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Abstract. Inferring climate from palaeodata frequently as-

sumes a direct, linear relationship between the two, which is

seldom met in practice. Here we simulate an idealized proxy

characterized by a nonlinear, thresholded relationship with

surface temperature, and we demonstrate the pitfalls of ig-

noring nonlinearities in the proxy–climate relationship. We

explore three approaches to using this idealized proxy to in-

fer past climate: (i) methods commonly used in the palaeocli-

mate literature, without consideration of nonlinearities; (ii)

the same methods, after empirically transforming the data

to normality to account for nonlinearities; and (iii) using a

Bayesian model to invert the mechanistic relationship be-

tween the climate and the proxy. We find that neglecting

nonlinearity often exaggerates changes in climate variabil-

ity between different time intervals and leads to reconstruc-

tions with poorly quantified uncertainties. In contrast, ex-

plicit recognition of the nonlinear relationship, using either

a mechanistic model or an empirical transform, yields sig-

nificantly better estimates of past climate variations, with

more accurate uncertainty quantification. We apply these in-

sights to two palaeoclimate settings. Accounting for non-

linearities in the classical sedimentary record from Laguna

Pallcacocha leads to quantitative departures from the results

of the original study, and it markedly affects the detection

of variance changes over time. A comparison with the Lake

Challa record, also a nonlinear proxy for El Niño–Southern

Oscillation, illustrates how inter-proxy comparisons may be

altered when accounting for nonlinearity. The results hold

implications for how univariate, nonlinear recorders of nor-

mally distributed climate variables are interpreted, compared

to other proxy records, and incorporated into multiproxy re-

constructions.

1 Introduction

A principal goal of palaeoclimatology is to infer climate in-

formation from geochemical, physical, or lithological signals

embedded in various proxy archives. Implicit in most analy-

ses of palaeoclimate records is the assumption that the ob-

servations are linearly related to the target climate quantity,

so that traditional calibration approaches (e.g. Brown, 1994)

allow climate to be inferred given the proxy values.

The climate system, however, is rife with nonlinearities,

as are the processes translating climate signals into proxy

records (see e.g. Evans et al., 2013, for a review). Examples

of nonlinear processes known to markedly distort climate

signals include biological threshold effects on tree growth

(Vaganov et al., 2006; Anchukaitis et al., 2006; Tolwinski-

Ward et al., 2011), karst effects on speleothem δ18O records

(Baker et al., 2012; Jex et al., 2013), and hydrodynamic

effects on flood proxies. Nonlinearities are especially pro-

nounced in terrestrial proxy records from the tropics, where

temperature experiences its lowest dynamic range and pre-

cipitation its highest dynamic range, resulting in distributions

that are non-normal, with strong positive skew. These records

are frequently interpreted as reflecting some aspect of the El

Niño–Southern Oscillation (ENSO) phenomenon, involving

hydrological balance (Conroy et al., 2008, 2009), river run-

off (Rodbell et al., 1999; Moy et al., 2002; Rein et al., 2004,

2005), or wind speed (Wolff et al., 2011) – all nonlinear

functions of ENSO state. These proxies can feature statis-
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tical distributions that are different from those of the climate

phenomenon they purport to record, and different from one

another. What are the consequences of inferring changes in

ENSO state from such land-based, nonlinear records? More

generally, do nonlinear proxies allow for reliable statements

about changes in climate variability, and if so, under which

conditions? Can nonlinearity be overcome to correctly infer

changes in the underlying climate?

Even when the target climate quantity is well approxi-

mated by a normal distribution, nonlinearities often manifest

themselves as non-normality in the proxy distribution. This is

because a normally distributed proxy is only expected if the

proxy is a linear recorder of a normally distributed climate

variable, as the linear transform of a Gaussian random vec-

tor is also Gaussian. Temperature fluctuations, especially if

averaged over a month or more, typically obey normal statis-

tics, so linear temperature proxies tend to obey normal statis-

tics as well. In contrast, tropical run-off proxies, for instance,

are nonlinearly related to land precipitation, which is heav-

ily skewed (thus non-normal) and only indirectly linked to

sea-surface temperature (SST). Such records are not directly

amenable to analysis using common techniques assuming

linearity and normality (e.g. spectral analysis, principal com-

ponent analysis, least-squares regression methods, correla-

tion analysis, and parametric hypothesis testing).

One strategy to overcome this difficulty is to use gener-

alized linear models (GLMs; e.g. McCullagh and Nelder,

1989; Lindsey, 1997) that enable linear inference methods

despite nonlinear relationships between predictors and pre-

dictands. Such methods require the specification of the func-

tional relationship between proxy and climate, which may

not always be known. Even if these link functions are known,

GLMs require a case-by-case treatment, with each proxy po-

tentially displaying a different relation to climate. Such a

case-specific treatment can become prohibitive in multiproxy

studies, which range from graphical comparisons of a half-

dozen records in a stack to assess the synchronous nature

of climate fluctuations (e.g. Conroy et al., 2008, Fig. 5, or

Kirby et al., 2014, Fig. 5) to using several hundreds of prox-

ies to reconstruct temperature over the late Holocene using

statistical models (e.g. Mann et al., 1998; Luterbacher et al.,

2004; Moberg et al., 2005; Mann et al., 2008; Kaufman et al.,

2009; Mann et al., 2009; Barriopedro et al., 2011; Emile-

Geay et al., 2013a, b; Tingley and Huybers, 2013). In such

cases, it would be desirable to account for nonlinearity so

that nonlinear proxies may be used alongside linear proxies

without recourse to individual treatment.

This article draws attention to the pitfalls of ignoring non-

linearity in the proxy–climate relationship and explores a

number of approaches to using nonlinear proxies to infer

climate variability when the underlying climate obeys nor-

mal statistics. Our objective is not to consider all of the va-

garies of fitting a straight line through noisy data, includ-

ing calibration vs. regression, measurement errors in predic-

tor variables, and various regularization techniques. For in-

depth discussions of these issues, relevant and complemen-

tary to the problem at hand, see Brown (1994) and Chris-

tiansen (2014). Here we focus on the related challenge of in-

ferring climate variability from proxy archives that are non-

linear, univariate recorders of the target climate variable. We

consider both simple, generic strategies that are amenable to

multiproxy studies, and more case-specific treatments.

Section 2 presents a simple toy model for a nonlinear

proxy, used to illustrate the effects of nonlinearity on infer-

ences about climate variability. Section 3 outlines various

practical solutions to the problem, which we then apply to

the Laguna Pallcacocha and Lake Challa records in Sect. 4.

Section 5 provides discussion and concluding remarks.

2 Nonlinearity in climate proxies

2.1 A simple proxy model

To illustrate the challenges posed by nonlinear recorders of

climate, we consider an idealized model for a run-off proxy

that displays a univariate and stationary but nonlinear re-

sponse to ENSO-induced rainfall. Sediment-based run-off

proxies are expected to feature nonlinearities for at least four

reasons: sediment mobilization is a nonlinear function of

flow speed (Rose, 1993); flow speed is a nonlinear function

of rainfall (e.g. Maidment, 1993); rainfall is a nonlinear func-

tion of sea-surface temperature (e.g. Lengaigne and Vecchi,

2010); and finally, we assume that rainfall at the location of

the proxy occurs only during the warm phase of ENSO, in-

ducing an asymmetric relationship with climate.

To characterize ENSO state, we use December–January–

February averages of the NINO3.4 index (average sea-

surface temperature anomaly in the region (5◦ N–5◦ S;

170◦W–120◦ E)) from the Extended Reconstructed Sea Sur-

face Temperature (ERSSTv3) data set (Smith et al., 2008).

Although NINO3.4 statistics are well known to be skewed

at monthly scales, the seasonal averaging results in a nearly

Gaussian distribution, so that for this example non-normality

in the proxy arises on account of the proxy–climate relation-

ship rather than the underlying climate. To add stochasticity,

we assume that the idealized land-based proxy is sensitive

to the local expression of NINO3.4 via c′(t)= c(t)+ ε1(t),

where c(t) is the NINO3.4 index, c′(t) is the local expression

of ENSO variability, and for convenience ε1 is a zero-mean

Gaussian white-noise process with variance δ2. An additive

noise ε2, in the proxy units, represents measurement error.

Our idealized model for the run-off proxy then takes the form

p(t)=

{
α[c(t)+ ε1(t)]β + ε2(t) c′(t)≥ 0

ε2(t) otherwise
, (1)

where α > 0 and β > 1. The exact value of β is relatively

unimportant in the context of our example; in the following,

we choose α = 1 and β = 3, though our results are qualita-

tively insensitive to this choice.
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As we expect the error introduced by the local vs. global

ENSO signal to be much larger, we neglect measurement er-

ror in the remainder for the sake of simplicity of exposition.

We also ignore chronological errors, though they would be

important in nature. This example may be viewed as a best-

case scenario: it is the most parsimonious representation of

the fact that the ENSO signal is global but experienced lo-

cally by the proxy, with deviations controlled by δ.

A proxy generated according to Eq. (1) selectively records

El Niño events, and it does so with great sensitivity – in this

respect it is an ideal proxy. Fig. 1 shows the NINO3.4 index

and a pseudo-proxy series derived from it using Eq. (1). It is

qualitatively similar to run-off proxy records commonly in-

terpreted as reflecting ENSO variability (e.g. Rodbell et al.,

1999; Moy et al., 2002; Rein et al., 2004). The pseudo-proxy

correctly identifies maxima in the target NINO3.4 index but

exaggerates their relative magnitudes, while the minima in

the target series are clipped at zero. Analysis of this skewed

pseudo-proxy will thus lead to correct conclusions regard-

ing the timing of positive excursions in the NINO3.4 index,

but the nonlinearity and thresholding can potentially result

in overestimates of changes in ENSO variability. Quantita-

tively, the ratio of the NINO3.4 sample variances within the

1950–1999 period and the 1900–1949 period is 1.25, while

the distribution of variance ratios for 10 000 realizations of

the pseudo-proxy, differing in their noise alone, is peaked at

higher values (Fig. 3), with a median of 5.25 and interquar-

tile range (Wilks, 2011, p. 26) of 6.20. Indeed, the variance

ratio for 86 % of the realizations of p(t) is more than 50 %

higher than that calculated from the original NINO3.4 series,

indicating the large impact of the nonlinear transform (Eq. 1)

on the second-moment properties of the proxy as compared

with the climate. Note that this assessment considered posi-

tive values of the proxies only, but results are nearly identical

without this restriction.

2.2 Coping with nonlinearity

Our aim is to explore the quantitative information about cli-

mate variability that can reliably be inferred from a proxy

record generated according to Eq. (1), and to explore the pit-

falls of failing to account for the nonlinear relationship with

climate. A full review of all existing inference strategies in

the presence of nonlinearity and non-normality is beyond the

scope of this paper; instead, we focus on three workable ap-

proaches that may be useful in palaeoclimatology.

– Functional transformation: when the transfer function

between proxy and climate is known a priori, it may

be leveraged to infer climate. Indeed, in the absence of

noise, Eq. (1) expresses a one-to-one mapping between

proxy values and local climate when the latter displays

positive excursions. This relationship over positive val-

ues is therefore invertible and may be used for infer-

ence, for instance by specifying this relationship as a
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Figure 1. A nonlinear recorder of ENSO activity. Solid red:

December–January–February average of the NINO3.4 index from

the ERSSTv3 data set (Smith et al., 2008), standardized toZ scores;

dashed red: standardized NINO3.4 with additive N (0,0.25) noise;

grey: the noisy NINO3.4 signal transformed according to Eq. (1),

with α = 1 and β = 3.

link function within a GLM (Nelder and Wedderburn,

1972). Linear regression can then be used to perform

inference on climate given the proxy in a manner that

accounts for nonlinearities. However, as all negative ex-

cursions are mapped to zero, the GLM framework can-

not be used over such points. A related approach is to

embed the mechanistic model describing how climate

signals are recorded in the proxy archives within a hier-

archical model. Under some circumstances, such mod-

els may be inverted using Bayes’ rule to yield quan-

titative information about the underlying climate (e.g.

Tolwinski-Ward et al., 2011, 2013). This is similar in

spirit to the GLM framework, as both exploit the func-

tional relationship between proxy and climate. A limita-

tion common to both frameworks is that the parametric

from of the proxy–climate relationship must be known,

which may not be the case in practice.

One important difference between the two approaches

concerns the choice of dependent vs. independent vari-

able. Under the GLM framework, there is ambiguity in

the set-up of the model, as the goal is to infer climate

from proxies but the proxies are best understood as the

dependent variable. Bayes’ rule, in contrast, naturally

inverts the etiologically correct specification of climate

as the dependent variable to infer climate conditional on

the proxies (Brown, 1994; Tingley et al., 2012; Chris-

tiansen, 2014).

– Empirical transformation: when a parametric relation-

ship is not known a priori, or when parameter estimation

is unreliable, empirical transforms offer a useful alter-
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Inverse transform sampling of idealized proxy

c(t) = NINO3.4 (DJF)

c’(t) = c(t) + ε

z(t) = ITS(p(t))

Figure 2. Correcting for non-normality using inverse transform

sampling. Solid red: the normalized NINO3.4 index; dashed red:

standardized NINO3.4 with additive N (0,0.25) noise; grey: the

transformed version of the pseudo-proxy depicted in Fig. (1). Be-

cause the distribution of p(t) has a mass point at 0, we com-

pute the transform only on those time points where p(t)> 0, leav-

ing it 0 otherwise. Code for implementing the transform is avail-

able at https://github.com/CommonClimate/common-climate/blob/

master/gaussianize.m.

native. For example, the well-established power trans-

forms (Box and Cox, 1964) render non-normal time se-

ries approximately normal, but the estimation of their

exponents can be unstable in the presence of noise

(Bickel and Doksum, 1981). An alternative is afforded

by inverse transform sampling (ITS; e.g. van Albada

and Robinson, 2007), a robust approach for converting

any distribution to a standard normal. The transform

in this case proceeds by evaluating the inverse normal

cumulative distribution at the percentiles of the obser-

vations according to the fitted cumulative distribution

function; the resulting values are then approximately

normally distributed. Because it is quantile-based, this

method is less sensitive to outliers than power trans-

forms. It is also non-parametric and hence more widely

applicable. We note that the widely used standardized

precipitation index (SPI; McKee et al., 1993, 1995), of-

ten used to characterize drought conditions, amounts

to a parametric ITS assuming a gamma distribution for

precipitation measurements.

We now apply those approaches to better understand past

ENSO variability as depicted by nonlinear proxies.

2.3 Application to variance changes

In the absence of information on the proxy–climate link, ITS

is computationally simple and non-parametric, and allows

the transformed time series to be analysed using classical

tools. Fig. 2 shows the result of applying this transform to a

pseudo-proxy record generated according to Eq. (1). The am-

plitude of positive excursions in the transformed series is now

comparable to the original NINO3.4 series, and in repeated

experiments the distribution of variance ratios between the

early and late twentieth century (Fig. 3) is centred at 1.5,

much closer to the true value of 1.25, and the interquartile

range is now reduced to 0.75 (compare with 5.25 and 6.20,

respectively, using the raw proxy values). Similarly, the prob-

ability of overstating the true change in variance by more

than 50 % is only 22 % (vs. 86 % using the raw proxy val-

ues). Similar results are obtained by inverting Eq. (1), show-

ing that application of the correct transform can effectively

correct for nonlinearity.

However, while the transform adequately corrects for the

cubic nonlinearity, it cannot overcome the fundamental lim-

itation that this idealized proxy only records El Niño events,

while information about La Niña events is irretrievably

lost. Proxies generated according to Eq. (1) thus represent

a lossy transformation of the underlying climate signal, one

that no amount of statistical ingenuity can ever rectify. A

good probabilistic analysis should nonetheless yield reason-

able estimates of positive climate excursions, and accurate

error bounds for all climate excursions.

3 Inference from nonlinear proxies: three

approaches

We compare the relative merits of three approaches to re-

constructing past climate from a proxy generated accord-

ing to Eq. (1), given a calibration period when both climate

and proxy observations are available. The problem is more

general than the estimation of variance changes considered

above, since it seeks to estimate climate values and quan-

tify the associated uncertainties. We note that the problem of

statistical calibration of noisy predictors has received exten-

sive attention in the statistical (e.g. Brown, 1994) and climate

(e.g. Christiansen, 2014, and references therein) literature.

Our goal is neither to present an exhaustive list of possibili-

ties nor to re-invent the wheel, but rather to investigate some

choice practical methods that may be of use to palaeoclima-

tologists.

3.1 Three approaches to inference

– Method 1 (RAW): nonlinearity is ignored, and the proxy

series p(t) is used as a predictor in a standard linear re-

gression (an assumption implicit to many palaeoclimate

studies).

– Method 2 (ITS): nonlinearity is recognized, empirically

corrected via inverse transform sampling, and used as a

predictor in a standard linear regression.

– Method 3 (BPM): nonlinearity is recognized, and a

probability model that allows for Bayesian inversion of

Clim. Past, 12, 31–50, 2016 www.clim-past.net/12/31/2016/
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Figure 3. Distributions of estimated NINO3.4 variance ratios

within the periods 1900–1949 and 1950–1999, using positive proxy

excursions. Light blue: distribution of ratios from 10 000 samples

of p(t) derived according to Eq. (1) with noise variance set to 0.25

(compare with the dark grey curve in Fig. 1); dark blue: distribution

of ratios estimated from z(t), the empirical transform of each sample

of p(t) (compare with the dark grey curve in Fig. 2); green: distribu-

tion of ratios estimated from the functional transform ((p/α)β ). In

each case, the median is indicated with a dashed vertical line of the

same colour, while the ratio estimated from the original NINO3.4

series is indicated in red.

the structural dependence of the proxy on the climate

(Eq. 1) is constructed. The model, described extensively

in Appendix A, is used to infer the posterior distribution

of climate values given proxy observations, f (c|p).

These three cases involve increasing levels of sophistication

but do not attempt to cover all possible choices. Instead, our

purpose here is to illustrate the danger of ignoring nonlinear-

ity (RAW), outline an optimal (but difficult) solution (BPM),

and find a practical compromise between the two (ITS).

The experimental sample is composed of 10 000 surrogate

climate time series c(t) of length n= 300 years generated

according to an AR(1) process, with mean zero and a lag-

1 autocorrelation of γ = 0.7 to mimic the serial correlation

typical of observed sea-surface temperature time series; con-

clusions are not sensitive to this choice. The innovation stan-

dard deviation, σ , is chosen so that the standard deviation of

c(t) is unity. We add ε1 ∼N (0,δ), with δ = 0.5× σ , to pro-

duce c′(t), and the idealized proxy series is then generated

according to Eq. (1), with α = 1 and β = 3.

In the RAW and ITS cases, inference is made via linear

regression, where the regression model is trained on a cali-

bration interval formed from the most recent 150 time points.

To minimize erroneous inference when p = 0, the regression

model is fit using only proxy observations that are greater

than zero. We adopt a heuristic approach to the p(t)= 0 ob-

servations in the prediction interval, assigning to them the

value c̄−, the calibration sample mean of c(t) calculated over

time points for which p(t)= 0. While somewhat unortho-

dox in the regression context, the divergent treatments in the

p = 0 and p > 0 cases is a reasonable ad hoc procedure war-

ranted by the thresholding behaviour of the proxy.

For the two regression cases, uncertainties are quantified

via 95 % prediction intervals (PIs) following standard re-

gression theory (e.g. Wilks, 2011, Eq. 7.22), where the vari-

ance of residuals is again computed separately for p = 0 and

p > 0. In the Bayesian model, the posterior mean serves as

the optimal prediction of c(t), and 95 % credible intervals

(Jaynes, 1976; Gelman et al., 2004) are readily obtained from

the posterior samples.

For simplicity, we assume in the Bayesian treatment that

all model parameters (α,β,µ,σ,δ) are known. Doing so per-

mits for closed-form expressions for the required posterior

distributions that aid the interpretation of results. In prac-

tical applications these parameters would be inferred from

the data as well, via a hierarchical model and Markov chain

Monte Carlo-based inference (e.g. Gelman et al., 2004).

By constructing the Bayesian model to match the proxy-

generating process, in both structure and parameter values,

we give it an unfair advantage over the other methods. We

use this best-case scenario as a benchmark, expected to pro-

vide the best estimates of climate given the skewed proxy

measurements, as well as reliable estimates of uncertainty.

Appendix B explores the role played by the prior specifica-

tion of the variance of the climate process, σ 2.

3.2 Results

Results of performing inference on c(t) using each of the

three approaches are plotted in Fig. 4 for one realization of

the climate and noise processes. The raw regression overesti-

mates positive excursions (cf. time points 110 to 130), while

in contrast the amplitudes of positive excursions as inferred

from the regression on the transformed proxies and using the

Bayesian inversion of the mechanistic model are in reason-

able agreement with c(t). The raw regression could thus ex-

aggerate any changes in climate variability prior to the cali-

bration period, a direct consequence of linearizing the non-

linear climate-proxy relationship.

We investigate the properties of the three inference meth-

ods, and the sensitivity of the results to the ratio δ/σ , us-

ing residual plots (Fig. 5). For small noise levels (δ = 0.1σ ),

and for p > 0, there is most structure in the residual plot for

the RAW method and least for the BPM, indicating that the

RAW and BPM approaches provide, respectively, the poor-

est and best fits to the data. The curvature of the residual

plot for p > 0 is positive for the RAW regression, as the non-

linearity magnifies large excursions. In contrast, the resid-

ual plot for the ITS regression displays negative curvature,

indicating that the transform overly compresses large excur-

sions and overly magnifies small ones. In the least noisy case
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(δ = 0.1σ ), the Bayesian model yields near-perfect estimates

for p > 0, while for p = 0 the distribution of residuals is sim-

ilar for all three methods.

As the noise level increases (middle and bottom rows), the

residual plots become less structured and the vertical spread

in each case becomes comparable to that of the p = 0 case.

For higher noise levels, there are large positive outliers in the

residuals from the RAW proxy regression, as expected since

the method makes no account of the nonlinearity. In contrast,

the ITS regression and Bayesian inversion yield generally

smaller residuals even for high noise levels.

We further investigate the diagnostic features of the infer-

ence procedures using the 10 000-member ensemble of real-

izations of the climate and noise processes for the intermedi-

ate noise level δ = 0.5σ (Table 1). To quantify the properties

of the uncertainty intervals, we first evaluate their width, con-

sidering both the p = 0 and p > 0 cases for each inference

method (top row). All three methods show larger uncertain-

ties in the p = 0 case (around 2.7 ◦C) with small differences

between methods, consistent with the lack of information of-

fered by the proxy in this regime. When p > 0, uncertain-

ties are reduced for all methods, as expected from the in-

formation provided by the proxy. The raw proxy regression

results in the widest uncertainty intervals, while those from

the Bayesian inversion are narrowest.

To see how well such intervals encompass the true cli-

mate fluctuations, we calculate their actual coverage rates

(Guttman, 1970), to be compared with a nominal coverage

rate of 95 % (Table 1, rows 3–4). For the two regression ap-

proaches, the uncertainties are slightly too permissive in both

cases, with actual coverage rates of about 94 %. The cover-

age rate for the mechanistic model is correct for the p = 0

case but only about 90% when p > 0. In contrast to RAW

and ITS, the mechanistic model does not involve two sepa-

rate calibrations and solutions for the p = 0 and p > 0 cases.

As such, the coverage rates are more appropriately assessed

without division into the two cases, yielding PIs with a cov-

erage rate of 93 with a standard error of ±2 %, compatible

with the nominal rate of 95 %.
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ŷ

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3
Raw Proxy,  b = 0.5 × m

ŷ
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Figure 5. Residuals (differences between estimated and true values of the climate) as a function of the estimated climate. The three inference

methods (columns) are compared for three values of δ (rows). Blue circles: residuals when p > 0; box plots: the distribution of residuals for

p = 0. Whiskers extend to the 2.5 % and 97.5 % quantiles; boxes denote the 25 % and 75 % quantiles; circles mark the median. The middle

row corresponds to the simulated proxy plotted in Fig. 4.

While coverage rates can always be increased by widen-

ing PIs, a useful probabilistic model should yield predictions

that are both sharp and on point. A complementary view

comes from the interval score (Gneiting and Raftery, 2007,

Eq. 43), which balances coverage with sharpness. That is,

the score rewards the narrowest intervals that encompass the

true values at the nominal rate (here, 95 %) and should be

as small as possible. Computed scores (Table 1, rows 5–6)

are lowest for the BPM, whose slightly permissive coverage

is more than compensated for by smaller widths; the scores

are also the least variable for this method. At the opposite

end, the raw regression displays the largest and most vari-

able scores, while the ITS regression displays scores much

closer to the BPM, and with comparable variability, particu-

larly when data speak (p > 0).

The bias in the mean is quite small for all methods

(rows 7–8) but is slightly more variable for the two regres-

sion methods (raw and transformed) than for the Bayesian

model. The bias in the Bayesian inference for p > 0 results

from the balance between the erfc term in Eq. (A5) giving

greater weight to more positive values and the informative

prior shrinking the posterior mean towards the prior mean

(Eq. A6); given the particular parameters, the erfc terms has

a stronger effect and there is a slight positive bias. More ap-

propriately, assessing the Bayesian inference jointly for the

p = 0 and p > 0 cases results in a bias that is not inconsis-

tent with zero (0.05 with standard error 0.08). Changing the

prior sharpness for the climate process has competing effects

on the bias (and other diagnostics) in the p = 0 and p > 0

cases; these issues are investigated further in Appendix B.
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Table 1. Inference diagnostics derived from 10 000 realizations of the climate process c(t), for each of the three inference approaches, with

δ = 0.5. CI width is the width of the 95 % uncertainty intervals produced by each method (see Fig. 5) averaged over the 300 time points. The

coverage rate should be compared to its nominal value of 95 %. The interval score should be as small as possible. The bias is defined as the

difference between the estimated and true climate, averaged over the entire interval. All statistics have been stratified according the sign of

p to account for the varying amounts of uncertainty in each case. For the top three rows, we report the mean and standard error (s.e.) of each

distribution, obtained from the 10 000 realizations. The variance ratio statistics pertain to the distributions plotted in Fig. 6; variance ratios

for p = 0 are not reported because all methods produce constant estimates in that case.

Quantity Statistic RAW ITS BPM

p = 0 p > 0 total p = 0 p > 0 total p = 0 p > 0 total

CI width ( ◦C) mean 2.71 2.07 2.39 2.71 1.84 2.28 2.74 1.60 2.17

s.e. 0.33 0.21 0.21 0.33 0.17 0.20 0.00 0.01 0.08

Coverage rate mean 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.91 0.93

s.e. 0.05 0.04 0.03 0.05 0.04 0.03 0.03 0.04 0.02

Interval score mean 03.51 2.99 3.27 3.51 2.34 2.94 3.27 2.32 2.79

s.e. 0.82 1.33 0.81 0.82 0.40 0.49 0.50 0.38 0.34

Bias ( ◦C) mean -0.00 +0.02 +0.01 −0.00 −0.01 −0.00 −0.01 +0.11 +0.05

s.e. 0.19 0.12 0.12 0.19 0.11 0.12 0.14 0.07 0.08

Variance ratio mode – 0.40 – – 0.96 – – 0.96 –

P(R > 1.5) – 0.29 – – 0.07 – – 0.07 –

Finally we summarize how closely each method estimates

the variance ratio between the calibration (t > 151) and vali-

dation (t ≤ 150) intervals (Table 1, rows 9–10). We calculate

the ratio of sample variances between the two periods for

each of 10 000 inferences of c(t) using each method. We re-

strict our attention to the case where p > 0, as when p = 0

each method estimates c(t) by a constant value and the vari-

ance of the corresponding climate cannot be estimated. To re-

move the effect of differences in sample variances calculated

over the two intervals for realizations of the actual climate

c(t), we divide the ratio inferred from each pseudo-proxy

by the ratio calculated from the corresponding realization of

c(t).

An ideal estimator of past climate should therefore result

in a distribution of normalized variance ratios that is tightly

distributed about unity, and indeed we find this to be the

case for regression on the transformed proxies and for the

Bayesian inversion (Fig. 6, blue and green curves; Table 1).

In contrast, regression on the raw proxies results in a much

broader distribution, peaked at about 0.4, with a much heav-

ier upper tail (Fig. 6, cyan curve; Table 1). More tellingly,

regression on the raw proxies results in a normalized vari-

ance ratio in excess of 1.5 in 29 % of experiments, more than

4 times as frequently as for the other two methods (Table 1,

last row): in other words, regression on the raw proxies ups

the risk of overestimating changes in variability by a factor

of 4 as compared to the other methods.

Taken together, the results of our numerical experiments

lead to a number of general observations about the poten-

tial pitfalls of ignoring nonlinearity in proxies, as well as the

strengths and weaknesses of potential solutions. A failure to

account for strong nonlinearity in a proxy often presents it-

self in structured residuals (Fig. 5) and incurs a high risk
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Figure 6. Distribution of variances ratios between the calibration

and validation intervals, as inferred from each method and nor-

malized by the same ratio calculated from the actual realization of

c(t). Cyan: raw regression; blue: regression on transformed pseudo-

proxies; green: Bayesian inversion. The black dashed line denotes

unity, which, due to the normalization, is the result under perfect

inference for each realization of c(t). Distributions are based on

10 000 realizations of c(t) with δ = 0.5.

of overstating changes in climate variability (Table 1, last

row). Since palaeoclimate proxies are almost never consid-

ered in isolation, but (rightfully so) often stacked against

comparable records, it is necessary that all proxies be ap-

proximately linearly related before interpreting discrepancies

between records. This caveat is especially applicable to mul-
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tiproxy analyses, as a climate reconstruction based on lin-

ear regression that includes such nonlinear proxy predictors

would inherit the same potential pitfalls, though they may be

attenuated by the presence of other sources of information.

Applying ITS to the nonlinear proxy record prior to re-

gression analysis results in a much better fit according to the

residual plots, as well as more faithful estimates of changes

in variance. Such a transformed proxy series will thus be less

likely to lead to spurious conclusions about past climate vari-

ability if included in a multiproxy reconstruction or a proxy

intercomparison.

An important shortcoming of the regression methods used

here is that inference is generally limited to a best-estimate

of past climates and an uncertainty interval, whereas the

Bayesian framework naturally provides the full distribution

of climate conditional on the proxy observations (for further

discussion see Tingley et al., 2012). However, we note that

the excellent performance of the Bayesian inversion in all nu-

merical experiments performed here is to be expected given

that the inference model is constructed using the correct

mechanistic model and parameter values. In practical appli-

cations, the parametric form of the mechanistic model would

likely not be an exact representation of the data-generating

mechanism, while the parameters themselves would need to

be estimated from the data. This can be computationally de-

manding when no closed-form solution exists for the pos-

terior distribution of model parameters (as in this case) and

would naturally broaden the posterior distributions, i.e. lead

to more uncertainties about the reconstructed climate.

4 Applications to published records

4.1 Laguna Pallcacocha

We now investigate how inferences made from the iconic La-

guna Pallcacocha record of river run-off from the southern

Ecuadorian Andes (Moy et al., 2002) are affected by different

considerations of nonlinearity. The primary variable of inter-

est here is the red colour intensity of the sediment, which

is controlled by sediment delivery to the lake. Episodes of

alluvial deposition are hypothesized to occur predominantly

during El Niño events (Rodbell et al., 1999), similar to our

idealized proxy (Sect. 2). Our intent here is not to dispute

qualitative conclusions made from the Laguna Pallcacocha

record – they turn out to be robust across the analyses we

consider – but to show how nonlinearity may affect the quan-

titative inference made from such a proxy, and we view the

analysis primarily as an illustrative example.

The time series of Pallcacocha red colour intensity dis-

plays pronounced positive skew (Fig. 7a), closely following

a generalized extreme value distribution (GEV, Fig. 7b). In

contrast, the distribution of December–January–February av-

erages of NINO3 values is fairly close to a Gaussian, so using

the Pallcacocha red colour record to infer changes in ENSO

variability requires inferring a normally distributed climate

variable from a strongly non-normal proxy time series – as

per the experiments in Sects. 2 and 3. Fitting a mechanis-

tic model would necessitate determining both its structural

form and parameters, so for simplicity we explore the conse-

quences of an empirical transform (ITS). By design, applying

the transform to the empirical distribution produces a nearly

Gaussian series (Fig. 7d).

We investigate how the transform affects the time series of

sample variances computed on disjoint, 100-year segments

(Fig. 8). While the 100-year variance time series calculated

from the raw series suggests an abrupt increase in ENSO-

related variance at about 5000 years BP (grey dashed line),

the series calculated from transformed values displays a more

gradual increase. To establish if either or both series record

significant increases in variance around 5000 years BP, we

compute the variance ratio between two segments delineated

by the grey line (centred at 3150 BCE), with lengths that vary

between 200 and 3600 years. A window length of 200 years,

for instance, means that we compare variances over the pe-

riod 3350–3151 and 3150–2951 BCE. As the statistic of in-

terest is a variance ratio, results are unchanged under linear

transformation of the series: while accounting for the non-

linearity is necessary for meaningful inference, calibrating to

climate units is not.

On account of the non-normal and serially correlated na-

ture of both series, a standard F test for the significance of

the observed variance ratio is not appropriate. Instead, we

assess the significance of the variance ratio for each series

via a block bootstrap resampling plan (Efron and Tibshirani,

1993; Kunsch, 1989), using a block length of 25 years (Ta-

ble 2). That is, we randomly sample with replacement the

original time series in 25-year blocks, compare variances

before and after the year 3150, and do so N = 2000 times

to obtain a null distribution, smoothed by kernel averaging

(e.g. Wilks, 2011, Chap 4). The P value for each observed

ratio (the probability of observing a ratio at least as large

as that observed from chance alone) is then estimated from

the bootstrap-derived null distributions. The results (Table 2)

show two salient features: firstly, the variance ratio is gener-

ally larger with the raw than with the transformed series, as

would be expected from Sects. 2 and 3. Secondly, the vari-

ance ratio estimated from the raw series is deemed significant

at the 5 % level for all segment lengths, while the transformed

series requires segment lengths of at least 1000 years to make

this conclusion. Hence, with the raw series one would detect

a significant shift at the boundary in a matter of 200 years,

while when using the power-transformed series, this transi-

tion would be seen to occur much more gradually, taking at

least 1000 years to become manifest. We note that the change

in variance is largely driven by the record’s accumulation rate

(Rodó and Rodriguez-Arias, 2004), so we refrain from inter-

preting this aspect of the record.

Following Moy et al. (2002), we next apply Morlet wavelet

analysis (Torrence and Compo, 1998), modified to account

for energy conservation (Liu et al., 2007), to both the raw
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Figure 7. Raw and transformed time series of the Laguna Pallcacocha record (Moy et al., 2002). (a) Raw time series, interpolated at 2-year

intervals; (b) empirical histogram (bars) and parametric fit to a GEV distribution with parameters (kP ,σP ,µP )= (0.07,15.59,72.13) (red

line); (c) transformed time series with λ= 0.31; (d) empirical histogram of the transformed time series (bars) and parametric fit to a standard

normal (red line).

-10000 -8000 -6000 -4000 -2000 0 2000

0

0.5

1

1.5

2

2.5

3

3.5
Variance on 100-year windows

V
ar

ia
nc

e 
(a

rb
itr

ay
 u

ni
ts

)

Time (CE)

 

 
Red Color Intensity
Inverse transformed intensity

Figure 8. Variances calculated over non-overlapping 100-year seg-

ments of the Pallcacocha red colour intensity record (thick cyan

line) and after applying the empirical transform (thin blue line).

Both series were standardized prior to analysis.

and transformed series. Results are qualitatively similar in

both cases (Fig. 9): interannual variability is muted prior to

the mid-Holocene, while millennial and centennial variabil-

ity is relatively persistent. However, the two wavelet trans-

forms differ in detail, in particular regarding which “islands”

of multidecadal power are significant with respect to a red

noise benchmark (Torrence and Compo, 1998). In the latter

5000 years of the record, high-frequency variability appears

more consistently significant with the empirical transform

than without, indicating that the mid-Holocene shift for high-

frequency variance is more consistently significant under the

transform, even though the shift in total variance appears less

substantial.

Our analysis does not contradict the qualitative conclu-

sions of the original study by Moy et al. (2002). Indeed, the

transformed series also suggests that ENSO events “become

more frequent over the Holocene until about 1200 years ago,

and then decline towards the present” (Moy et al., 2002).

Wavelet analysis accounting for energy conservation (Liu

et al., 2007) also suggests a statistically significant modula-

tion in the 2000-year range, though it is nearly equal in am-

plitude to a ∼ 500 yr broadband peak and lies mostly within

the cone of influence. Nonetheless, results of the statistical

analyses are markedly changed from a quantitative stand-

point when nonlinearity is recognized and the proxy series

transformed to approximate normality. Applying classical es-

timators to the raw series may lead to erroneous conclusions

about the magnitude of changes in the variability of the un-
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Figure 9. Wavelet analysis of the Laguna Pallcacocha record (Moy et al., 2002). (a) Morlet wavelet coefficients for raw values of the red

colour intensity series, interpolated at 2-year intervals; (b) global wavelet spectrum (black), with the AR(1) benchmark plotted in grey. (c, d)

As in (a, b) but for the transformed time series. Colour bars are omitted since units are arbitrary.

derlying climate, as well as their localization in frequency

space. The empirical transform counterbalances the nonlin-

earities inherent to run-off proxies such as the Pallcacocha

red colour intensity record, and the resulting transformed se-

ries is nearly normal and more likely to have an approxi-

mately linear relationship with climate (cf. the numerical ex-

amples of Sects. 2 and 3). One is therefore able to interpret

changes in variability estimated from the transformed proxy

record as indicating changes in climate variability (cf. Fig. 6).

4.2 Lake Challa

Recently, Wolff et al. (2011) used varved thickness at Lake

Challa (equatorial east Africa) to retrace changes in ENSO

activity since the Last Glacial Maximum. The proxy is inter-

preted as follows: El Niño (La Niña) events are associated

with wetter (drier) conditions in east Africa and decreased

(increased) surface wind speeds, which drive turbulent mix-

ing in the lake, thereby bringing nutrients to the surface and

boosting primary productivity. Thicker varves are therefore

indicative of La Niña conditions, and thinner varves of El

Niño conditions, resulting in a large anti-correlation (r =

−0.48) between varve thickness and NINO3.4 SST (Wolff

et al., 2011). The raw varve thickness data are plotted in

Fig. 10a for the past 3000 years. The histogram is highly

skewed and closely fits a log-normal distribution with pa-

rameters (µ,σ )= (0.33,0.31) (Fig. 10b). The transformed

series (Fig. 10c) closely follows a standard normal distribu-

tion (Fig. 10d).

As the raw Lake Challa series has been used as a proxy for

ENSO activity (Emile-Geay et al., 2013a, b), it is worth ask-

ing how much it resembles the Lake Pallacacocha red colour

intensity. Fig. 11 plots the two time series, as well as their

standard deviations on sliding 40 yr windows, before and af-

ter transforming each record to normality. While Fig. 11c

shows a fair amount of structure in each time series (peaks

near 500 BCE and 2000 CE in Lake Challa varve thick-

ness variability, quasi-periodic modulations of red colour in-

tensity variability with an approximate recurrence time of

300 years), the transformed series (Fig. 11d) show different

features: variability in red colour intensity now displays more

pronounced late Holocene excursions than its untransformed

counterpart, while variations in varve thickness now appear

to recur at centennial, rather than millennial, scales.

This illustrative comparison is necessarily limited, as the

proxies are located at either end of the Indo-Pacific system

and are sensitive to different aspects of tropical Pacific SST

(Challa responds more to central Pacific anomalies; Pallca-

cocha responds more to variability along the Peruvian coast,

though see Rodbell et al. (2008) for a non-climatic interpre-

tation), which are not simply related to each other. In addi-

tion, the Pallcacocha sensitivity to SST is highly nonlinear, as

noted before, as is the Challa relationship: Wolff et al. (2011)

note that “the varve thickness record is particularly sensitive
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Table 2. Significance of variance changes across the 3150 BCE boundary (grey line in Fig.8) in Laguna Pallcacocha red colour intensity. The

table lists P values for a block bootstrap test (25-year blocks, N = 2000 realizations) of the null hypothesis that the variance jump across

the boundary could have arisen from chance alone. The test is deemed significant at the α level whenever P ≤ α and is conducted on time

segments of variable length, to identify how long an interval is needed to detect a shift in variance. Results are virtually identical to 10-year

blocks.

Statistic Segment length (yr) 200 400 800 1000 1400 1800 3600

RAW variance ratio 5.082 3.277 2.411 2.048 1.822 2.288 2.501

P value < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

ITS variance ratio 1.275 1.182 1.155 1.304 1.359 1.360 1.797

P value 0.199 0.218 0.118 0.012 0.003 < 10−3 < 10−3
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Figure 10. Raw and transformed time series of Lake Challa varve thickness (Wolff et al., 2011). (a) Raw time series, interpolated at yearly

intervals; (b) empirical histogram (bars) and parametric fit to a log-normal distribution (cyan line); (c) transformed time series; (d) empirical

histogram of the transformed time series (bars) and parametric fit to a standard normal (blue line).

to La Niña conditions and shows some evidence for satu-

ration during El Niño years”. The main message is that the

visual impression changes with the application of the trans-

forms. Given that each proxy is non-normal due to a non-

linear relationships with normally distributed SSTs, there is

a strong rationale for comparing the transformed rather than

the untransformed series.
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(a) Lake Challa vs Pallcacocha, raw
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(b) Lake Challa vs Pallcacocha, transform
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Figure 11. Comparison of Lake Challa and Laguna Pallcacocha records. Top row: raw (untransformed) records. Bottom row: transformed

records. Left: time series interpolated at biannual resolution. Right: standard deviation on sliding 40 yr windows.

5 Discussion

Much of palaeoclimatology is concerned with the charac-

terization of climate variability in the pre-instrumental era.

Many proxy archives exhibit nonlinear relationships to the

underlying climate, whereas many commonly used tools as-

sume, either explicitly or implicitly, that the proxies are lin-

early related to a normally distributed climate variable. As

illustrated for an idealized proxy (Sects. 2 and 3), and for

ENSO-sensitive proxies (Sect. 4), direct variance estimates

on different segments of nonlinear proxy records generally

give a misleading picture of climate variability.

There are a number of techniques that allow for mean-

ingful conclusions about changes in the underlying climate

from such nonlinear proxy archives. Applying an empirical

transform to such a series can render it approximately nor-

mal, so that standard data-analytic tools may be applied. In

the context of the pseudo-proxy study (Sect. 2), the inverse

transform sampling approach corrected for nonlinearity and

reduced the risk of overstating variance changes. In the con-

text of inferring climate values from proxy values (Sect. 3),

the transform provided a regression fit comparable to that of

an optimal benchmark and led to normally distributed resid-

uals, in accordance with the assumptions of the regression

framework. These examples also highlighted the dangers of

ignoring nonlinearity in the proxy–climate relationship.

Applying the transform to the Lake Pallcacocha record

(Sect. 4.1) allows conclusions from a wavelet analysis and

estimates of changes in variance to be interpreted in terms

of climate, even without explicit knowledge of the mech-

anism responsible for the nonlinearity. Transformation al-

lows for classical tools to be correctly applied to the anal-

ysis of palaeoclimate records, and it is a simpler approach

than specifying and fitting a mechanistically informed statis-

tical model. Transformation to normality may thus be seen

as a pragmatic compromise between scientific and statistical

rigour on the one hand and the need for practical solutions

to analyse nonlinear proxy time series on the other. A limita-

tion of the transform approach is that it is blind to the data-

generating mechanism and may conflate various sources of

nonlinearity.

We thus stress that generic recipes are no substitute for a

mechanistic understanding, and ultimately the scientific in-

terpretation of a proxy in terms of its climatic, ecological,

or geological controls should guide the choice of statistical

methodology. The example of Sect. 3 illustrates that explic-
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itly modelling the mechanism giving rise to non-normality

yields much better estimates of the underlying climate. In

the example considered here, both the functional form and

parameters of the mechanistic model were assumed known,

while in real applications the form would likely be an approx-

imation and the parameters would be estimated as part of a

fully Bayesian analysis (Gelman et al., 2004; Tingley and

Huybers, 2010a, b; Tolwinski-Ward et al., 2013), together

with their associated uncertainties.

In instances where many proxies are used as predictors of

past climates, such as climate reconstructions of the Com-

mon Era (e.g. Mann et al., 1998; Luterbacher et al., 2004;

Moberg et al., 2005; Mann et al., 2008; Kaufman et al., 2009;

Mann et al., 2009; Barriopedro et al., 2011; Emile-Geay

et al., 2013b; Tingley and Huybers, 2013), individually mod-

elling each proxy may prove challenging. Ideally, one would

apply mechanistic forward models to each proxy (e.g. Dee

et al., 2015) and combine them within a fully Bayesian infer-

ence procedure (Tingley et al., 2012). Until a full suite of val-

idated models and computationally accessible Bayesian tools

are available, however, empirical transforms provide a sim-

ple expedient to ensure that all input series fit the assumption

of linear regression from a multivariate normal model that

underpins most climate field reconstructions. We stress that

such transforms are not a panacea, however, as they do not

address other modelling challenges with proxy data, includ-

ing time uncertainty (Anchukaitis and Tierney, 2012; Com-

boul et al., 2014), the heterogeneous distribution of observa-

tions in space and time, spatial covariance modelling (Tin-

gley and Huybers, 2010a; Guillot et al., 2015), and the dif-

fering spatial and temporal averaging inherent to the proxies

(Tingley et al., 2012; Hanhijärvi et al., 2013).

Finally, while this article has focused on nonlinear proxy

records with power-law type relationships, it is worth point-

ing out that a number of other valuable climate proxies may

deviate from linearity in other ways. In particular, records

based on proportions (e.g. pollen counts, lithological frac-

tions, fractions of certain faunal assemblages), being in the

range [0,1], also involve a nonlinear transform of Gaussian

inputs like temperature and therefore require specific infer-

ence tools. Another key factor complicating inference from

climate proxies is the existence of multiple influences on

the measured variable, e.g. temperature and soil moisture

controls on tree-ring width (e.g. Anchukaitis et al., 2006;

Vaganov et al., 2006; Tolwinski-Ward et al., 2011; Evans

et al., 2014) or temperature and seawater composition con-

trols on the oxygen isotopic composition of biocarbonates

(e.g. Thompson et al., 2011; Russon et al., 2013; Dee et al.,

2015). We will explore solutions to these problems in future

work.

6 Conclusions

In this article we showed that nonlinearity fundamentally

alters the information content of climate proxies and that

it must be dealt with, lest some erroneous inferences be

made. Though we advocate for mechanistic modelling when-

ever possible, we showed that a simple empirical transform

(ITS) can often be sufficient to remedy many of the ills of

nonlinearity, and we recommend that palaeoclimatologists

working with nonlinear proxies adopt such simple trans-

forms in their work. Matlab code for implementing the trans-

form is available at https://github.com/CommonClimate/

common-climate/blob/master/gaussianize.m.
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Appendix A: Bayesian model derivation
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Figure A1. Posterior probability density functions of climate, ac-

cording to Eqs. (6, 7), with µ= 0, σ = 1, α = 1, and β = 3 and the

noise level δ taking on the values [0.1,0.5,1]×σ . Solid and dashed

lines lines correspond, respectively, to proxy values of p = 2.5 and

p = 0. The black vertical line marks the point (p/α)
1
β , the true

value of c in the absence of noise.

Consider the proxy model of Eq. (1) and assume for sim-

plicity that both c and ε are normally distributed, with c ∼

N (µ,σ 2) and ε ∼N (0,δ2).

We are interested in inferring c(t) from p(t) and, more

specifically, in finding the posterior probability distribution

of climate given the proxy, f (c|p). Using Bayes’ theorem,

the posterior distribution f (c|p) can be re-expressed as a

function of the distribution of the proxy conditional on cli-

mate, f (p|c), and the prior distribution of climate states,

π (c):

f (c|p)∝ f (p|c)π (c). (A1)

In what follows, we set the prior on the climate states,

π (c), to follow the same distribution as the process used to

generate the climate itself. The prior is therefore informative

and unbiased, and the posterior will be a mix of the infor-

mation supplied by the prior and information from the data.

As the prior distribution and the distribution of climate itself

are the same in this illustrative example, in the absence of

any information from the data, the posterior distribution of

the climate will converge to the distribution used to generate

climate, N (µ,σ 2).

On account of the thresholding behaviour of the proxy, it is

necessary to distinguish two cases in calculating the posterior

distribution of climate.

– Case 1:

p(t)= 0

f (c|p = 0)∝ P(p = 0 |c)π (c)∝ P(c′ < 0 |c)π (c)

f (c|p = 0)∝ P(c+ ε < 0 |c)π (c)∝ P(ε <−c |c)π (c)

f (c|p = 0)∝

−c∫
−∞

e
−
ξ2

2δ2 dξ · e
−

(c−µ)2

2σ2 (A2)

With some rearrangements, the integral may be rewrit-

ten with the help of erfc, the complementary error func-

tion1:

f (c|p = 0)∝ erfc

(
c

δ
√

2

)
e
−

(c−µ)2

2σ2 , (A3)

and the normalization constant can then be calculated

numerically. The posterior is the product of two terms.

The first gives the likelihood that p = 0 given any value

of c, while the second is the prior on c. Note that the

likelihood increases as c decreases, and in the absence

of the prior the uncertainty interval for c would be un-

bounded from below. The prior distribution thus pro-

vides important regularization and allows for uncer-

tainty estimates with finite width when p = 0.

– Case 2:

p(t)> 0

f (c|p > 0)∝ P(p|p > 0,c)P(p > 0|c)π (c)

f (c|p > 0)∝ P(p = αc′
β
|c)P(p > 0|c)π (c)

f (c|p > 0)∝ P
(
ε = (p/α)

1
β − c |c

)
P(p > 0|c)π (c)

f (c|p > 0)∝ e

−
1
2

 (p/α)

1
β −c
δ

2

(A4)

·P(c+ ε > 0|c) · e
−

1
2

(
c−µ
σ

)2

f (c|p > 0)∝ e
−

1
2

(
(p/α)

1
β −c
δ

)2
−

1
2

(
c−µ
σ

)2

·P(ε >−c|c)

f (c|p > 0)∝ e
−

1
2

(
c−µ′

σ ′

)2

·

∞∫
−c

e
−
ξ2

2δ2 dξ

f (c|p > 0)∝ e
−

1
2

(
c−µ′

σ ′

)2

· erfc

(
−c

δ
√

2

)
(A5)

where

µ′ =
µδ2
+ (p/α)

1
β σ 2

δ2+ σ 2
and σ ′

2
=

δ2σ 2

δ2+ σ 2
(A6)

1erfc(x)= 2√
π

∫
∞

x e−u
2
du
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The posterior is once more the product of two terms.

The first is a normal density that combines the informa-

tion from the prior and the likelihood of the observed

value of p. As is common in such settings (e.g Gelman

et al., 2004, chap 2), the mean of this normal distribution

is an inverse variance-weighted mean of the prior mean

and the transformed proxy value, while the variance is

the harmonic mean of the prior and noise variances. The

second term in the posterior gives the likelihood of ob-

serving a non-zero value of p, conditional on the value

of the climate.

Examples of the posterior distribution are shown in

Fig. A1, for different relative values of δ and σ . In the limit

of no noise (δ→ 0), the erfc terms converge to step functions

at zero and ensure that, in the p = 0 case, the distribution is

π (c) for c ≤ 0 and 0 otherwise – that is, the negative half of

a scaled normal distribution. Similarly, in the p > 0 case, the

posterior distribution converges to a delta function centred

at (p/α)
1
β , as the variance in Eq. (A6) is zero. In the case

δ = σ , the distributions for both p > 0 and p = 0 are much

flatter and display substantial overlap, indicating the influ-

ence of the informative prior. Finally, in the limit as δ→∞,

the posterior converges to the prior π (c) and the posterior

distribution is the same in both the p > 0 and p = 0 cases.

Appendix B: Alternate prior choices

The choice of prior affects both point estimates and uncer-

tainty intervals and is the dominant control on the inference

in data-poor situations – such as the p = 0 case for the exam-

ple discussed in the text. Here we explore, both qualitatively

and quantitatively, the influence of the prior standard devia-

tion, σp, for the climate process on the inference of climate

conditional on proxy values.

To build intuition into the role of the prior, consider the

case where σp→ 0, corresponding to perfect prior informa-

tion. Provided that δ > 0, the posteriors for both p = 0 and

p > 0 then converge to delta functions atµ, and the data have

no influence on the posterior. In contrast, as σp→∞, corre-

sponding to an uninformative prior, the posterior for p > 0

has the same form as for finite σp, but now the mean and

variance (Eq. A6) are, respectively, (p/α)(1/β) and δ2. For

the p = 0 case, Eq. (A3) then converges to something pro-

portional to erfc, which is not a proper probability distribu-

tion as its integral on the real line is infinite. An informa-

tive prior therefore plays two roles: providing regularization

when p = 0 so that uncertainty widths are finite, and shrink-

ing the posterior mean towards the prior mean when p > 0,

while likewise reducing the posterior variance.

Table B1 presents the same statistics as Table 1, but for the

three following situations: (i) Bayesian posterior distribution

with σp = σ (true standard deviation); (ii) DBL: σp = 2×σ ;

and (iii) HLF: σp =
1
2
× σ . The wider (DBL) prior results

in substantial negative bias for p = 0, as the lower tail of

the posterior expands towards more negative values. For the

p > 0 case, the wider prior results in a positive bias, as

there is more posterior mass farther from zero and insuffi-

cient shrinkage towards the true climate mean. With more

weight given to the observed value of p, rather than the prior,

the posterior approaches a normal with mean (p/α)(1/β) and

variance δ2 – despite the fact that a particularly large ob-

served p is more likely due to the error term than the climate.

The situation is reversed for the HLF prior, with positive bias

when p = 0 and negative bias when p > 0.

Although the uncertainty intervals are wider under the

DBL as compared with the CTL prior, the coverage rates are

largely unchanged between the two. There is a trade-off in

this case, as the wider prior results in an increased probabil-

ity of small magnitude values of c not being covered by the

intervals, and a decreased probability that large magnitude

values of c fall outside the intervals. For the HLF prior, the

uncertainty intervals are narrower and coverage rates lower

as compared with the CTL prior. For both the DBL and HLF,

the interval scores are larger than for CTL, indicating that,

of the three priors, the latter results in the best compromise

between coverage rate and interval width.
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Table B1. Inference diagnostics derived from 1000 realizations of the climate process c(t), for three values of the prior standard deviation

σp , with δ = 0.5. CTL: σp = σ (true standard deviation); DBL: σp = 2× σ ; HLF: σp =
1
2
× σ .

Quantity Statistic CTL DBL HLF

p = 0 p > 0 total p = 0 p > 0 total p = 0 p > 0 total

CI width mean 2.74 1.60 2.17 4.86 1.73 3.29 1.62 1.28 1.45

s.e. 0.00 0.01 0.08 0.00 0.02 0.23 0.00 0.01 0.02

Coverage rate mean 0.95 0.91 0.93 0.96 0.90 0.93 0.72 0.77 0.74

s.e. 0.03 0.04 0.02 0.03 0.04 0.02 0.07 0.06 0.05

Interval score mean 3.29 2.32 2.80 5.24 2.52 3.86 6.99 3.65 5.39

s.e. 0.52 0.39 0.35 0.30 0.41 0.31 2.36 0.98 1.39

Bias mean −0.01 +0.11 +0.05 −0.84 +0.24 −0.30 +0.42 −0.17 +0.13

s.e. 0.14 0.07 0.08 0.14 0.07 0.07 0.14 0.09 0.12

Variance ratio mode – 0.96 – – 0.96 – – 0.96 –

P(R > 1.5) – 0.07 – – 0.07 – – 0.06 –
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