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Abstract. We analyse the variability of the probability distri-

bution of daily wind speed in wintertime over Northern and

Central Europe in a series of global and regional climate sim-

ulations covering the last centuries, and in reanalysis prod-

ucts covering approximately the last 60 years. The focus of

the study lies on identifying the link of the variations in the

wind speed distribution to the regional near-surface tempera-

ture, to the meridional temperature gradient and to the North

Atlantic Oscillation.

Our main result is that the link between the daily wind dis-

tribution and the regional climate drivers is strongly model

dependent. The global models tend to behave similarly, al-

though they show some discrepancies. The two regional

models also tend to behave similarly to each other, but

surprisingly the results derived from each regional model

strongly deviates from the results derived from its driv-

ing global model. In addition, considering multi-centennial

timescales, we find in two global simulations a long-term ten-

dency for the probability distribution of daily wind speed to

widen through the last centuries. The cause for this widen-

ing is likely the effect of the deforestation prescribed in these

simulations.

We conclude that no clear systematic relationship between

the mean temperature, the temperature gradient and/or the

North Atlantic Oscillation, with the daily wind speed statis-

tics can be inferred from these simulations. The understand-

ing of past and future changes in the distribution of wind

speeds, and thus of wind speed extremes, will require a de-

tailed analysis of the representation of the interaction be-

tween large-scale and small-scale dynamics.

1 Introduction

Anthropogenic climate change is expected to cause an in-

crease of various types of extreme events, such as heatwaves,

but its effects on extreme winds is less clear. Section 3 of

the Intergovernmental Panel on Climate Change (IPCC) spe-

cial report “Managing the Risks of Extreme Events and Dis-

asters to Advance Climate Change Adaptation” states that

there is only low confidence in projections of changes in ex-

treme winds (Seneviratne et al., 2012). One way to reduce

this uncertainty is to compare the output of paleoclimate

simulations over the past centuries with empirical evidence

of past wind conditions, for instance derived from histori-

cal evidence or natural proxies (Costas, 2013). While there

is still a dearth of proxy records reflecting past changes in

wind speed, new types of proxy records are being devel-

oped (Costas, 2013). A precondition for this comparison is

to test whether different climate models provide a consis-

tent picture of past changes in wind speed distribution. In

this study we analyse several simulations with global and re-

gional models and investigate to what extent they provide a

consistent picture of the relationship between the variations

in the wind speed distribution and large-scale drivers. We fo-

cus on Northern Europe in wintertime as this region and sea-

son are particularly prone to storminess.
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The hypotheses put forward to explain changes in stormi-

ness are related to the general physical consideration that

warmer periods provide more humidity and consequently

more (latent) energy for possible storms. However, warmer

periods are generally characterized by a weaker meridional

temperature gradient due to the stronger warming of the high

latitudes with respect to the tropics, and thus a weaker baro-

clinicity, which should lead to weaker or less storms (Li and

Woollings, 2014; Yin, 2005). In addition, the North Atlantic

Oscillation (NAO), as the main pattern of troposphere dy-

namics over the North Atlantic–European sector, is also re-

lated to the interannual variability of seasonal mean winds

in this region. It is thus very plausible that the NAO is also

involved in the variations of the distribution of daily wind

speeds. For example, Wang et al. (2011) stated that NAO

variations show a relationship with the 99th percentile of

wind speed. The NAO itself could also be related to changes

in European near-surface winter temperature (Rutgersson

et al., 2015). In this regard, scenario simulations indicate a

contradicting tendency of the NAO in a warmer future, de-

pending on whether it is defined from the sea-level pressure

(SLP) gradient or from the geopotential height at 500 mbar

(Z500). Gillett and Fyfe (2013) showed that, in climate sim-

ulations, the meridional SLP gradient will tend to become

steeper polewards. On the other hand Cattiaux and Cassou

(2013) also found a positive trend of the SLP gradient but

found a negative trend of the Z500 gradient. Our study fo-

cuses on surface winds, which are rather influenced by SLP

variations, and therefore we focus on the link between SLP

and daily wind distribution. Regarding the climate of the past

centuries, the link between the NAO and external climate

forcing is, however, unclear in climate simulations (Gómez-

Navarro and Zorita, 2013).

Thus, for Northern Europe, from the dynamical point of

view it is not clear how the distribution of wind speed would

respond to changes in temperature. The analysis of long-term

trends in wind extremes and storminess in the observational

record has so far yielded inconclusive results, probably due

to the difficulty of constructing homogeneous series of wind

speed, because of e.g. station relocation or changing measur-

ing techniques. Furthermore, the covered period might be too

short to realistically demonstrate trends in the rarely occur-

ring extreme wind events. On the other hand, reanalysis prod-

ucts covering long periods (e.g. the 20th Century Reanalysis

20CR; Compo et al., 2011) may be inhomogeneous due to

the assimilation of different types of data through the sim-

ulated period. There has been a considerable debate on the

storminess trends in long-term reanalysis data sets (Brönni-

mann et al., 2012; Krueger et al., 2013; Wang et al., 2013).

Krueger et al. (2013) stated that before 1950 the time series

of 20CR and observational mean sea level pressure are not

consistent. They suggested that the increasing density of sta-

tion data leads to these inconsistencies. Wang et al. (2013),

on the other hand, argued that new measurement errors and

changing sampling frequencies would produce these inho-

mogeneities. This debate has also been discussed by Feser

et al. (2015), who concluded that the analysis of long-term

reanalysis data, affected by changing station density, should

be conducted with caution.

The analysis of the climate of the past centuries can shed

light on the question of whether external climate forcing has

an effect on the intensity or frequency of wind extremes

and whether or not the temperature variability is linked to

variability in statistics of wind speeds. Unfortunately, proxy-

based climate reconstructions in general still do not provide

information about extreme wind statistics in the past, except

for intense tropical cyclones (e.g. Donnelly and Woodruff,

2007). However, new types of proxy data that may record

past wind speed are being retrieved. For instance, coastal

dunes at the North Sea coast contain layered structures that

can be analysed by ground-penetrating radar. The layered

structures contain information about grain size distribution

and, indirectly, about intensity or frequency of high winds

in the past (Costas, 2013). These types of proxies can po-

tentially be used to test the skill of climate models to sim-

ulate the relationships between extreme wind statistics and

external forcing or between extreme wind statistics and low-

frequency variability of the large-scale surface climate.

The evolution of temperatures of the past millennium

in this region, as reconstructed from proxy and long-

instrumental records, exhibits a generally warm period in

the early centuries (the Medieval Warm Period) and gener-

ally colder centuries around 1700 AD (the Little Ice Age),

with the subsequent warming leading to the current warm

period (Luterbacher et al., 2004; PAGES 2k, 2013; Esper

et al., 2014). This alternation of warm and cold periods

has been likely caused by external climate forcings (Hunt,

2006; Fernandez-Donado et al., 2013), in particular the re-

cent warm period and the Little Ice Age. Therefore this pe-

riod provides a suitable test of whether the variability of ex-

treme wind statistics may follow a similar alternation.

Climate simulations had been previously used to address

the connection between winds and temperatures in the past

(e.g. Fischer-Bruns et al., 2005; Schimanke et al., 2012).

Fischer-Bruns et al. (2005) analysed two historical climate

simulations with the global climate model ECHO-G cover-

ing the period from 1550 to 1990 AD. These authors found

that storminess and large-scale temperature variations were

mostly decoupled in these simulations. However, they re-

ported a connection between storm track variability and tem-

perature over the North Atlantic for one of the two simu-

lations in two periods with extremely low external forcing,

namely the Late Maunder Minimum (1675–1710 AD) and

the Dalton Minimum (1790–1840 AD). They found no evi-

dence of a linear co-variation between the number of extra-

tropical storms and temperature variations in the simulations

analysed.

The spatial resolution of global climate models may not

be adequate to realistically represent extreme events, espe-

cially over regions with complex coastlines. In this respect,
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Table 1. Overview of the analysed simulations/reanalysis and their simulation acronyms, underlying atmosphere and ocean models, boundary

forcings (only for regional data sets) as well as the spatial resolution of the atmosphere models and time periods, as used for the analysis.

Simulation Atmosphere Ocean Boundary atm. spatial res. Vegetation Period

GCM ECHO-G ECHAM4 HOPE-G 3.75◦ constant 1001–1990

ECHAM5 ECHAM5 MPI-OM 3.75◦ time dependent 850–2005

ECHAM6 ECHAM6 MPI-OM 1.875◦ time dependent 850–2005

RCM MM5 MM5 ECHO-G 0.5◦ constant 1001–1990

CCLM CCLM ECHAM5 0.5◦ constant 1655–1999

Reanalysis coastDat2 CCLM∗ NCEP 0.22◦ constant 1948–2012

NCEP 2.5◦ constant 1948–2012

∗ with spectral nudging

regional climate models, driven by the fields simulated by

global climate models, should provide a better representa-

tion of small-scale processes, topographic influences and of

the land-sea contrasts (Gómez-Navarro et al., 2015b; Hall,

2014; Gómez-Navarro et al., 2013), and thus they should be

better suited for the simulation of extreme events. Neverthe-

less, despite the fact that regional models provide an added

value (Feser et al., 2011) they are also bound by the circu-

lation biases of the driving global climate model simulations

(Hall, 2014).

In this study we present an analysis of the variability of

daily wind speed statistics over Northern Europe over the

past centuries as simulated by different regional and global

climate models. We mainly focus on the consistency among

the different models in simulating the relationship between

large-scale drivers and the statistics of daily wind speed with

the goal of identifying robust patterns across models that can

be later tested with proxy reconstructions. These results are

also compared to a similar analysis of reanalysis data sets.

Although these data sets cover a shorter period and, there-

fore, they cannot properly capture the decadal and multi-

decadal variability, they at least offer a possibility to ground

truth the results obtained from free-running climate simula-

tions.

This paper is structured as follows: Sect. 2 describes

the analysed data sets separated into climate simulations of

global circulation models, regional circulation models and

reanalysis products. Section 3 defines our area of interest

and outlines the applied methods and definitions. Section 4

presents the analysis of the relationship of large-scale drivers

and wind speed variance, as well as the comparison of the

evolution of the wind speed variance in the millennium sim-

ulations. A discussion of the results and conclusions closes

the manuscript.

2 Data

Our study focuses on the statistical relationship between spa-

tial and temporal mean temperature/pressure and daily wind

statistics. We use monthly mean 2 m temperature (T2M) val-

ues, monthly mean values of mean sea level pressure (MSLP)

and daily mean 10 m wind speed (WS) for our analysis.

These values are taken from a set of five simulations per-

formed with five different models, with different spatial and

temporal resolution. These models include global as well as

regional models. Additionally, we analyse one global reanal-

ysis and one regional reanalysis. Table 1 summarizes the in-

formation about spatial and temporal resolution and time pe-

riods of the data sets used. Figure 1 shows the land-sea-masks

for all data sets. For the regional data sets the whole available

domain is visible and the study area is marked by a red rect-

angle. In the following we introduce the different data sets in

more detail and describe their main differences.

2.1 Global climate model simulations

The coupled GCM ECHAM4-HOPE-G, also denoted in

previous literature as ECHO-G (Legutke and Voss, 1999)

consists of the atmospheric component (AGCM) ECHAM4

(Roeckner et al., 1996) and the ocean-ice component

(OGCM) HOPE-G (Wolff et al., 1997). Both sub-models

have been developed at the Max Planck Institute for Me-

teorology (MPI-M) in Hamburg. The ECHO-G millennium

simulation (1001–1990 AD) is part of an ensemble of sim-

ulations conducted by the Helmholtz-Zentrum Geesthacht

(HZG). The simulation is forced with changes in total solar

irradiance, the dimming effect of volcanic eruptions on so-

lar irradiance, and changes in greenhouse gases (CO2, NO2,

CH4). The simulation was started with a cold ocean initial

condition taken from a previous simulation corresponding to

a situation representative of the Little Ice Age (Hünicke et al.,

2011; von Storch et al., 2004; Zorita et al., 2004).

The coupled GCM ECHAM5/MPI-OM consists of the at-

mospheric component ECHAM5 (successor of ECHAM4,

Roeckner et al., 2003) and the ocean and sea-ice compo-

nent MPI-OM (Marsland et al., 2003). The analysed simu-

lation ECHAM5/MPI-OM (850–2005 AD) is part of an en-

semble of simulations conducted by the Max Planck Insti-

tute for Meteorology in Hamburg and will hereafter simply

be named ECHAM5. It is driven by changes in solar irradi-

ance (Bard et al., 2000), volcanic eruptions (Crowley et al.,

www.clim-past.net/12/317/2016/ Clim. Past, 12, 317–338, 2016
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(a) CCLM (b) ECHAM5

(c) MM5

(e) ECHAM6

(f) coastDat2 (g) NCEP

(d) ECHO-G

Figure 1. Land-Sea-Masks of the analysed simulations. Figures regarding global data sets (ECHAM5, ECHOG, ECHAM6, NCEP) only

show the investigation area. Figures concerning regional data sets (CCLM, MM5, coastDat2) include the Land-Sea-Mask for the whole

simulation domain and the investigation area is shown with a red triangle.

2008), changes in Earth’s orbital parameters, greenhouse gas

and aerosol forcings. Additionally, land cover changes (Pon-

gratz et al., 2008) are considered in this simulation. More

details about the simulation setup and forcings can be found

in Jungclaus et al. (2010).

Clim. Past, 12, 317–338, 2016 www.clim-past.net/12/317/2016/
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Figure 2. The NAO pattern exemplarily shown for ECHAM6 as

the 1. EOF of mean-sea-level-pressure (MSLP). The corresponding

principal components are used as the NAO index.

We also include a climate simulation with the model

MPI-ESM with the P configuration (MPI-ESM-P, Giorgetta

et al., 2013), which consist of the successor of ECHAM5

and the newest version of ECHAM, named ECHAM6 (850–

2005 AD). ECHAM6/MPI-OM was chosen due to its higher

spatial resolution similar to the resolution of the RCM sim-

ulations analysed, but also for being the next generation

of the previous versions of ECHAM4 and ECHAM5. The

main differences between ECHAM6 and ECHAM5 are the

higher vertical resolution (i.e., 47 instead of 31 vertical lev-

els), increased horizontal resolution, the incorporation of

new aerosol and surface albedo climatology and the use of a

new shortwave radiation scheme in ECHAM6 (Crueger et al.,

2013). The MPI-ESM-P simulation is part of the Climate

Model Intercomparsion Project version 5 (CMIP5, Taylor

et al., 2012). The boundary layer and turbulence parametriza-

tion in ECHAM6 is based on the eddy diffusivity/viscosity

approach (Stevens et al., 2013). The model was driven by

changes in greenhouse gases and spectrally resolved solar ir-

radiance, volcanic activity (Crowley et al., 2008), changes

in Earth’s orbital parameters and land use changes (Pongratz

et al., 2008).

We outlined above the key-properties of the analysed

global simulations. However, the differences in the external

forcings used to drive the simulations play a crucial role in

our analysis. Hence, we additionally provide a comparison

of these differences. An overview can be found in Table 2.

A more comprehensive comparison between ECHO-G and

ECHAM5 was given by (Fernandez-Donado et al., 2013),

which we here summarize and extend for ECHAM6.

While all three simulations include total solar irradiance

(TSI), greenhouse gas (GHG) and volcanic forcing as ex-

ternal forcings, only ECHAM5 and ECHAM6 incorporate

also anthropogenic aerosols and land use changes. There are

various estimations of past TSI, which can be broadly di-

vided into a strong (S; > 0.2 % TSI change since the Late

Maunder Minimum (LMM)) and a weak (s; < 0.1 % TSI

Table 2. Overview of the GCM forcings. The forcings are abbre-

viated as follows: S – strong solar forcing (> 0.2 % change since

LMM); s – weak solar forcing (< 0.1 % change since LMM); G –

greenhouse gas; V – volcanic; O – orbital; L – land-use change. The

last column gives the references describing the experiments.

GCM Forcings Reference

ECHO-G SGV Zorita et al. (2004)

ECHAM5 SGVOL Jungclaus et al. (2010)

ECHAM6 sGVOL Schmidt et al. (2011)

change since LMM) amplitude of variations (Fernandez-

Donado et al., 2013). Strong (S) solar forcing is applied for

ECHO-G and ECHAM5, in which ECHO-G uses higher val-

ues than ECHAM5. Weak (s) solar forcing is applied for

ECHAM6. Estimations of changes in the main well-mixed

GHG concentrations (CO2, CH4, N2O) are obtained from air

bubbles enclosed in Antarctic ice cores. The CO2 concen-

trations were prescribed in ECHO-G after Etheridge et al.

(1996), in ECHAM5 and ECHAM6 they follow Marland

et al. (2003). The incorporation of the volcanic forcing into

ECHO-G was done by including the net effect of strato-

spheric volcanic aerosols in an effective solar constant in

terms of a reduction in incoming shortwave radiation. For

ECHAM5, latitudinally resolved changes in optical depth in

the stratosphere were used. This might have an impact on

climatic changes due to volcanic eruptions e.g. on the at-

mospheric circulation, especially over the extratropics dur-

ing winter (see Fernandez-Donado et al. (2013) and included

references). The orbital changes and land-use changes (only

included in ECHAM5 and ECHAM6) are the same in both

simulations. Orbital variations follow Bretagnon and Fran-

cou (1988) and vegetation changes Pongratz et al. (2008).

Note that for the RCM simulations the same external forc-

ings were applied as for their driving global simulations.

2.2 Regional climate model simulations

The RCM MM5 model consists of a slight modifica-

tion of the non-hydrostatic Fifth-generation Pennsylvania-

State University-National Center for Atmospheric Research

Mesoscale Model. Such modification allows this meteoro-

logical model to perform long climate simulations. This

setup has been used to conduct a long high-resolution climate

simulation of the European climate during the last millen-

nium, driven at the domain boundaries by the coupled GCM

ECHO-G (Gómez-Navarro et al., 2013, 2015a). For the plan-

etary boundary layer formation parametrization, this simula-

tion used the medium-range forecast (MRF, Hong and Pan,

1996) scheme. The RCM was driven by the same set of ex-

ternal forcing as the driving GCM ECHO-G (Sect. 2.1) to

avoid physical inconsistencies. The model output is available

on a daily scale and covers the period 1001–1990 AD. The

www.clim-past.net/12/317/2016/ Clim. Past, 12, 317–338, 2016
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analysed millennium simulation MM5-ECHO-G will here-

after be named MM5.

A second regional simulation was carried out with the non-

hydrostatic operational weather prediction model COSMO

in CLimate Mode (CCLM) (Rockel and Hense, 2008). The

CCLM model was driven by initial and boundary conditions

of the global ECHAM5 simulation. This regional model was

free to produce its own small-scale spatial variability. The

COSMO model uses a boundary layer approximation by im-

plying horizontal homogeneity of variables and fluxes, which

ignores all horizontal turbulent fluxes (Doms et al., 2011).

The CCLM simulation over Europe had roughly the same

spatial resolution as the MM5 simulation, but it covers only

the period from 1655 to 1999 AD. The simulation CCLM-

ECHAM5 will hereafter be abbreviated as CCLM.

2.3 Reanalysis data

The NCEP/NCAR reanalysis covers the period from 1948-

present and is available at 6-hourly intervals (Kalnay et al.,

1996; Kistler et al., 2001). In addition we analyse the high-

resolution regional product coastDat2 (Geyer, 2014) result-

ing from a simulation with the regional model CCLM and

driven by the global NCEP/NCAR reanalysis using a spec-

tral nudging technique (after von Storch et al., 2000). The

regional reanalysis coastDat2 covers Europe and the North

Atlantic for the period from 1948 to present.

All wind speed data were daily averaged to proceed with

the analysis.

3 Methods and definitions

Our analysis concentrates on the distribution of daily wind

speed in wintertime (December, January, February – DJF)

over Central and Northern Europe. The area of investigation

has approximately the same extension from 45 to 65◦ N and

0 to 30◦ E for all data sets analysed.

The statistics of daily wind speed were evaluated over glid-

ing time windows for the different simulation periods. These

wind speed statistics include the standard deviation (SD) of

the distribution, its 50th, 95th and 99th percentiles (P50, P95,

P99) and the differences P95 minus P50 (diffM) and P99 mi-

nus P95 (diffE) as a measure of the width of the distribu-

tion in the high wind ranges. The analysis of several per-

centiles and their differences allows the determination of ba-

sic changes in the characteristics of wind speed distributions,

hence it is possible to investigate if it shifts with time with

unchanged shape and/or whether its width changes. Thus,

we can discriminate between a change in the mean and/or in

the extreme of the wind speed distribution. In our case “ex-

treme” means the tail of the distribution, which includes val-

ues above the 95th percentile. For instance, increasing diffM

and diffE values would show a broadening of the distribution

which means higher extreme wind speeds. The three climate

parameters analysed regarding their influence on wind speed

are (1) mean seasonal near-surface air temperature (mTemp),

(2) mean seasonal meridional temperature gradient (tGrad)

and (3) the North Atlantic Oscillation index (NAO). Table 3

presents a summary of these statistical relationships derived

from the different model simulations analysed. The presented

time correlation coefficients are obtained by calculating the

parameters of the daily wind probability distribution at grid-

cell scale, followed by averaging over the whole spatial do-

main.

The temperature gradient is calculated as the absolute

value of the difference between the northern (N) and the

southern (S) half of the investigation area tGrad= abs(N–S)

for each model simulation. Due to the different resolutions

the exact geographical domains of N and S differ. Therefore

the border between both varies from around 53 to 57◦ N.

The North Atlantic Oscillation (NAO) index is defined as

the leading pattern resulting from principal component anal-

ysis (PCA) of the winter mean sea-level pressure (MSLP)

field. This dominant pattern of variability is characterized by

a low pressure system over Iceland and a high pressure sys-

tem over the Azores (exemplarily shown for ECHAM6 in

Fig. 2). As MSLP field we used the GCM gridded pressure

information of the North Atlantic and European area. This

domain approximately spans from 70◦W to 30◦ E longitude

(from ≈ Boston to Istanbul) and from 70 to 20◦ N latitude

(from ≈ Tromsø to the southern part of Morocco). For com-

putations conducted for the RCM simulations we used the

NAO patterns derived from the driving GCM fields as well.

Because we are interested in the relationship between the

slowly changing mean climate and the variability of the dis-

tribution of daily wind speed, the wind statistics are cal-

culated considering gliding time windows over the respec-

tive time series for each model simulation before they are

correlated with the running mean values of the atmospheric

drivers. The climate parameters analysed are considered as

means over the respective time windows and for Figs. 3–

8 these values are spatially averaged before the correlation

computation with the wind statistics. For the long climate

model simulations (ECHO-G, ECHAM5, ECHAM6, MM5,

CCLM) we use 30-year running windows and for the shorter

reanalysis data (coastDat2, NCEP) 5-year running time win-

dows.

3.1 Test for significance: random-phase bootstrap

A random-phase bootstrap method (Schreiber and Schmitz,

1996; Ebisuzaki, 1997) is applied to determine the signifi-

cance of the correlation coefficients shown in Table 3 with

a significance level of p = 0.05. This method allows us to

take into account the autocorrelation structure of the series.

For this method a Fourier transformation of the time series is

conducted. The phases of the Fourier-transformed series are

then replaced by random phases, and the result is transformed

back to the time domain to obtain new surrogate time series.

The surrogate time series has the same spectrum and auto-

Clim. Past, 12, 317–338, 2016 www.clim-past.net/12/317/2016/
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Table 3. Time correlation coefficients between the following parameters of the probability distribution of daily mean wind speed: standard

deviation of wind speed (SD), the 50th, 95th and 99th percentile (P50, P95, P99) and the differences between P95-P50 (diffM) and P99-P95

(diffE) and some large-scale drivers: spatially averaged December-February air temperature (mTemp), the spatial air temperature gradient

(tGrad) and the North Atlantic Oscillation index (NAO). The parameters of the probability distributions have been computed in 30-year

sliding windows for the simulations and in 5-year sliding windows for the reanalysis products. The time series of the drivers have been

smoothed with a running mean filter. Significant (p < 0.05) coefficients (tested with a random phased bootstrap method) are written in bold.

MM5 CCLM ECHO-G ECHAM5 ECHAM6 coastDat2 NCEP

tGrad – mTemp −0.47 −0.56 −0.35 −0.47 −0.53 −0.25 −0.52

tGrad – NAO −0.60 −0.23 −0.40 −0.53 −0.70 −0.31 −0.54

NAO – mTemp 0.66 0.72 0.72 0.57 0.68 0.79 0.79

mTemp – SD −0.76 −0.26 0.34 −0.19 0.34 0.40 0.36

mTemp – P50 −0.40 0.15 0.74 0.04 0.43 0.72 0.76

mTemp – P95 −0.79 −0.18 0.60 −0.13 0.37 0.53 0.52

mTemp – P99 −0.79 −0.30 0.54 −0.13 0.34 0.43 0.37

mTemp – diffM −0.75 −0.43 0.04 −0.33 0.26 0.01 0.05

mTemp – diffE −0.67 −0.34 0.11 −0.13 0.18 0 −0.38

tGrad – SD 0.45 0.13 −0.01 −0.12 −0.38 0.23 −0.27

tGrad – P50 0.40 0.10 −0.13 −0.17 −0.42 −0.05 −0.48

tGrad – P95 0.52 0.21 −0.05 −0.12 −0.38 0.17 −0.35

tGrad – P99 0.45 0.15 −0.16 −0.12 −0.36 0.14 −0.34

tGrad – diffM 0.44 0.20 0.10 −0.05 −0.31 0.34 −0.08

tGrad – diffE 0.26 0 −0.28 −0.07 −0.18 0 0.01

NAO – SD −0.42 0.12 0.34 0.32 0.44 0.70 0.58

NAO – P50 −0.12 0.67 0.64 0.55 0.52 0.86 0.80

NAO – P95 −0.43 0.28 0.53 0.40 0.46 0.79 0.70

NAO – P99 −0.48 −0.03 0.50 0.39 0.43 0.70 0.57

NAO – diffM −0.46 −0.29 0.07 0.18 0.36 0.48 0.34

NAO – diffE −0.49 −0.50 0.14 0.21 0.22 −0.06 −0.30

correlation as the original time series, but has a random time

evolution. By generating a large number of surrogate time

series, an empirical distribution of the correlation coefficient

under the null-hypothesis (that the correlation is zero) can be

constructed and used to determine the statistical significance

of the correlation coefficient.

4 Results

In the following, we first present the general findings for each

of the climate drivers analysed (mTemp, tGrad, NAO) by

comparing all considered model simulations and reanalysis

products. This is followed by a more detailed presentation of

the results with a focus on (a) the regional model simulations

and their corresponding driving global models (b) the simu-

lation with the global model ECHAM6/MPI-OM and (c) the

reanalysis products. In addition, (d) we compare the results

for the overlapping time periods without reanalysis (1655–

1990 AD) and with reanalysis (1948–1990 AD) data and (e)

for some of the long simulations a comparison of time slices

is presented.

4.1 General comparison of all data sets

4.1.1 Relationship between mTemp and tGrad

A common characteristic shared by all analysed simulations

is the negative correlation between the mean winter temper-

ature (mTemp) and the mean meridional temperature gra-

dient (tGrad). Hence, in warmer decades the northern re-

gions warm more strongly than the southern regions, and in

colder decades the northern regions also cool more strongly

than the southern regions. This “high-latitude amplification”

is also found in climate simulations for future scenarios.

In those simulations, it is caused by several positive feed-

backs that operate more strongly at high latitudes, such as

ice-snow-albedo feedback (Hall and Qu, 2006). In addition,

the (negative) black-body radiation feedback is weaker at

high latitudes so that the associated temperature response

is stronger (Pithan and Mauritsen, 2014). European temper-

ature reconstructions over the past centuries also indicate

that in colder periods such as the Late Maunder Minimum

(around 1700 AD) temperatures in higher latitudes cooled

down more strongly than further south (Luterbacher et al.,

2002).
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(a) CCLM (b) ECHAM5

(c) MM5 (d) ECHO-G

(e) ECHAM6

(f) coastDat2 (g) NCEP
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Figure 3. Correlation between field mean temperature and 50th percentile of wind speed for seven different data sets: (a) CCLM (1655–

1999 AD), (b) ECHAM5 (850–2005 AD), (c) MM5 (1001–1990 AD), (d) ECHO-G (1001–1990 AD), (e) ECHAM6 (850–2005 AD),

(f) coastDat2 (1948–2012 AD), (g) NCEP (1948–2012 AD).

4.1.2 Relationship between mTemp and wind speeds

A positive link between these two variables would support

the idea that in a warmer atmosphere, holding more humid-

ity and being more energetic in general, stronger winds are

more probable. In fact, the relationship between the mTemp

and the median winds (P50) is positive in all analysed simu-

lations and reanalysis products, but with the exception of the
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regional simulation with MM5. However, the correlations,

taken individually, are not always statistically significant at

the 5 % level.

Warmer air temperatures are also strongly linked to larger

values of the high percentiles of the distribution of daily

wind, P95 and P99, for most of the simulations. Again, the

exceptions relate to the regional model simulations MM5 and

CCLM. MM5 presents a negative correlation and CCLM a

weak positive correlation.

Variations in the width of the daily wind distribution are

described by the differences between the high percentiles,

P95 or P99, and the median wind P50. The correlations be-

tween mean temperature and these measures of the distribu-

tion widths tend to be small for all simulations with the ex-

ceptions of the regional models MM5 and CCLM. For these

two regional models the correlations are strongly negative,

and more strongly so for the MM5 model, indicating that in

periods with warmer air temperatures the wind distribution

gets narrower at the same time that it shifts to lower values

of wind speed, as indicated by the negative correlation with

P50.

Briefly summarized, the relationship between winds and

mean regional temperature in the global models does support

the idea that warmer temperatures are associated with a shift

of the distribution of daily winds as a whole. However, this

link is not very strong and is contradicted by the regional

models.

4.1.3 Relationship between tGrad and wind speeds

The temperature gradient should modulate the atmospheric

baroclinicity, which should be reflected in the distribution

of wind speed. The correlation coefficients between the dis-

tribution of wind speeds and tGrad are summarized in the

third block of Table 3. In general, the correlations tend to be

weak, with some exceptions. In the MM5 simulations they

are stronger and positive, whereas in the ECHAM6 simula-

tion they are somewhat weaker but negative. In the NCEP re-

analysis the correlations between tGrad and the median wind

P50 or the higher percentile winds P95 and P99 are nega-

tive and statistically significant. Therefore, this analysis does

not support the idea of a relationship between stronger tem-

perature gradient should cause stronger mean winds or more

frequent extremes.

4.1.4 Relationship between NAO and wind speeds

The NAO is a large-scale winter circulation pattern that de-

scribes the mean strength of the seasonal mean westerly

winds in the North Atlantic-European sector and therefore

it is plausible that it is also related to the distribution of the

daily wind speed in Northern Europe. The correlations be-

tween the NAO index across the different simulations yield,

however, an incoherent picture. Most simulations do display

a positive and relatively strong correlation between the NAO

index and the spatially averaged P50, but again with the ex-

ception of the two regional models, MM5 and CCLM.

Thus, the regional models behave differently to their re-

spective driving GCMs. In the case of MM5 the correla-

tion between the NAO index and P50 is strikingly negative

whereas in the case of CCLM the correlation is weakly posi-

tive. A positive phase of the NAO is linked to stronger west-

erly winds over Northern Europe and hence a negative or

weakly negative correlation of the NAO with P50 is surpris-

ing. We show later that the negative sign of this correlation

in the regional simulations can be explained by the behaviour

of the regional models over land areas, whereas the sign of

the correlation between NAO and wind over the ocean is the

expected one.

The correlation between the NAO index and the width of

the distribution (SD) of wind speed averaged over the study

region tends to be also positive for most simulations, indicat-

ing that stronger mean westerlies tend to concur with a wider

distribution of daily wind speed. However, there are excep-

tions. Again, the regional model simulation MM5 displays a

strong negative correlation and the regional model simulation

CCLM shows a positive but weak correlation. These nega-

tive (MM5) or positive but weak (CCLM) correlations also

contrast with the link between the NAO index and the width

of the wind speed distribution in their parent global models,

ECHO-G and ECHAM5, respectively, both of which display

positive and statistically significant correlations. Similarly to

the global models, in both reanalysis products the NAO in-

dex is strongly and positively correlated with the width of the

wind speed distribution.

Briefly stated, the global models display the expected link

between the NAO and the median winds over the ocean, but

this link is distorted over land. The regional models, with

a domain mostly located over land, now show the expected

relationship between NAO and wind speed.

4.1.5 Relationship between NAO and mTemp

It is well known that the winter NAO index is positively cor-

related with air temperatures in Northern Europe. The link

between the parameters of the wind speed distribution on one

side, and the NAO or the mean air temperature on the other

side may thus be just a reflection of the same physical re-

lationship. This is also supported by paying attention to how

the correlations with the NAO and with the mean temperature

vary across simulations (third line in Table 3). It seems clear

that this line in the table displays a similar, though not iden-

tical, pattern of correlations across the simulations analysed.

However, the spatially aggregated analysis does not allow to

disentangle which one of both factors, NAO or mTemp, is the

physical driving factor for the variations in the distribution of

wind speed.

The results of this section can be summarized in two main

points. All models reproduce the link between mean tem-

perature and temperature gradient, and therefore the regional
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analysis seems to be physically consistent regarding the ther-

mal variables. The link between these thermal variables and

the distribution of wind speed is much weaker and very much

model dependent, with regional models deviating from their

respective global models.

4.2 Simulations of the regional models CCLM and MM5

versus their driving global models ECHAM5 and

ECHO-G

In the following subsections we investigate in more detail

the links between the large-scale atmospheric drivers and the

distributions of daily wind at a grid-cell level, which allows

us to better understand the spatially aggregated correlations

included in Table 3. The following figures (Figs. 3–6) dis-

play the correlation patterns between the different large-scale

climate indices and the parameters of the wind speed distri-

bution at grid-cell scale. The upper two panels in the figures

show the results derived from the regional models for direct

comparison with their driving GCMs. The lower two pan-

els include the results derived from the GCM ECHAM6 (not

used to drive any regional model in this study) and the two

reanalysis products.

In the CCLM simulation (1655–1999 AD) the relation-

ship between P50 wind speed and mTemp (Fig. 3) in gen-

eral shows a negative correlation or correlations close to

zero, with the exception of a land area east of the Baltic

where the correlation is positive. Hence, in this regional sim-

ulation, colder periods can be related to generally stronger

winds. In contrast, the correlation between the mean temper-

ature and P50 in the ECHAM5 simulation is positive in the

northern part of the domain, with some regions showing neg-

ative correlations in the south, in-between correlations are

around zero. The MM5 and the ECHO-G simulations also

display a qualitatively similar, but even more clear, contrast.

In the MM5 simulation, median wind speeds over land ar-

eas are clearly negatively correlated with mean temperature,

whereas over oceanic areas P50 is positively correlated with

mTemp. The ECHO-G simulation displays clearly positive

correlations over the whole area, similar to the ECHAM6

simulation and the regional reanalysis products.

Concerning the link between mTemp and the width of

the distribution (SD) the regional simulations and ECHAM5

the SD correlates negatively with the mean temperature

(Fig. 4a, b and c), indicating that colder periods tend to be re-

lated with a wider distribution of wind speed over the whole

area. This is also supported by the negative correlation be-

tween mTemp and the difference P99–P50 (not shown, Ta-

ble 3). Since P50 in the regional models was also nega-

tively correlated with mTemp, the regional models tend to

be associated with broader wind speed distributions and with

stronger mean winds.

The ECHO-G simulation (used to drive MM5) displays,

in contrast, positive correlations in a region along the North

and South Baltic Sea, straddled by regions of zero or negative

correlations in Scandinavia and central Europe (Fig. 4d).

We assume that the results showing colder periods cor-

relating with stronger winds may be induced by a stronger

meridional temperature gradient (tGrad; see Sect. 3). This as-

sumption is strengthened by the negative correlation between

mTemp and tGrad, which shows a spatially averaged value of

−0.56 in the CCLM simulation and −0.47 in the MM5 sim-

ulation. This negative correlation indicates that lower mean

temperatures tend to occur with stronger meridional temper-

ature gradients in the regional simulations, and thus, tGrad

could be the primary driver for the changes in the wind

speed distribution. Therefore, we also analysed the relation-

ship between the parameters of the wind speed distribution

and tGrad (Table 3). This analysis reveals contrasting results

between the two regional simulations: the correlations in the

CCLM simulation are only minor and not statistically signif-

icant, whereas in the case of MM5 they are relatively strong

for all parameters of the wind speed distribution, except for

the difference P99–P95.

We additionally investigate the relationship between the

mean NAO index and the distribution of wind speeds. The

correlation coefficient between the NAO index (Sect. 3) and

the median wind P50 displays clear similarities of the re-

gional simulations and the driving global simulations, re-

spectively (Fig. 5). However, the differences between the re-

sults provided by the regional models and those provided by

the global models are profound. The correlation patterns de-

rived from the regional models display positive correlations

over oceanic areas, but in general negative correlations over

land areas. This is reflected by a west-east correlation dipole

(in the CCLM simulations the zero of this dipole does not

coincide with the coast line). In contrast, the global simu-

lations display positive correlations over the whole region

(Fig. 5b, d, e). The idea that a positive NAO index should be

associated with stronger winds in general is only confirmed

in the global simulations. The regional models indicate that

a stronger NAO tends to be linked to stronger winds only

over the ocean and coastal areas, but not over Central and

Eastern Europe. This difference may hint to an influence of

the boundary layer parametrization in regional models over

continental areas.

The spatially averaged correlation between the NAO and

SD is very low in the CCLM simulation (0.12), but much

stronger and negative in the MM5 simulation (−0.42). This

difference can now be explained by the different correlation

patterns shown in Fig. 6. The spatially resolved map showing

the correlation between the NAO index and the grid-cell SD

in the regional models CCLM and MM5 and in the global

model ECHO-G is remarkably similar to the correlation pat-

terns between the mean temperature and the SD (compare

Figs. 6 and 4). Again, the CCLM simulation shows positive

correlations over North-Western Europe whereas the correla-

tions in MM5 are negative over the whole region. The global

model ECHO-G tends to show higher positive correlations
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(a) CCLM (b) ECHAM5

(c) MM5 (d) ECHO-G

(e) ECHAM6
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Figure 4. Correlation between field mean temperature and standard deviation of wind speed for seven different data sets: (a) CCLM (1655–

1999 AD), (b) ECHAM5 (850–2005 AD), (c) MM5 (1001–1990 AD), (d) ECHO-G (1001–1990 AD), (e) ECHAM6 (850–2005 AD),

(f) coastDat2 (1948–2012 AD), (g) NCEP (1948–2012 AD).

over the North Sea and the Southern Baltic Sea, straddled by

negative correlations over Central and Eastern Europe. An

exception is the result for ECHAM5, although the spatially

averaged correlation between NAO and mTemp shows a high

positive value of 0.57 (Table 3), the patterns for mTemp-SD

and NAO-SD show completely different signs. A compari-

son with a different ECHAM5 simulation (not shown) with

a weaker solar forcing (Krivova and Solanki, 2008) showed
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(a) CCLM (b) ECHAM5

(c) MM5 (d) ECHO-G

(e) ECHAM6

(f) coastDat2 (g) NCEP

Figure 5. Correlation between NAO index and 50th percentile of wind speed for seven different data sets: (a) CCLM (1655–1999 AD),

(b) ECHAM5 (850–2005 AD), (c) MM5 (1001–1990 AD), (d) ECHO-G (1001–1990 AD), (e) ECHAM6 (850–2005 AD), (f) coastDat2

(1948–2012 AD), (g) NCEP (1948–2012 AD).

rather comparable results between mTemp-SD and NAO-SD.

Which leads to the conclusion that the external forcing of

each simulation plays a crucial role for the relationship of

mTemp and the wind speed distribution.

As already known by the scientific community NAO and

mTemp are correlated, hence it is not surprising that in

most simulations both show comparable relations to the

wind speed distribution. Nevertheless, due to internal model
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Figure 6. Correlation between NAO index and standard deviation of wind speed for seven different data sets: (a) CCLM (1655–1999 AD),

(b) ECHAM5 (850–2005 AD), (c) MM5 (1001–1990 AD), (d) ECHO-G (1001–1990 AD), (e) ECHAM6 (850–2005 AD), (f) coastDat2

(1948–2012 AD), (g) NCEP (1948–2012 AD).

variability and different resolutions the global and regional

models show different spatial fingerprints for the correlation

maps.

4.3 The global model ECHAM6/MPIOM

In general the correlation patterns between the large-scale

drivers and the parameters of the distribution of wind
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speed resemble those obtained with ECHAM5 and ECHO-

G (ECHAM4/HOPE-G), but some clear differences exist.

The higher spatial resolution of ECHAM6 does not, however,

lead to correlation patterns that resemble those derived from

the regional model simulations CCLM and MM5, pointing

towards changes in the physical parametrization (i.e. PBL –

Planetary Boundary Layer – scheme) as the main factor ex-

plaining the differences in the simulations.

The correlation patterns between the median wind speed

P50 and the mean temperature or the NAO index in

ECHAM6 are indeed similar to the ones derived from

ECHAM5 and ECHO-G, displaying generally positive, al-

beit weak, correlations between the median winds and tem-

perature (Fig. 3). The correlations between the median wind

and the NAO index are positive and strong (Fig. 5). How-

ever, the correlations of these two driving factors with the

width of the wind speed distribution, represented by SD, dif-

fer in ECHAM6 from the other two versions of ECHAM

(Fig. 4 and Fig. 6). ECHAM6 displays correlation patterns

that are positive and spatially more homogeneous, whereas

the ECHAM5 and ECHO-G simulations show higher corre-

lations in the Southern Baltic surrounded by negative corre-

lations in Scandinavia and Central Europe. Again, an excep-

tion is ECHAM5 correlation between mTemp and SD, which

shows an over all negative relationship.

Physically, the relationship between mTemp and median

wind is positive (but statistically not significant) in the

ECHAM6 simulation. This indicates that warmer tempera-

tures are accompanied by a shift towards higher wind speeds

and by a slight tendency to a broader wind speed distribution

(see also Fig. 4e). tGrad shows negative correlation with the

median wind, consistent with the link between a decreased

temperature gradient in warmer periods.

4.4 The reanalysis data coastDat2 and NCEP

We present the link between the large-scale drivers and

the wind speed distribution for the two reanalysis products

NCEP and coastDat2. It can be argued that these two re-

analysis data sets should be closer to the real climate, be-

cause they both incorporate information based on meteoro-

logical observations. On the other hand, the reanalysis mod-

els are integrated over a relatively short period of time of

about 60 years. Therefore the decadal-scale links between

the large-scale climate drivers and the probability distribu-

tion of wind speed derived from these data sets is most likely

afflicted with a higher degree of uncertainty. The correla-

tion patterns derived from NCEP and coastDat2 are based

on gliding 5-year windows, instead of 30-year windows as

for the longer simulations described before. In addition, this

period has witnessed external climate forcings that are quite

different from the natural forcings of the previous centuries.

Nevertheless, the links between temperature and wind speed

distribution should be independent of the radiative forcings

that drive the surface temperatures.

The correlation between mTemp and the parameters of

the wind speed distribution for coastDat2 and NCEP shows

generally significant positive values with P50, SD, P95 and

P99, but no significant correlation for diffM and diffE.

The spatially resolved correlation between mTemp and P50

(Fig. 3f, g) and the SD field (Fig. 4f, g) is also dominated

by positive values, with highest coefficients over southern

Norway, and weaker or slightly negative correlations in the

southern regions of the domain. Therefore, the correlation

patterns in the reanalysis data represent a shift of the wind

speed distribution from low to high wind speeds during

warmer periods, with a tendency to have a wider wind speed

distribution in the northern regions and a small influence of

temperature in the southern regions.

The relationship between tGrad and mTemp is negative

(−0.25 for coastDat2, −0.52 for NCEP), again showing that

colder periods are related to stronger meridional temperature

gradients in agreement with all other models analysed here.

Thus, the results obtained from the reanalysis products re-

semble more closely the ones derived from the global cli-

mate model simulations (ECHAM5, ECHAM6, ECHO-G)

than from the regional simulations (MM5 and CCLM).

The correlation between tGrad and the distribution of wind

speed is found to be predominantly weak in the coastDat2

data, with the only mentionable value (0.34) for the corre-

lation tGrad-diffM. This result means that higher tempera-

ture differences between North and South are slightly corre-

lated with a broader wind speed distribution. In contrast, for

the NCEP reanalysis, the link is strong but opposite: weaker

meridional gradients are linked to stronger median winds

and wider wind speed distributions. Regarding the link to

the NAO, both reanalysis data sets display a consistent pic-

ture, with a positive NAO closely linked to stronger median

winds and wider distributions (SD) in most of the domain.

This link is stronger over the northern regions and becomes

smaller and even negative over the southern fringes of the

domain. Again, this spatial structure resembles more closely

the structure provided by the global models and differs from

the pattern provided by the regional models.

4.5 Results in the overlapping time periods 1655–1990

and 1948–1990

This section is dedicated to the comparison of the above ex-

plained results with results for the overlapping time periods

without (1655–1990 AD, 30-year running mean) and with

reanalysis data (1948–1990 AD, 5-year running mean). Re-

garding the overlapping period 1655 to 1990 the main con-

clusions remain the same for both, Table 3 and Figs. 3–6. In

Table 3 some correlations become higher (mTemp), whereas

some stay at the same level (NAO, tGrad – beside ECHAM6

which now shows values around zero) and some are lower

(mTemp-tGrad). The conclusions concerning the spatial cor-

relation maps are also very comparable: due to almost the

same time period all four results for CCLM in the overlap
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Figure 7. Correlation between field mean Temperature and 50th percentile of wind speed for seven different data sets in the overlapping

time period from 1948 to 1990: (a) CCLM, (b) ECHAM5, (c) MM5, (d) ECHO-G, (e) ECHAM6, (f) coastDat2, (g) NCEP.

show almost identical patterns. The GCM results are also

very similar between both periods with slightly higher values

for the overlapping period. Only MM5 shows a difference

above Western and Central Europe where positive values oc-

cur for the overlapping period (1655–1990 AD) and negative

or values around zero for the whole period (1001–1990 AD).

Regarding the overlapping period 1948 to 1990 the values

and patterns change. Nevertheless, each model simulation

still shows different results, and they do not become more
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Figure 8. Correlation between field mean Temperature and SD of wind speed for seven different data sets in the overlapping time period

from 1948 to 1990: (a) CCLM, (b) ECHAM5, (c) MM5, (d) ECHO-G, (e) ECHAM6, (f) coastDat2, (g) NCEP.

similar to the reanalysis data (Figs. 7 and 8). Figure 7 shows

the correlation pattern of mTemp and P50 for the period

1948–1990 which shows more negative (positive) areas for

MM5, ECHO-G, ECHAM6, coastDat2 (CCLM, ECHAM5)

compared to the results of the whole available time periods.

The results for NCEP change only marginally. For the cor-

relation between mTemp and SD (Fig. 8) we also see more

negative (positive) areas for MM5, ECHO-G, coastDat2, and

NCEP (ECHAM5). CCLM shows a shift from a positive re-

gion over the Benelux area to Scandinavia. ECHAM6 stays
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Figure 9. Time series of 30-year running mean values of mean tem-

perature (blue) and the standard deviation (SD) of the wind speed

(green) for the GCMs ECHAM6 (a) and ECHO-G (b). In both mod-

els the correlation between the blue and the green line is 0.34.

comparable in both periods. Note that for all data sets these

results are less robust due to the fewer analysed values.

4.6 Centennial-scale evolution of the wind speed

variance over the past millennium

In the previous sections we analysed the links between large-

scale atmospheric drivers and the distribution of wind speed

at decadal and multidecadal timescales. The time series of

the width of the wind speed distribution over the past millen-

nium indicate, however, that the slowly changing soil bound-

ary conditions may also have a strong influence on the long-

term evolution of the variability of wind speed in Northern

Europe. Figure 9a shows the time series of the spatially av-

eraged standard deviation of the wind speed distribution at

each model grid-cell for the simulation conducted with the

model ECHAM6. The most remarkable feature of the aver-

aged SD is its almost continuous increase during the simu-

lated period. This monotonous increase is also seen in the

corresponding time series calculated with the output of the

ECHAM5 simulation (not shown), but not in the data of the

ECHO-G (based on ECHAM4) simulation (Fig. 9b). A sug-

gestion about the origin of the increase in the standard devi-

ation of the wind speed distribution can be obtained by com-

paring the spatially resolved SD in the last decades versus

the initial decades in the simulation. Figure 10a shows the

ratio between the spatially resolved standard deviations for

the periods 1871–1990 AD (P1) and 1001–1091 AD (P2), re-

spectively. The values of this ratio are higher than unity (SD

larger at the end of the simulation) over the land areas of cen-

tral Europe, with a maximum at about 25 degrees east. The

standard deviation over oceanic grid-cells and over Scandi-

navia does not change significantly between these two peri-

ods in the simulations. Again, this spatial pattern of increase

in the width of the wind speed distribution is also simulated

by the ECHAM5 simulation (not shown), but not in ECHO-G

where the ratio is scattered around 1 (not shown).

The spatial pattern of changes in SD between the begin-

ning and end of the ECHAM6 and ECHAM5 simulation sug-

gests that the increase in the width of the wind speed distri-

bution may be related to surface-boundary processes. This

suggestion is supported by the changes in forest cover in the

course of the last millennium as reconstructed by Pongratz

et al. (2008). This reconstruction was used to drive the mod-

els ECHAM6 and ECHAM5 (see Sect. 2). The difference

in tree fraction in each model grid-cell between the periods

1871–1990 AD (P1) and 1001–1091 AD (P2) is shown in

Fig. 10b. The spatial agreement between the reduction in tree

fraction and the widening of the wind speed distribution be-

tween the beginning and the end of the millennium is remark-

able and strongly supports the hypothesis that the distribution

of wind speed is mainly affected by land-use changes and re-

lated changes in surface roughness length.

This is supported by the analysis of a third time period

from 1571 to 1690 AD (P3) which also shows a strong agree-

ment for the SD ratio (P3 / P2; Fig. 10c) and the tree fraction

difference (P3–P2; Fig. 10d), albeit with less intense values

presumably due to the less intense deforestation in period P3.

Hence, we conclude that a less extensive forest cover causes

a widening of the wind speed distribution, and vice versa.

This is also visible for the time series in Fig. 11a, which

shows the temporal evolution of the tree fraction (black line)

and the 30-year running mean SD for ECHAM6 (green line

in Fig. 9a multiplied by −1), both lines show a remarkable

agreement in the long-term evolution. The simulation with

ECHAM5 shows a comparable evolution for the SD (not

shown). The simulation with the model ECHO-G, which was

not driven by changes in land use, does not show a long-

term increase or change in the width of the distribution of

wind speeds (see green line in Fig. 9b), supporting the strong

influence of land cover changes on the distribution of wind

speeds.

Therefore, at multi-centennial timescales the correlation

between the wind speed distribution and temperature that

was explored in the previous sections, for ECHAM5 and

ECHAM6, could have been indirectly caused by land-use

changes. At these timescales, anthropogenic deforestation
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Figure 10. (a) Relation between part 1 (P1: 1871–1990 AD) and part 2 (P2: 1001–1091 AD) standard deviation (SD) of wind speed

(ECHAM6). (b) Tree fraction difference of P1 minus P2 derived from Pongratz et al. (2008). (c) Relation between part 3 (P3: 1581–1690 AD)

and P2 SD for ECHAM6. (d) Tree fraction difference of P3 minus P2 derived from Pongratz et al. (2008).

and mean temperature exhibit a positive trend. Thus the ex-

pansion of the wind speed distribution and the increase of

temperature in these decades might be induced by physically

different factors, leading to positive correlations in our anal-

ysis.

Figure 11a shows the temporal evolution of the tree frac-

tion used to drive ECHAM5 and ECHAM6 (black line). This

proves that on shorter timescales (e.g. 100 or 200 years) the

effect of this surface-boundary process is negligible, espe-

cially before the 17th century when the trend is very weak.

Figure 11b, c exhibit the correlation between mTemp and

the SD for the periods P1 and P2 calculated with a 5-year

running mean. Hence, these figures show the relationship

between mean temperature and the wind speed distribution

independent of the deforestation effect. Therefore, this sta-

tistical effect can be disentangled by separating the analysis

of these simulations into two time periods (TP1: years 850–

1500 AD, TP2: years 1500–2005 AD).

The correlations between mean temperature and the width

of the wind distribution does show a difference in the cor-

relation. For TP1 of ECHAM6 mTemp-diffM is around 0

and mTemp-diffE −0.25, for P2 0.63 and 0.57, respectively.

For TP1 of ECHAM5 mTemp-diffM is −0.26 and mTemp-

diffE is −0.38, for TP2 0.26 and 0.12, respectively. Both

time periods in the GCMs show different signs for the re-

lation between mean temperature and the shape of the wind

speed distribution. These results suggest that specifically for

ECHAM6 the correlation between the mean temperature and

the width of the wind speed distribution is a statistical arte-

fact mediated by deforestation.

5 Discussion and conclusions

This study investigates and compares different simulation

data sets and reanalysis products, on timescales covering the

last decades to the past millennium, regarding the probabil-

ity distribution of the daily wind speed in winter time over

Northern Europe. Our investigation is aimed at identifying

the large-scale factors that drive changes in this probability

distribution. The study is based on correlations between dif-

ferent parameters of the wind speed distribution and differ-

ent climatic indices related to mean temperature, meridional

temperature gradient, and the North Atlantic Oscillation. The

overlaying question is whether and how the wind speed dis-

tribution may change during varying climate conditions and

hence whether these conditions may provoke more and/or

stronger wind speed extremes.

One prominent result is that the link between the thermal

indices and the North Atlantic Oscillation appears physically

consistent in all data sets, and thus all models are consis-
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Figure 11. (a) tree fraction after Pongratz et al. (2008) (black) averaged over the investigation area. ECHAM6 30-year running mean SD of

wind speed (multiplied by −1) (blue). (b) Correlation between field mean temperature and SD for 1871–1990 with a 5-year running mean

computation (c) correlation between field mean temperature and SD for 1001–1091 with a 5-year running mean computation.

tent in this regard. The relationship between the NAO and

mean temperature over Europe is a well-known effect (Rut-

gersson et al., 2015), in wintertime this is also positive in all

models. This effect is caused by the advection of maritime

air masses by stronger westerly winds in a more positive

NAO state (also discussed in Gómez-Navarro et al., 2015a).

Also, the correlation between mean Temperature (mTemp)

and the temperature gradient (tGrad) shows negative values

for all models, indicating that warmer periods are linked to

a weakened meridional temperature gradient. This might be

explained by the fact that northern regions warm (cool) more

strongly when the overall temperature is higher (lower). In

climate change projections this is referred to as polar am-

plification, although it has been also identified in paleocli-

mate simulations and reconstructions over the past millen-

nium (Luterbacher et al., 2002).

A second important result is that the correlation between

the large-scale indices and the parameters of the wind speed

distribution exhibit markedly different results among the data

sets analysed and it is difficult to derive general conclusions

on the effect of these large-scale drivers on the distribution of

daily wind. Comparable difficulties are reported by Fischer-

Bruns et al. (2005). All in all the expected link between the

mean temperature and the wind speed distribution and be-

tween the mean temperature gradient and the wind speed dis-

tribution Li and Woollings (2014) is not confirmed in each

simulation. In our study the three global simulations present

similarities that warrant to place them in one group. This

can be expected to a certain degree because the three at-

mospheric models included in the GCM belong to the same

ECHAM family. Further analyses with completely different

GCM families would be necessary to reinforce our findings.

Likewise, the correlation patterns obtained from the two re-

gional models are also generally similar, although in this case

both models, MM5 and CCLM, are structurally different.

The striking result is that the regional models do not seem

to inherit the dynamical properties of their respective global

models, but produce instead different correlation patterns be-

tween the large-scale drivers and the wind speed distribu-

tions. It is plausible that the higher resolution and the dif-

ferent parametrization schemes of the boundary layer shape

the link between the large-scale dynamics and turbulent pro-

cesses that modulate the width of the daily wind distribu-

tion. As Hall (2014) and Gómez-Navarro et al. (2013) al-

ready stated, the RCMs should provide a better representa-

tion of small-scale processes, topographic influences and of

the land-sea contrasts, and thus should be better suited for the

simulation of extreme events.

Another indicator for the influence of the spatial resolution

on our results might be the fact that only the regional simu-

lations MM5 and CCLM show strong negative correlations

between mean temperature and the width of the probability
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distribution as measured by diffM/diffE. These correlations

suggest that colder periods are connected with stronger wind

speed extremes. In contrast, the GCM data show no clear

correlations between these parameters. This study does not

allow us to provide a comprehensive dynamical explanation

for the different behaviour of wind speeds in changing tem-

perature or pressure conditions: the models show different

results although each model seems to be dynamical consis-

tent in itself. Therefore, a detailed analysis of each of the

simulations, and maybe of the physical parameterization and

computer codes, becomes necessary to understand how the

different correlation patterns arise.

On centennial timescales, we identified land-use changes

as a very important factor modulating near-surface wind in

the simulations. Note that anthropogenic changes in land-use

are prescribed only in the ECHAM5 and ECHAM6 simula-

tions, whereas for ECHO-G land-use is kept constant dur-

ing the whole simulation. The analysis of the ECHAM5 and

ECHAM6 millennium simulations reveals a strong increase

of the standard deviation of wind speed for the last decades

since the industrialization, and in areas that coincide with

larger deforestation along the last centuries. The impact of

land-use changes on wind conditions was also shown by

Pessacg and Solman (2013) in simulations with the regional

model MM5 over South America for different idealized land-

use scenarios.

The main conclusion that can be drawn from this study is

that the link between large-scale climate drivers and the dis-

tribution of daily wind speeds in wintertime in this region

is complex and not fully constrained by currently available

simulations. All models analysed here have been individually

profusely used in climate simulations and the data sets have

been used in a number of other previous studies, and no gross

deficiencies have been pointed out so far. We conclude that,

although climate models may be dynamically sound in the

large-scale contest, the impact of climate change on variables

like near-surface wind speed distribution possibly depends

more strongly on the details of the physical parametrization

and changes in surface forcing, like deforestation, than on

the large-scale dynamical drivers, such as large-scale tem-

perature or sea-level-pressure changes.
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