stepwise selection. Note the different scales for the y axes.

5.2 Spatial reconstruction: December 1909 precipitation

over France

December 1909 precipitation over France has here been cho-

sen as an example reconstruction based on its hydrologi-

cal and socio-economic consequences. Indeed, high (but not

extreme) precipitation amounts fell in this particular month

over the north-eastern part of France (Angot, 1911). At the

end the month, soils were saturated and heavy rain in Jan-

uary 1910, combined with frozen grounds and melting snow,

led to widespread floods in the region (Lang et al., 2013).

December 1909 thus appears as a key factor for understand-

ing the early 1910 floods (Schneider, 1997), and especially

Clim. Past, 12, 635–662, 2016 www.clim-past.net/12/635/2016/
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Figure 15. As for Fig. 14 but for precipitation.

the most studied 100-year flood of the Seine in Paris (see e.g.

Marti and Lepelletier, 1997) but also other important floods

on the Rhine (Martin et al., 2011) or Rhône (Pardé, 1925)

tributaries.

Figure 16 shows the map of December 1909 precipitation

adapted from Angot (1911, Pl. III) and compiled with obser-

vations available at that time. Heavy and unusual amounts

have been recorded over several mountain ranges, (Mor-

van, Southern Vosges, Jura and Northern French Alps). The

map of observations currently available in the Météo-France

database is shown in the top row of Fig. 17 with the same

colour scale. The Seine basin is well covered with obser-

vations, following the Météo-France data rescue efforts for

understanding the flood in Paris (see the “extreme rainfall”

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Figure 16. Map of December 1909 precipitation, adapted from An-

got (1911).

database and website1). However, several regions appear as

void of observations: Picardie (north), the main part of the

Loire basin (centre), Jura mountain range (east), most of the

Alps, and Provence (south-east).

Rows 2 to 4 in Fig. 17 show maps compiling local min-

imum, median and maximum of the 25-member ensemble

monthly precipitation amounts for December 1909 from the

stepwise selection. Spatial patterns are in very good agree-

ment with the observations from both Fig. 16 and the first

row of Fig. 17. Observed values are very close or slightly

lower than median simulated values, which demonstrates the

small bias of the method. The last three maps in Fig. 17 also

confirm the occurrence of large rainfall amounts in the areas

void of currently available observations, especially the Jura

mountain range where an exceptional flooding of the town

of Besançon was recorded in January 1910 (Allard, 1910;

Boudou et al., 2016).

6 Discussion

6.1 Homogeneity and uncertainty of 20CR predictors

This section aims at summarizing literature findings about

potential inhomogeneities of 20CR predictors and associ-

ated uncertainties that may directly affect downscaled recon-

structed products assessed in Sect. 4.

Compo et al. (2011) compared 20CR to other reanalyses

like ERA-40 (Uppala et al., 2005), ERA-Interim (Dee et al.,

2011) or NCEP/NCAR (Kalnay et al., 1996) and demon-

strated its good quality on common recent periods. However,

this quality should actually be lower in the first part of the

simulated period due to the lower overall density of assimi-

lated SLP data (Compo et al., 2010). Ferguson and Villarini

1http://pluiesextremes.meteo.fr/1910-01-18/

crue-historique-de-la-seine.html
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Figure 17. December 1909 precipitation. Top: observations cur-

rently available from the Météo-France database. Below: minimum,

median and maximum monthly precipitation from the 25 realiza-

tions of the stepwise selection. Maximum values from observations,

minimal, median and maximum simulations of 520, 409, 533 and

625 mm respectively.
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(2014) and Lee and Biasutti (2014) showed that such im-

pacts are rather limited on surface variables over Western

Europe thanks to the good early data coverage in ISPD (see

Yin et al., 2008, Appendix C). This notably increases our

confidence on the T used as an additional predictor in the

stepwise subselection method. However, no comprehensive

study focused on upper-air variables such as the ones used

as predictors by the original SANDHY downscaling method

like geopotential heights. Several authors also looked in de-

tail into the homogeneity of different indices of storminess

in Northern Europe, with features not very distant from the

shape of the 1000 hPa geopotential height used as predic-

tor from SANDHY. Krueger et al. (2013) found that extreme

geostrophic wind speed over the North Atlantic suffers from

inhomogeneities that are likely due to the increasing number

of observations assimilated into 20CR over time. Wang et al.

(2013) also found some inhomogeneities in cyclone activity

in the 20CR ensemble mean before the 1930s in Northern Eu-

rope (see also the discussions in Krueger et al., 2013; Wang

et al., 2014). All studies mentioned above are in accordance

with our findings in Figs. 13 to 15 which show systematic

biases before the 1930s/1940s.

The 20CR inhomogeneities discussed in the references

above partly relate to using the ensemble mean as in the

present study. Wang et al. (2013) for example showed that

the evolution of cyclone activity over the Northern Hemi-

sphere is dramatically different when considering the en-

semble mean or individual members, with the latter giving

much more homogeneous results over the twentieth cen-

tury. Krueger et al. (2013) also found that the spread be-

tween ensemble member extreme geostrophic wind speed in-

creases before the 1940s in the North Atlantic. These find-

ings strongly suggest that downscaling studies should ben-

efit from using predictors from individual 20CR members

instead of the ensemble mean in order to propagate the re-

analysis uncertainty and hopefully reduce systematic biases

in the late nineteenth–early twentieth century. However, do-

ing so would first require all specific predictor variables to be

available from individual members. In the case of SANDHY,

one should necessarily use a degraded version as the vertical

velocity at 850 hPa is not available. Second, the computa-

tion time would therefore dramatically increase compared to

downscaling the ensemble mean only.

6.2 Other potential sources of reconstruction

uncertainty

The assessment of reconstructions in the beginning of the tar-

get period presented in Sects. 4.2 and 5.1 may be influenced

by other factors. For example, homogenized series taken in

these sections as long-term references may suffer from issues

related to the homogenization method used. Indeed, Mois-

selin et al. (2002) pointed out inconsistencies in the evolu-

tion of linear precipitation trends due to the homogenization

performed independently inside different regional adminis-

trative divisions. New data sets of homogenized series are

being developed by Météo-France in order to remove such

inconsistencies but are currently limited to the second part of

the twentieth century (Gibelin et al., 2014).

Besides such issues, the discrepancies in reconstructed and

observed precipitation in the late nineteenth century (e.g. in

Figs. 13 to 15) might also be due to peculiar teleconnec-

tions with the Tropics (Bichet et al., 2014) that may weaken

the temporal transferability of the SANDHY downscaling

method.

6.3 Choosing the appropriate reconstruction method

Section 4 compared three different post-processing methods

of SANDHY outputs. The paragraphs below attempt to pro-

vide some advice in using one or another method in different

downscaling contexts.

Section 4 showed that the use of either the calendar and

stepwise methods strongly reduces precipitation and temper-

ature biases in comparison to the first domain selection (raw

SANDHY outputs). Even if the stepwise selection shows bet-

ter performances for temperature reconstructions – and espe-

cially in terms of rank correlations or RMSE – the calendar

selection may be retained in specific cases. First, if one is in-

terested in simulating precipitation only, the calendar selec-

tion offers a much easier implementation, without the need to

resort to additional predictors (T and SST). This may for ex-

ample be the case in the context of quantitative precipitation

forecast for which SANDHY has been originally developed.

Nevertheless, the stepwise selection appears much more

suitable and adapted to contexts where seasons are exposed

to potential shifts, like in long-term historical reconstructions

as here or in climate change impact studies. Indeed, the se-

lection of analogue days may in this case closely follow the

decadal to multi-decadal variability as well as the anthro-

pogenic warming signal carried out by both the T and the

SST.

6.4 Using the reconstruction data sets

As mentioned in Sect. 3.2, analogue days are randomly com-

bined from one climatically homogeneous zone to the next

for all three subselection methods. This specific feature may

lead to a lack of spatial continuity in the associated meteoro-

logical time series. For local studies (e.g. a specific climati-

cally homogeneous zone), precipitation and temperature data

can be used at a daily timescale. For regional to national stud-

ies, using a monthly scale like in Fig. 17 balances the random

sampling effect observed at the daily scale. On-going works

on different and very promising methods will allow resam-

pling local ensemble members to derive an ensemble of spa-

tially coherent daily precipitation and temperature fields.

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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7 Conclusions

This paper describes a daily high-resolution reconstruction of

precipitation and temperature fields since 1871 over France

through a statistical downscaling of the Twentieth Century

Reanalysis. The motivation for this study comes from the

lack of available surface observations before the 1950s and

the poor understanding of local-scale climate variability from

the late nineteenth century onwards.

The downscaling of the 20CR with SANDHY provides

a daily set of 125 analogue dates for each day in the 1871–

2012 period, over 608 climatically homogeneous zones

paving France. The ensemble of analogue dates is then con-

verted into probabilistic meteorological daily fields. A warm

bias in winter and a cold bias in summer are identified over

France in SANDHY reconstructed series. Additionally, wet

and dry biases in intermediary seasons are identified for re-

gions with a high seasonal variability. Post-processing ap-

proaches have been developed with the aim of keeping the

structure of the SANDHY method unchanged while reduc-

ing those seasonal biases. Two analogue subselection meth-

ods are therefore developed. The stepwise selection adds two

new analogy levels with a first selection of 80 analogues

based on the ERSST SST similarity and a second selection

of 25 analogues based on the 20CR T similarity. The cal-

endar selection selects the 25 analogues closest to the target

calendar day. These two approaches are then compared to the

25 analogues derived from the first predictor domain consid-

ered as representative of the 125 analogues from SANDHY

outputs.

A performance assessment using both dependent and in-

dependent data showed an improvement in terms of precipi-

tation and temperature biases, mean errors and rank correla-

tions using both subselection approaches with respect to the

first domain selection. The lower quality of reconstructions

identified before the 1930s might be explained by potential

inhomogeneities of 20CR predictors. Few differences are ob-

served between the two subselection approaches considering

precipitation data. However, the stepwise selection leads to

higher rank correlations and lower mean errors between re-

constructed and observed temperatures. Even without assim-

ilating T observations, 20CR outputs obviously provide quite

useful information on this variable. Examples of a temporal

and spatial reconstruction outputs from the stepwise selec-

tion showed a persistent warm bias in winter and some issues

to reconstruct seasonal extreme values, but also the overall

good quality of the reconstructions.

The two approaches developed in this study can be ap-

plied in different contexts: the calendar selection is an eas-

ily applicable method ideal in a quantitative precipitation

forecast context whereas the stepwise selection is more suit-

able for historical reconstructions or climate change studies

with potential season shifts. The probabilistic downscaling

of 20CR will constitute a perfect framework for assessing

the recent observed events but also future events projected by

climate change impact studies and putting them in a histori-

cal perspective. More specifically, the coupling between the

SANDHY probabilistic downscaling method and the step-

wise subselection – called SANDHY-SUB from now on –

may be used in various contexts, such as past hydrological

studies or specific reconstructions of meteorological events

and will improve the knowledge of the French local climate

over the last 140 years.

The reconstructed meteorological fields derived from the

modelling chain 20CR-SANDHY-SUB will now serve as

forcings for hydrological models to obtain daily probabilistic

river flow reconstructed series since 1871 for a large number

of near-natural catchments in France. Such a hydrometeo-

rological reconstruction will benefit from the inter-variable

consistency inherently provided by the analogue approach

and from the improvement brought by the compromises

across temperature and precipitation reconstruction sought

after in the present work. It will first be used to study his-

torical drought and low-flow events that strongly depend on

both temperature – through evapotranspiration processes –

and precipitation.

Clim. Past, 12, 635–662, 2016 www.clim-past.net/12/635/2016/
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Appendix A: Outline of the different downscaling

methods

The four analogy levels describing the SANDHY method in

Sect. 3.1 are illustrated in Fig. A1. To reconstruct precipi-

tation over a climatically homogeneous zone for a specific

target date, a selection of 25 analogues is provided through

analogue subselections. For all these steps, an atmospheric

reanalysis provides the corresponding target date predictor

and the meteorological archive predictor where the analogue

situations are searched for. The only step requiring an anal-

ogy domain definition – where the analogy is looked for –

is the one involving geopotential height predictors. The local

optimization process providing this definition is described in

detail in Radanovics et al. (2013).

Figure A1. Synthetic diagram showing the sequence of analogy steps in the SANDHY method to reconstruct precipitation and temperature

over a climatically homogeneous zone for a specific target date.

The overall process described in Sect. 3 is illustrated in

Fig. A2. The “Simulation with SANDHY” process described

in Fig. A1 is applied five times using five different geopoten-

tial height domain definitions and 20CR as inputs. The First

domain selection, Calendar selection and Stepwise selection

are then derived using the output of the five simulations.

www.clim-past.net/12/635/2016/ Clim. Past, 12, 635–662, 2016
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Figure A2. Synthetic diagram showing the sequence of steps for reconstructing precipitation and temperature over a climatically homoge-

neous zone for a specific target date using the three subselection methods described in the main text.
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Appendix B: Choice of the SST predictor spatial

domain for the stepwise selection

The stepwise subselection method as described in Sect. 3.3.3

includes an analogy step based on SST similarity. As men-

tioned above, for sake of parsimony, a single SST grid

point is considered for computing the similarity of analogue

dates. The most informative point for simulating precipita-

tion has therefore to be selected. Absolute values of sea-

sonal rank correlations between different SST grid points

from the NOAA ERSST (Smith et al., 2008) and precipi-

tation from all Safran climatically homogeneous zones (see

Fig. 2) have been computed over the 1959–2007 period. As

shown in Fig. B1, the median correlation is highest in au-

tumn. The spatial pattern of correlations is moreover quite

different from one season to another, making the choice of

the most informative grid point difficult.

Spring Summer Autumn Winter

40° N

45° N

50° N

55° N

10° W 0° 0° E 10° W 0° 0° E 10° W 0° 0° E 10° W 0° 0° E

0.1 0.2 0.3 0.4
Corr

Figure B1. Median of the absolute values of the rank correlations between SST and precipitation from the 608 climatically homogeneous

zones over the 1959–2007 period. Selected grid cells with high correlations are highlighted in red.
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Figure B2. RMSE skill scores in precipitation and temperature for individual climatically homogeneous zones over the 1959–2007 period,

calculated for a subselection of 25 analogue dates based on SST similarity on either the Atlantic and Mediterranean grid point, with the first

domain selection as benchmark reference.

Two grid points close to France – in the Atlantic and the

Mediterranean, respectively, see Fig. B1 – and with reason-

ably high correlations for all seasons have been selected for

further investigation. A subselection of 25 analogue dates

from the 125 analogue dates provided by SANDHY and

based on SST similarity on each of the two points have been

performed over the 1959–2007 period. Figure B2 displays

the daily RMSE skill score in both precipitation and tem-

perature for this subselection with respect to the first do-

main selection. It compares the subselection using the two

points for each climatically homogeneous zone. It shows that

SST from both grid points are informative additional predic-

tors by displaying skill scores that are mainly positive over

France. Moreover, the Atlantic and the Mediterranean grid

points show similar skill scores. The final choice towards the

Atlantic grid point (4◦W, 46◦ N) was finally made follow-

ing conclusions from van der Ent and Savenije (2013) who

demonstrated that the Atlantic Ocean has a larger influence

area over France.
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Appendix C: Optimization of the number of

analogues for the calendar and stepwise selection

The number of analogues to retain for the calendar and step-

wise methods described in Sect. 3.3 is optimized with re-

spect to an RMSE skill score taking the first domain subse-

lection as reference. RMSEs are calculated on monthly time

series for each of the 608 climatically homogeneous zones

(see Fig. 2) in relation to corresponding Safran data over

the 1959–2007 period. They are furthermore calculated for

individual realizations from each subselection method, and

only the median is considered in the skill score. The skill

score thus gives a map of the improvement of a subselection

method with N2 (resp. N1–N2) analogues for the calendar

(resp. stepwise) selection compared to the first domain selec-

tion with 25 analogues.

A detailed sensitivity analysis was performed with N2

varying from 125 – the number of analogues given by

SANDHY, corresponding to no subselection – to 5. For the

stepwise selection, N1 was considered to vary from 125 to

N2. The aim here is then to find out what N2 (calendar se-

lection) or N1–N2 (stepwise selection) leads to the highest

improvement on average over France. For the calendar selec-

tion, each N2 was associated with a median rank for the skill

score over the 608 climatically homogeneous zones. A stan-

dard deviation in rank was also computed to get an idea of

the spatial variation in improvement over France. Similarly,

for the stepwise selection, each N1–N2 was associated with

a median rank and a standard deviation in rank for the skill

score over France. Finally, skill scores and ranks are com-

puted in parallel for precipitation and temperature.

Figure C1 summarizes the results, with dark grey rectan-

gles highlighting N2 or N1–N2 with best ranks for both

precipitation and temperature, i.e. where the best compro-

mise for two variables is to be found. For the calendar se-

lection, good results are obtained with N2 between 15 and

40, and for the stepwise selection, N1 should be between

40 and 80, and N2 between 10 and 25. As no specific op-

timal combination clearly arises within these domains, the

choice was made to select N2= 25 for the calendar selec-

tion and N1= 80 and N2= 25 for the stepwise selection.

This choice has the advantage of generating an equal number

of final analogue dates across the 3 subselection methods and

the original single-domain SANDHY method, thus prevent-

ing potential biases in probabilistic scores like the CRPS (see

Eq. 1 and Fig. 10).
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Figure C1. Normalized median ranks over France of RMSE skill

scores and normalized standard deviations of these ranks for each

N2 (calendar selection, left) and each N1–N2 (stepwise selection,

right), and for precipitation (top) and temperature (bottom). Light

grey rectangles highlight ranks lower than 0.5 independently for

precipitation and temperature. Dark grey rectangles highlight ranks

lower than 0.5 for both precipitation and temperature.
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