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Abstract. The multi-decadal to centennial hydroclimate
changes in East Africa over the last millennium are stud-
ied by comparing the results of forced transient simula-
tions by six general circulation models (GCMs) with pub-
lished hydroclimate reconstructions from four lakes: Challa
and Naivasha in equatorial East Africa, and Masoko and
Malawi in southeastern inter-tropical Africa. All GCMs sim-
ulate fairly well the unimodal seasonal cycle of precipitation
in the Masoko–Malawi region, while the bimodal seasonal
cycle characterizing the Challa–Naivasha region is gener-
ally less well captured by most models. Model results and
lake-based hydroclimate reconstructions display very differ-
ent temporal patterns over the last millennium. Additionally,
there is no common signal among the model time series, at
least until 1850. This suggests that simulated hydroclimate
fluctuations are mostly driven by internal variability rather
than by common external forcing. After 1850, half of the
models simulate a relatively clear response to forcing, but
this response is different between the models. Overall, the
link between precipitation and tropical sea surface tempera-
tures (SSTs) over the pre-industrial portion of the last millen-
nium is stronger and more robust for the Challa–Naivasha re-
gion than for the Masoko–Malawi region. At the inter-annual
timescale, last-millennium Challa–Naivasha precipitation is
positively (negatively) correlated with western (eastern) In-
dian Ocean SST, while the influence of the Pacific Ocean
appears weak and unclear. Although most often not signifi-
cant, the same pattern of correlations between East African
rainfall and the Indian Ocean SST is still visible when using
the last-millennium time series smoothed to highlight cen-

tennial variability, but only in fixed-forcing simulations. This
means that, at the centennial timescale, the effect of (natural)
climate forcing can mask the imprint of internal climate vari-
ability in large-scale teleconnections.

1 Introduction

In 2011, the Horn of Africa was affected by the most seri-
ous drought in decades, leading to severe humanitarian con-
sequences including food and water shortages, acute mal-
nutrition, mass displacement and conflicts (OCHA, 2011;
Hillbruner and Moloney, 2012). This drought was followed
the next two years by strong pluvial events that triggered
floods in Kenya and some parts of Somalia (OCHA, 2012;
IFRC, 2013a, b). These consecutive and opposite extreme
events illustrate the strong inter-annual variability charac-
terizing East African rainfall (e.g. Nicholson et al., 2012).
Due to the seasonal migration of the Intertropical Conver-
gence Zone (ITCZ) back and forth across the equator, rain-
fall over a major portion of East Africa has a bimodal an-
nual cycle with a main rainy season during March–May (of-
ten referred as long rains) and a weaker rainy season dur-
ing October–December (often referred to as short rains) (e.g.
Yang et al., 2015). The short rains are more variable from one
year to another, and thus drive most of the observed inter-
annual variability (e.g. Hastenrath et al., 1993; Nicholson,
1996, 2014). Numerous studies have emphasised the tele-
connection between the East African short rains and either
the El Niño/Southern Oscillation (ENSO, e.g. Ogallo et al.,
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1988; Hastenrath et al., 1993; Nicholson and Selato, 2000;
Schreck and Semazzi, 2004; Hoell et al., 2014) or the Indian
Ocean Dipole (IOD, e.g. Goddard and Graham, 1999; Saji
et al., 1999; Webster et al., 1999; Clark et al., 2003; Ummen-
hofer et al., 2009; Izumo et al., 2014). However, the mech-
anisms involved are less clear. Goddard and Graham (1999)
and Ummenhofer et al. (2009) suggested that an ocean driven
change to the atmospheric Walker circulation impacts East
African rainfall, while Klein et al. (1999) mentioned an at-
mosphere driven change affecting both SSTs and rainfall. In
any case, the 2011 drought was triggered by a strong La Niña
event (IRI, 2010; Hoell et al., 2014) associated with a nega-
tive IOD (Indian Ocean Dipole) (JAMSTEC, 2015) that re-
sulted in drier than normal conditions in East Africa during
the short rains at the end of 2010. The drought then worsened
due to subsequent failure of the long rains in 2011 (Lyon and
DeWitt, 2012).

Unlike short rains, the teleconnection between inter-
annual East African long rains and the Indian and Pacific
oceans is generally considered to be weak (e.g. Mutai and
Ward, 2000; Pohl and Camberlin, 2006; Nicholson, 2014).
However, failure of the long rains in 2011 was part of a
progressive decline in long rains that has started around
1999 (Lyon and DeWitt, 2012) or even earlier (Funk et al.,
2008), was associated with abrupt warming of the Indian
Ocean (Funk et al., 2008; Williams and Funk, 2011) or of
the western tropical Pacific (Merrifield, 2011; Lyon and De-
Witt, 2012), also altering the Walker circulation. Merrifield
(2011) and Lyon and DeWitt (2012) do not propose a specific
cause for this warming. By contrast, Funk et al. (2008) and
Williams and Funk (2011) attribute the large-scale shift in In-
dian Ocean SSTs to anthropogenic forcing, and suggest that
a warmer future climate will bring an increased frequency of
drought conditions in tropical eastern Africa owing to further
reductions in the long rains.

This hypothesis is at odds with general circulation mod-
els (GCMs) showing that a warmer climate is associated
with an increase in precipitation minus evaporation (P -E)
in the intertropical convergence zone (ITCZ), including the
East African long rains (Seager et al., 2010; Laîné et al.,
2014). Other model-based studies (McHugh, 2005; Shongwe
et al., 2011; Kirtman et al., 2013) furthermore suggest that
increasingly wetter rainy seasons in East Africa are due to
a weakening of the Walker circulation, likely linked to an-
thropogenic warming (Vecchi et al., 2006; Vecchi and So-
den, 2007). This is corroborated by some observations which
appear to show a weakening of the Walker circulation al-
ready since the mid-19th century (Vecchi et al., 2006). How-
ever, there is no agreement on that in observation-based stud-
ies, as illustrated by L’Heureux et al. (2013) who found a
multi-decadal strengthening of the Walker circulation over
the same period. In addition, some regional climate mod-
els forced at the boundaries by ensemble-mean GCM results
are not consistent with GCMs in that they show a reduction

rather than increase in the long rains (Vizy and Cook, 2012;
Cook and Vizy, 2013).

The inability of the GCMs in simulating the observed re-
cent downward trend of the long rains implies either that it is
part of (multi-)decadal natural variability (Lyon and DeWitt,
2012; Yang et al., 2014; Lyon, 2014), or that the GCMs in-
adequately represent the climate processes occurring in the
region and the response to anthropogenic forcing. In this
context, it is crucial to assess the performance of GCMs in
simulating East African rainfall. Existing studies on this sub-
ject (e.g. Conway et al., 2007; Anyah and Qiu, 2012; Otieno
and Anyah, 2012; Yang et al., 2014) have reached contrast-
ing conclusions depending on the region or spatial scale, or
on the variables and models considered. Specifically, they
showed that the mean seasonal cycle of precipitation is rea-
sonably well simulated by the majority of GCMs, but that
there is a large spread among them in capturing the actual
dominant peaks where rainfall is bimodal (Anyah and Qiu,
2012; Otieno and Anyah, 2012). Additionally, most models
appear to have significant biases in monthly mean precip-
itation, and the observed link between East African rainfall
and Indian Ocean SST is often not well represented (Conway
et al., 2007; Yang et al., 2014).

All the above studies are limited to the recent past where
direct measurements of precipitation exist. However, the pe-
riod considered, which ranges from the last few decades to
150 years at most, is not sufficient to capture the multi-
decadal variability that is thought to be an important compo-
nent of East African hydroclimate (Verschuren, 2004; Tier-
ney et al., 2013). Therefore, to complement those studies,
our goal is to extend this analysis to the last millennium by
analysing proxy records of past hydroclimatic change over
this period in conjunction with simulations performed in
the framework of the third phase of the Paleoclimate Mod-
elling Intercomparison Project (PMIP3; Otto-Bliesner et al.,
2009) and of the fifth phase of Coupled Model Intercompari-
son Project (CMIP5; Taylor et al., 2012). All hydroclimate
proxy records available from eastern Africa that are both
well-dated and span the last millennium with sufficient time
resolution are based on lake-sediment records (Verschuren,
2004). In this study, we consider proxy records describing the
water-balance history of four East African lakes: Lake Challa
and Lake Naivasha in eastern equatorial Africa, and Lake
Masoko and Lake Malawi in southeastern (but still inter-
tropical) Africa (Fig. 1). These four lake records are part of
the East African hydroclimate synthesis recently achieved
by Tierney et al. (2013), and all characterized by strong
multi-decadal to centennial variability. As a consequence, the
present study focuses on relatively long-term hydroclimate
changes, and on variation in annual means rather than indi-
vidual rainy seasons, in contrast with model and observation-
based studies about variation in recent East African rainfall
(e.g. Anyah and Qiu, 2012; Yang et al., 2014).

Specifically, our study analyses GCM simulations of long-
term hydroclimate change relative to reconstructions over the
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last millennium to define whether the simulated changes re-
flect the forcing of external climate drivers and to assess the
stability of large-scale teleconnections between East African
rainfall and global SSTs. This paper is structured as follows.
In Sect. 2 we introduce the model experiments and proxy-
based reconstructions. In Sect. 3 we evaluate the comparative
performance of six different GCMs to simulate the seasonal
cycle of rainfall over the study regions and its teleconnection
to tropical SSTs over the recent period. In Sect. 4 we anal-
yse the results of model simulations spanning the last mil-
lennium. The contribution of forced and internal variability
on those simulated hydroclimate changes and the stability of
large-scale teleconnections are finally investigated in Sect. 5,
followed by a discussion and conclusions in Sect. 6.

2 Data and methods

2.1 PMIP3/CMIP5 model experiments

Climate model simulations from PMIP3 (Otto-Bliesner et al.,
2009) and CMIP5 experiments (Taylor et al., 2012) were ob-
tained from the Program for Climate Model Diagnosis and
Inter-comparison (PCMDI; http://pcmdi9.llnl.gov) and the
Earth System Grid (www.earthsystemgrid.org) archives. The
six GCMs selected (Table 1) are those for which the diagnos-
tic variables of interest, i.e. precipitation, actual evaporation
and SST, were available at the time of our analysis, for both
past1000 (850–1850 AD) and historical (1850–2005) peri-
ods, as well as for pre-industrial control runs.

Although not continuous, except for CESM1 and MPI-
ESM-P, the first ensemble members (r1i1p1) of past1000
runs were merged with the corresponding historical simu-
lations to obtain results spanning the period 850–2005 AD.
The impact of the discontinuity is probably limited since it
falls within the range of internal climate variability for sur-
face variables in all cases. The simulations are driven through
the last millennium by both natural (orbital, solar, volcanic)
and anthropogenic (well-mixed greenhouse gases, ozone,
tropospheric aerosols, land use) climate forcings. Earth’s or-
bital parameters vary according to the calculations of Berger
(1978). Depending on the model, different reconstructions
of solar irradiance variability are applied. All models except
CESM1 and GISS-E2-R use the reconstruction by Vieira and
Solanki (2009) from 850 to 1609 and by Wang et al. (2005)
from 1610 to 2005. CESM1 uses the reconstruction by Vieira
et al. (2011) with the spectral variations and “11-year” solar
cycle from Schmidt et al. (2012), whereas GISS-E2-R uses
the Steinhilber et al. (2009) reconstruction until 1849 and the
Wang et al. (2005) one from 1850 onwards.

The forcing related to volcanic aerosols is derived from
Crowley and Unterman (2013) in GISS-E2-R and MPI-ESM-
P and from Gao et al. (2008) in the four other GCMs. Re-
constructed and observed changes in the major greenhouse
gases driving past1000 (Flückiger et al., 2002; MacFarling
Meure et al., 2006) and historical (Hansen and Sato, 2004)

simulations, ie. CO2, CH4 and N2O, are the same in all mod-
els. Anthropogenic changes in land use/land cover over the
last millennium are based on the reconstruction of Pongratz
et al. (2008) in MPI-ESM-P, of Pongratz et al. (2008) fol-
lowed by the reconstruction of Klein Goldewijk and van
Drecht (2006) for the historical period in GISS-E2-R and
of Pongratz et al. (2009) followed by the reconstruction
of Hurtt et al. (2011) for historical time in CCSM4 and
CESM1. BCC-CSM1-1 and IPSL-CM5A-LR do not con-
sider any change in land use/land cover, whose distribution
is fixed to the pre-industrial value. Tropospheric ozone and
aerosols variations are also taken into account in historical
experiments in CCSM4, CESM1, GISS-E2-R, MPI-ESM-P
and BCC-CSM1-1, and are all based on the data set described
in Lamarque et al. (2010). These changes are however ne-
glected in IPSL-CM5A-LR, which considers a constant con-
centration fixed at the pre-industrial level. More information
on the climate-forcing reconstructions used to drive past1000
experiments and on their implementation can be found in
Schmidt et al. (2011) and Schmidt et al. (2012).

2.2 Proxy-based hydroclimate reconstructions

Despite the relatively large number of lakes present across
East Africa, only a small sub-set of them combine continuous
sedimentation (and thus, archiving) with hydrological sen-
sitivity to climatic moisture-balance changes (Verschuren,
2003). Recently, Tierney et al. (2013) selected seven East
African proxy records that are well-dated and meet the crite-
ria of primarily reflecting hydroclimate variation and of cov-
ering the last millennium with a time resolution better than
50 years. Our present study focuses on four of these records,
originating from Lake Challa, Lake Naivasha, Lake Masoko
and Lake Malawi. The records from Lake Tanganyika and
Lake Edward are not considered because they are located far
from the Indian Ocean and thus to the west of our region
of interest. The record from Lake Victoria is not considered
because the representation of this large lake varies from one
model to another, which precludes a meaningful comparison
between model results and proxy records for this site. In-
deed, while most GCMs ignore its presence, the MPI-ESM-P
model specifically recognises it as a surface-water body sur-
rounded by continent. It is well known that Lake Victoria it-
self strongly influences the regional hydrological cycle (e.g.
Thiery et al., 2015), but those effects cannot be adequately
reproduced in GCMs with relatively coarse spatial resolu-
tion. Several other proxy records exist which describe East
African hydroclimate variability during the last millennium
(Verschuren, 2004, see also http://t1p.de/mwp). The major-
ity of these mostly lake-based records do not possess suffi-
cient age control to assess the regional coherence of (multi-)
decadal and century-scale hydroclimate variations. Since our
goal here is not to extensively review the strengths and weak-
nesses of those individual reconstructions, we follow Tierney
et al. (2013) to consider only the handful of records that do
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Table 1. Modelling centres, parameters and references of the PMIP3/CMIP5 models used in this study.

Model name Institution Resolution (lat × long) Ensemble members Reference

Ocean Atm. past1000 historical

CCSM4 National Center for At-
mospheric Research

384 × 320 192 × 288 1 6 Gent et al. (2011)

CESM1 National Center for At-
mospheric Research

384 × 320 96 × 144 10 10 Otto-Bliesner et al. (2016)

GISS-E2-R NASA Goddard Insti-
tute for Space Studies

90 × 144 90 × 144 1 6 Schmidt et al. (2014)

IPSL-CM5A-LR Institut Pierre-Simon
Laplace

149 × 182 96 × 96 1 5 Dufresne et al. (2013)

MPI-ESM-P Max Planck Institute
for Meteorology

220 × 256 96 × 192 1 2 Stevens et al. (2013)

BCC-CSM1-1 Beijing Climate Cen-
ter, China Meteorologi-
cal Administration

232 × 360 64 × 128 1 3 Wu et al. (2014)

meet minimum criteria of continuity and hydroclimate signal
strength. However, a critical review of all available records
might nevertheless refine the spatial structure of documented
hydroclimate changes, and allow further assessment of the
robustness of broad-ranging climate-dynamic inferences.

The 1000-year time series representing hydroclimate vari-
ation in the Lake Challa region developed by Tierney et al.
(2013) is the first principal component of the composite vari-
ation in three moisture-balance proxies, namely the branched
and isoprenoidal tetraether index BIT (a presumed indica-
tor of total annual rainfall: Verschuren et al., 2009; Buck-
les et al., 2016); δD in the leaf waxes of terrestrial plants
(an isotopic proxy for rainfall source and intensity: Tierney
et al., 2011); and varve thickness (a proxy for variation in
dry-season length and windiness: Wolff et al., 2011). This
first principal component accounts for 40 % of the variance in
the data (supplementary material of Tierney et al., 2013). The
time series from Lake Naivasha is a lake-level reconstruction
based on sediment lithostratigraphy (Verschuren, 2001), sup-
ported by salinity reconstructions based on fossil diatom and
midge assemblages (Verschuren et al., 2000). The hydrocli-
mate record from Lake Masoko is inferred from the low-field
magnetic susceptibility of the sediment, which is a proxy for
lake-level changes and/or wind stress. Two such records are
available for this lake, one that goes back to −43 300 AD
(Garcin et al., 2006) and one that starts around 1500 AD
(Garcin et al., 2007). The Masoko time series in this paper
is obtained from Tierney et al. (2013), who used the last mil-
lennium of the longer record but with age-depth tie-points
translated from the shorter record (Anchukaitis and Tierney,
2012). Finally, the hydroclimate record from Lake Malawi is
deduced from the mass accumulation rate of the terrigenous
sediment fraction, presumed to be a runoff proxy (Brown
and Johnson, 2005; Johnson and McCave, 2008). Supple-
ment Table S1 provides more information about each of these

four proxy records. Although these records are derived from
different proxies, their time series can all be qualitatively
viewed as smoothed versions of the local moisture-balance
history of the corresponding sites.

3 Evaluation of model performance over the period
1979-2005

3.1 Mean seasonal cycle of precipitation

This section assesses the ability of various GCMs to repro-
duce the observed mean state and seasonal cycle of East
African rainfall. Although similar analyses have been per-
formed previously (e.g. Conway et al., 2007; Anyah and Qiu,
2012; Otieno and Anyah, 2012; Yang et al., 2014), it is im-
portant to repeat it here focusing specifically on the areas
where our four study sites are located (Fig. 1).

The number of rain-gauge stations in East Africa is small,
and the observations suffer both from an uneven spatial dis-
tribution and from gaps in time due to maintenance issues
(Dinku et al., 2007; Sylla et al., 2013). We have therefore
used global gridded data sets that merge the information from
rain-gauge stations, remote sensing, and/or reanalysis results.
However, these gridded data sets have their own uncertain-
ties, related for instance to the number and the treatment of
rain-gauge measurements or of radar precipitation estimates
(Otieno and Anyah, 2013). In order to estimate the effect of
these uncertainties on our conclusions, we used four global
monthly gridded data sets of precipitation. Version 6 of the
Global Precipitation Climatology Centre data set (GPCC-v6;
Schneider et al., 2014) is a reanalysis using rain-gauge data
only. It spans the period from 1901 to the present with a spa-
tial resolution of 0.5◦

× 0.5◦. Version 2.2 of the Global Pre-
cipitation Climatology Project (GPCP-v2.2; Huffman et al.,
2009) combines rain-gauge and satellite-based precipitation
data on a 2.5◦

× 2.5◦ grid from 1979 to the present. The Cli-
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Figure 1. Location of lakes Challa, Naivasha, Masoko and Malawi
in East Africa, along with the individual grid cells containing each
of these four sites in six different CMIP5 models (dashed (plain)
boxes for the grid cells that contain the lakes Naivasha and Ma-
soko (Challa and Malawi)), and the two larger regional domains
over equatorial East Africa (Challa–Naivasha region) and south-
eastern inter-tropical Africa (Masoko–Malawi region). Topography
from Amante and Eakins (2009).

mate Prediction Center (CPC) Merged Analysis of Precipita-
tion data set (CMAP; Xie and Arkin, 1997) covers the same
period at identical spatial resolution but combines rain-gauge
data and different satellite estimates with NCEP/NCAR re-
analysis results in gaps. Finally, NOAA’s Precipitation Re-
construction over Land data set (PREC/L Chen et al., 2002)
is based only on rain-gauge data and covers the period from
1948 to the present with a spatial resolution of 0.5◦

× 0.5◦.
Due to the seasonal north-south migration of the ITCZ

across the equator, East African rainfall is characterized by
a strong annual cycle that differs from one location to an-
other (Nicholson, 1996; Otieno and Anyah, 2013; Yang et al.,
2015). The seasonality of rainfall is bimodal over equatorial
sites such as Lake Challa and Lake Naivasha, with two rainy
seasons occurring in March to May (long rains) and in Oc-
tober to December (short rains), while it is unimodal in the
southeastern lakes Masoko and Malawi, with a maximum be-
tween November and April during the austral summer (bar
charts in Fig. 2). The observed mean monthly rainfall in each
of the four study areas over the period 1979–2005 serves
as our reference frame to compare the success of individual
GCMs in simulating the present-day seasonal cycle, using
model results from the individual grid cells which include
the lakes (Fig. 1).

For Lake Naivasha (Fig. 2a), simulated monthly mean pre-
cipitation is characterized by a large spread among models.
Observed short rains over this lake are relatively well sim-

ulated by most models, except by GISS-E2-R and IPSL-
CM5A-LR which, respectively, strongly overestimate and
underestimate them. During the other seasons, simulated pre-
cipitation over Lake Naivasha is underestimated by all mod-
els except GISS-E2-R, including during the main rainy sea-
son in boreal spring. Regarding the average of monthly mean
precipitation throughout the year at Lake Challa (Fig. 2b),
three models are within the range of the observations:
CCSM4, CESM1 and BCC-CSM1-1. Most models under-
estimate the long rains except CESM1 and GISS-E2-R, al-
though in these two models this rainy season is delayed by
one month compared to observations. In contrast with the
observations, all models show highest rainfall in October or
November rather than April, but the spread is again large.
These differences between models during the short rains are
consistent with biases at larger spatial scales noted in previ-
ous studies of the East African region. Anyah and Qiu (2012)
and Yang et al. (2014) indeed showed that, despite a large
spread among CMIP3 and CMIP5 models, most of them tend
to underestimate and to shift by one month the long rains, and
to overestimate the short rains. Agreement among models
and between models and observations is much higher in Lake
Masoko and Malawi (Fig. 2c–d). Both the rainy and dry sea-
sons are well simulated, although the amount of rain is over-
estimated by CCSM4 and IPSL-CM5A-LR during the rainy
season. Overall, climate models used in this study are thus
able to represent the unimodal rainfall seasonality character-
izing the region encompassing lakes Masoko and Malawi,
while the timing and the magnitude of the two rainy sea-
sons characterizing the region encompassing lakes Challa
and Naivasha are in general less well captured.

Comparing model results and data at individual grid cells
can be questionable since model skill at this scale is often
very limited. For instance, a small shift in the spatial struc-
ture of the simulations compared to the observations can lead
to a large difference in precipitation. Local topographic fea-
tures not well represented at the grid scale may also have a
significant impact. Besides, the surface areas of the grid cells
which include the lake sites strongly differ from one model
to another (Fig. 1). To get rid of the problems linked to differ-
ences in spatial resolution and to remove local noise in favour
of more regional patterns, it seems better to analyse, instead
of individual grid cells, larger regions presenting common
characteristics as discussed in the next section.

3.2 Link between individual grid cells and the larger
spatial domains selected for analysis

Lake Challa and Lake Naivasha on the one hand and Lake
Masoko and Lake Malawi on the other have a very similar
climatology and seasonal cycle in the recent period, both in
models and observations (Fig. 2). We thus consider a spatial
domain which includes the first two lakes (0.2◦ N to 4.8◦ S
and 34.2 to 40.2◦ E, referred to as the Challa–Naivasha re-
gion) and a second one which includes the last two (7.2 to
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Figure 2. Mean monthly rainfall over lakes Naivasha, Challa, Masoko and Malawi (a–d) in observations (bar plots) and in six CMIP5 models
(curves) over the period 1979–2005. The number of data sets (for the observations) or ensemble members (for the models) used in each case
is shown in brackets. Error bars and shaded areas represent the range of those observations or ensemble member values.

12.2◦ S and 31 to 37◦ E, referred to as the Masoko–Malawi
region; Fig. 1). Note that shifting or changing the size of
these two regions to some extent does not produce substantial
changes in the results.

However, using larger grid boxes raises the issue of
whether the proxy-based reconstructions that are compared
to model results over the last millennium are representative
of these larger spatial domains. Fig. 3 shows the correlation
between modelled mean annual rainfall in the individual grid
cells containing the four lake sites and the two larger do-
mains defined for our analysis, for both the recent period and
the last millennium. Changes in precipitation within the grid
cell containing Lake Masoko, within the grid cell contain-
ing Lake Malawi and within the larger box representing the
Masoko–Malawi region are highly and significantly corre-
lated for all models and observations, and for both periods.
Rainfall over Lake Challa, Lake Naivasha and the Challa–
Naivasha region is also positively correlated in both periods
for each source of information.

Observed recent rainfall over Lake Challa, Lake Naivasha,
and the Challa–Naivasha region shows no or only a weakly
positive relationship with rainfall over Lake Masoko, Lake
Malawi and the Masoko–Malawi region, underscoring the
climatic dichotomy characterizing East Africa. Note that no
negative correlation is found except very weak ones in GISS-
E2-R between rainfall over Lake Challa and rainfall over
Lake Masoko, Lake Malawi and the Masoko–Malawi region.
The dipole between the eastern coastal “Horn of Africa” re-
gion and the interior rift-valley region highlighted in Tierney
et al. (2013) is thus not observed at the annual timescale con-
sidered here. Although the correlations are quite similar for
the recent period and the last millennium, they are somewhat

BCC-
CSM1-1

850–1850 AD
1979–2005 AD

Figure 3. Pearson correlation coefficients between mean annual
rainfall values at six different locations: the single GCM grid cells
that contain lakes Challa, Naivasha, Masoko and Malawi, and the
two larger grid boxes which delineate the Challa–Naivasha and
Masoko–Malawi regions. The lower left half of the figure shows
these correlations for the period 1979–2005 in the six GCMs con-
sidered in this study (CCSM4, CESM1, GISS-E2-R, IPSL-CM5A-
LR, MPI-ESM-P, BCC-CSM1-1; only the first ensemble member
r1i1p1 is considered) plus the model mean, and in the average of
four gridded observation data sets (GPCC-v6, GPCP-v2.2, CMAP
and PREC/L, see references in Sect. 3.1), in the order shown be-
low the main panel. The upper right half of the figure shows the
same results for the period 850–1850 AD (past 1000). Squares with
a central white circle represent combinations for which the null hy-
pothesis of no correlation can be rejected at the 5 % level.
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higher in the former. This may be caused by the present-day
anthropogenic forcing that induces a coherent response be-
tween the selected locations within each model.

Overall, both observations and model results show that the
two selected regions are on the one hand characterized by dif-
ferent patterns of temporal variability and, on the other hand,
representative of the individual grid cells containing the lake
sites, not only regarding annual precipitation changes over
the recent period and the last millennium, but also regard-
ing seasonal cycles and annual mean absolute values (not
shown).

3.3 Large-scale teleconnections

In addition to the evaluation of the mean state, it is impor-
tant to assess the ability of climate models to represent the
observed patterns associated with the inter-annual variability
of East African rainfall. Although it is not our goal here to
study the mechanisms responsible for the simulated variabil-
ity, this is illustrated by analysing the correlations between
East African precipitation and tropical SSTs. The latter is in-
deed considered as a direct driver of precipitation over East
Africa (e.g. Goddard and Graham, 1999; Ummenhofer et al.,
2009). Two different SST data sets are used: version 3 of the
Hadley Centre data set (HadSST3; Kennedy et al., 2011a, b),
based on in situ measurements covering the period from 1850
to 2015 on a 5◦

× 5◦ grid, and version 3b of the Extended Re-
constructed Sea Surface Temperature data set (ERSST-v3b;
Smith et al., 2008), also based only on in situ data, which
covers the period 1854 to 2015 on a 2◦

× 2◦ grid. Since the
proxy-based reconstructions used in this study are considered
to represent mean annual conditions, interest is here mainly
on mean annual results. However, mean annual results for
East Africa’s hydroclimate represent a combined picture, as
the relative amplitudes and the strength and character of tele-
connections between East African rainfall and tropical SSTs
at the inter-annual timescale are different from one season to
another.

For both regions, the largest correlations between observed
rainfall and SSTs are found during the boreal autumn (OND),
with the well-known pattern of positive (negative) correlation
between East African rainfall and western (eastern) Indian
Ocean SSTs, as well as SSTs in the central/eastern (western)
equatorial Pacific (Supplement Figs. S1 and S2 OND), which
resembles the SST pattern during an El Niño phase of ENSO
and a positive phase of the IOD. This period corresponds to
the short rains in Challa–Naivasha and to the start of the sin-
gle rainy season in Masoko–Malawi farther south (Fig. 2).
For the other seasons, the spatial pattern of correlations dif-
fers between the two study areas, with the greatest difference
occurring during boreal winter (JFM). In Challa–Naivasha,
where rainfall is relatively low during this transition period
between the short rains and the long rains, it appears to be
positively correlated with SSTs over the central/north Indian
Ocean (Fig. S1 JFM). In contrast, just a few isolated signif-

icant correlations are found between rainfall in boreal win-
ter over Masoko–Malawi and tropical SSTs (Fig. S2 JFM),
although this period marks the annual maximum in precipi-
tation (Fig. 2). Teleconnections to tropical SSTs are weak in
both regions during the boreal spring (AMJ; Figs. S1 and
S2 AMJ), which corresponds to the long rains in Challa–
Naivasha and to the end of the rainy season in Masoko–
Malawi; and are also weak during the boreal summer (JAS;
Fig. S1 and S2 JAS), which is the principal dry season in both
regions (Fig. 2).

When considering mean annual results, the correlations
between observed precipitation over the Challa–Naivasha re-
gion and SSTs show a pattern similar to that during the
short rains, although damped, with positive correlations in
the western Indian Ocean and central/eastern tropical Pa-
cific and negative ones centred on Indonesia (Fig. 4a left). In
contrast, the correlations between Masoko–Malawi rainfall
and SSTs after computing annual averages are mostly weak
and non-significant in the Indian Ocean and negative over
the Indonesian region while some zones in the Pacific show
positive correlations (Fig. 4b left), even though the correla-
tions pattern for boreal autumn (OND) rainfall is similar to
that found using precipitation over Challa–Naivasha. In both
cases, the spatial pattern of correlations derived from the dif-
ferent combinations of data sets show very similar results,
with spatial correlations of the obtained patterns always ex-
ceeding 0.80.

Out of the six GCMs, only CESM1 and MPI-ESM-P seem
to simulate relatively well the spatial pattern of correlations
between Challa–Naivasha rainfall and SSTs (Fig. 4a). How-
ever, the match with observations is far from perfect as shown
by the relatively low correlation coefficients between simu-
lated and observed rainfall SST correlation maps, with values
equal to 0.27 and 0.16, respectively (Table S2). GISS-E2-R,
IPSL-CM5A-LR and BCC-CSM1-1 display totally different
patterns compared to observations, and CCSM4 even simu-
lates an opposite pattern, with positive (negative) correlations
between simulated precipitation over the Challa–Naivasha
area and the eastern Indian Ocean (central/eastern Pacific).

Model results show a wide range of teleconnections be-
tween Masoko–Malawi rainfall and SSTs (Fig. 4b.). None
of them shows the observed pattern of correlations, which
is weak but seems robust given that it is similar regardless
of the combinations of data sets used. GISS-E2-R, IPSL-
CM5A-LR and MPI-ESM-P correlations patterns are posi-
tively, although poorly, correlated with the data (Table S2).
However, the correlation coefficients obtained by GISS-E2-
R and IPSL-CM5-LR are the result of a compensative effect
between wrong seasonal teleconnection patterns (Fig. S2).
CCSM4 simulates a strong relationship between Masoko–
Malawi and Indian and Pacific Ocean SSTs, but in an op-
posite sign than expected, with negative correlations in the
western Indian Ocean and central/eastern equatorial Pacific,
and positive correlations in the eastern Indian Ocean. Al-
though CESM1 can simulate the pattern observed in bo-

www.clim-past.net/12/1499/2016/ Clim. Past, 12, 1499–1518, 2016



1506 F. Klein et al.: Comparison of simulated and reconstructed East African hydroclimate

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

GPCC-v6 vs. HadSST3

No data

GPCC-v6 vs. ERSST-v3b

PREC/L vs. ERSST-v3b

CCSM4 CESM1

GISS-E2-R IPSL-CM5A-LR

MPI-ESM-P BCC-CSM1-1

Observations Climate models
(a

)
C

ha
lla

/N
ai

va
sh

a
re

gi
on

GPCC-v6 vs. HadSST3

No data

GPCC-v6 vs. ERSST-v3b

PREC/L vs. ERSST-v3b

CCSM4 CESM1

GISS-E2-R IPSL-CM5A-LR

MPI-ESM-P BCC-CSM1-1

(b
)

M
as

ok
o/

M
al

aw
ir

eg
io

n

Correlation coefficient (r)

Figure 4. Pearson correlation coefficients between mean annual rainfall over the Challa–Naivasha region (a, upper three rows) or Masoko–
Malawi region (b, lower three rows) and global SSTs in observations and climate models (here, only the first member r1i1p1 is used) for the
period 1950–2000. In areas overprinted with white circles, a null hypothesis of no correlation can be rejected at the 5 % level. No data are
available from grey areas.

real winter, no correlation is found when considering annual
mean results.

Overall, most climate models fail to simulate observed
teleconnections of Challa–Naivasha and of Masoko–Malawi
rainfall to large-scale SST patterns at the inter-annual scale.
Annual smoothing makes these teleconnections complex
and of relatively limited magnitude, especially for Masoko–
Malawi rainfall. However, this cannot by itself explain the
low model performance since their skill is not greatly im-

proved when only considering the OND rainfall, shown to
be strongly and robustly correlated to Indian and Pacific
SSTs in observations. Only CESM1, MPI-ESM-P and, to a
lesser extent, BCC-CSM1-1 simulate the observed patterns
for both regions during this season (Table S2). Inconsis-
tent with the observations, IPSL-CM5A-LR and GISS-E2-
R simulate a relatively homogeneous teleconnection pattern
throughout the year, while the strong seasonality depicted
by CCSM4 has incorrect signs almost everywhere. MPI-
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Figure 5. Lake-based moisture-balance reconstructions used in
this study; references with details on the proxies are provided in
Sect. 2.2. Ordinate axes for each proxy are oriented such that wetter
(drier) hydroclimate conditions point upward (downward).

ESM-P and CESM1 thus tend to stand out by their posi-
tive correlation with annual observations in both regions and
only in Challa–Naivasha, respectively, for the right reasons.
These mitigated results are, to some extent, consistent with
the study of Rowell (2013). Indeed, although using differ-
ent methodologies and selected areas, this author has shown
that the teleconnections between rainfall over central East
Africa (roughly corresponding to the Masoko–Malawi re-
gion) and both equatorial Pacific and Indian Ocean SSTs
are particularly hard for CMIP5 models to reproduce. Fur-
thermore, Rowell (2013) reached a similar conclusion about
the teleconnections between rainfall over the greater Horn of
Africa region, which includes the Challa–Naivasha region,
and equatorial Pacific SSTs.

4 Reconstructed and simulated hydroclimate over
the last millennium

4.1 Hydroclimate changes deduced from proxy-based
reconstructions

Notwithstanding chronological uncertainty, the Challa and
Naivasha proxy records display clear differences during the
first four centuries of the last millennium. In particular,
the former shows a general drying trend while the oppo-
site is recorded in the latter (Fig. 5). However, from around
1400 AD the conditions inferred from these two records are
similar: both show relatively dry conditions followed by a
wetting trend peaking between about 1700 and 1750 AD.
After this peak, both hydroclimate reconstructions depict an
abrupt transition towards a dry period in the early 19th cen-
tury, followed by smaller-scale hydroclimate fluctuations at
Naivasha and a clear wetting trend at Challa.

Contrasting with Challa and Naivasha, lakes Masoko and
Malawi both show a general drying trend culminating around
1700 AD, before an increase in humidity towards the present.
However, (multi-) decadal hydroclimate changes overlying
these long-term trends often strongly differ between the two
records.

The differences between the Challa and Naivasha recon-
structions on the one hand and between the Masoko and
Malawi reconstructions on the other can be viewed as a
measure of how representative these records are of hydro-
climatic variability within each region. Certainly, the differ-
ences partly reflect real local features due to different expo-
sure to the principal seasonal moisture sources related to dis-
tance to the sea, topography etc. However, a significant frac-
tion of the difference observed within each pair of records is
likely due to uncertainty in the reconstructions themselves,
due to the compound effects of (i) dating uncertainty in
these lake-based proxy records, (ii) differences in hydrology
and local catchment processes influencing a lake’s (or in the
case of δD, its surrounding vegetation) sensitivity to climate,
and/or iii) the fact that the used hydroclimate proxies have
a specific and different relationship with temporal variation
in our target of reconstruction, i.e. the climatic moisture bal-
ance. Importantly, the point here is that the differences be-
tween the two pairs of records are larger than those within
each pair. Each pair can thus be considered as representative
of a distinct hydroclimatic region (cf. Tierney et al., 2013).

4.2 Interpretation of proxy-based reconstructions from a
model perspective

Lakes are complex hydrological systems. To understand their
dynamics, it is necessary to account for the inflow and out-
flow from rivers and surface runoff, rainfall on the lake
surface, evaporation from the lake surface, groundwater in-
flow and/or outflow, as well as interactions with the aquifer
surrounding the lake (e.g. Becht and Harper, 2002). These
processes are not represented directly in relatively coarse-
resolution GCMs. These models simulate the large-scale
moisture balance, i.e. precipitation minus actual evaporation
(P -E), the latter depending on potential evaporation and soil
moisture content. Each of the sedimentary proxies used in
the lake-based climate reconstructions can be qualitatively
interpreted as smoothed versions of the local-to-regional cli-
matic moisture balance, at least when considered on multi-
decadal to centennial timescales. P -E is thus the model
variable that has been chosen here for comparison with the
reconstructed histories of lake-level fluctuation, catchment
runoff or drought-season severity, depending on the lake (see
Sect. 2.2). This section describes the relative contributions
of rainfall and of evaporation in P -E, which allows know-
ing whether the respective regions containing each record are
more influenced by precipitation or evaporation.

It was shown in Sects. 3.1 and 3.2 that, despite their rel-
ative proximity, the two spatial domains used in this study,
Challa–Naivasha and Masoko–Malawi, are quite different in
terms of precipitation amount and seasonality as well as in
precipitation trends through time. The study of P -E bal-
ance confirms that. Indeed, climate models simulate mean
P -E values over Challa–Naivasha which are close to zero
throughout the last millennium (Fig. 6a). In contrast, all mod-
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(a) (b)

Figure 6. Mean annual precipitation minus mean annual evapora-
tion (horizontal bars), and standard deviation of annual precipitation
minus the standard deviation of annual evaporation (vertical bars)
using the entire last-millennium results (850–2005) for each GCM.
Red (blue) colour means that evaporation (precipitation) dominates.

Table 2. Pearson correlation coefficients between simulated rainfall
and simulated evaporation in the Challa–Naivasha and Masoko–
Malawi regions over the pre-industrial portion of the last millen-
nium (850–1850 AD).

Challa–Naivasha Masoko–Malawi

CCSM4 0.66∗ 0.09∗

CESM1 0.57∗ 0.35∗

GISS-E2-R 0.71∗ 0.95∗

IPSL-CM5A-LR 0.91∗ 0.69∗

MPI-ESM-P 0.68∗ 0.62∗

BCC-CSM1-1 0.88∗ 0.70∗

∗ Significant at the 5 % level.

els show positive P -E values for the Masoko–Malawi re-
gion during the last millennium (Fig. 6b). The higher P -
E for Masoko–Malawi compared to Challa–Naivasha is as
expected due to higher precipitation, which more than com-
pensates for higher evaporation and thus leads to larger river
runoff.

If we consider the standard deviation of variation in P and
E through the last millennium, there is a consensus among
models that P is more variable from year to year than E,
for both regions (vertical bars in Fig. 6, which all plot up-
wards). This implies that most changes of P -E over time
are due to changes in precipitation. Differences between the
standard deviation of P and ofE are also generally greater in
Masoko–Malawi. This can be explained in all models except
GISS-E2-R by a weaker relationship between P and E in
this region than in Challa–Naivasha, as evidenced by weaker
correlation coefficients (Table 2). Higher correlations indeed
mean that a change in P is more often accompanied by a
similar change in E, which tends to bring variances closer.

These results are robust throughout the last millennium
where they remain relatively stable over time, even during
the recent past where one could expect evaporation to in-
crease relative to precipitation due to anthropogenic warm-
ing (not shown). Moreover, rainfall still has a dominant role

in explaining changes in P -E when considering timescales
longer than annual, since approximately the same picture is
observed when filtering model results using a loess method
with a window of 100 years (not shown).

4.3 Comparison between reconstructions and model
results

As briefly discussed in Sect. 4.2, the link between simulated
and reconstructed variables is only indirect, which means
that the magnitude of simulated P -E that should best fit
the reconstructions is unknown. Consequently, the focus in
this comparison is on common relative changes, rather than
on their magnitude in absolute values. For better readability
of the figures, each time series has been linearly standard-
ised so that the maximum of the absolute values equals 1. A
100-year smoothing is applied to the model results in order
to resemble temporal variability in the reconstructions. Our
choice of a 100-year smoothing window is partly subjective,
since the resolution of the proxy-based reconstructions varies
through time due to a non-linear relationship between sedi-
ment depth and age. However, using other window widths for
this smoothing does not lead to major changes in the results.

Despite this smoothing, most model curves do not show
any distinct long-term trend in the past millennium as ob-
served in the proxy-based reconstructions, and have weaker
fluctuations at the centennial scale than the reconstructions
(Fig. 7). The correlation coefficients between model results
and reconstructions, computed annually using interpolations
for the reconstructed time series, are presented in Table S3.
Most coefficients are low and non-significant at the 0.05 %
level, and can be for a same site either positive or negative
depending on the models, which implies that there is no com-
mon signal between models and data but neither among mod-
els.

No individual site is characterized by an overall better
agreement between model and data since the averages of cor-
relation coefficients for each lake are close to zero. Further-
more, taking the four sites into account, no model appears to
match substantially better the reconstructions than another.
Nevertheless, some isolated positive correlations should be
mentioned: CESM1 shows one positively and statistically
significant correlation of 0.43 with the average of the recon-
structions from Masoko and Malawi, and GISS-E2-R cor-
relates with the average Challa–Naivasha time series with a
coefficient of 0.38.

This general model-data mismatch could arise from sev-
eral reasons. First, as discussed in Sect. 3.2, the results from
climate models are selected from the two regions Challa–
Naivasha and Masoko–Malawi, that do not necessarily match
the spatial representativity of proxy data, or may have trouble
in representing the regional atmospheric dynamics respon-
sible for changes in lake hydrology. Note that if we con-
sider only the individual grid cells which contain the proxy
data sites, the correlation coefficients are not substantially af-
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Figure 7. Comparison between last-millennium time series of the reconstructions (in grey) and of P -E simulated by six GCMs (in black)
averaged over the Challa–Naivasha region (a), with the Naivasha record shown as dashed line and the Challa record as solid line; and over
the Masoko–Malawi region (b), with the Malawi record shown as dashed line and the Masoko record as solid line. In both regions, the
area between the two records is shaded in light grey. Both proxy-based and simulated time series are presented as anomalies with respect to
the whole period, and are linearly standardised so that the absolute maximum equals 1. Ordinate axes are oriented such that wetter (drier)
conditions point upwards (downwards). Model time series are annual mean values filtered using a loess method with a window of 100 years.
For the CESM1 model, the black curve is the median of the 10 ensemble members previously standardised and smoothed.

fected (not shown). This is consistent with the high correla-
tions found for each model simulation between the individual
grid cells and the larger spatial domain which contains them
(Fig. 3). Second, the variables compared are different. Here,
simulated regional P -E is indeed compared to reconstructed
lake level, catchment runoff, or seasonal drought severity de-
pending on the site (see Sect. 2.2). P -E, which mostly de-
pends on variation in precipitation (see Sect. 4.2), is certainly
related to these reconstructed variables, but sometimes in an
indirect way that is difficult to assess precisely. Third, our
model results only consider the immediate effect of P -E and
do not account for long-term effects of a change in P -E.
However, lake level during a particular year strongly depends
on lake level during previous years. To address this issue,
we applied a first-order autoregressive model (AR-1) to each
simulated time series. The AR-1 process is a simple persis-
tence model where a realisation of the system depends on the
value at one time step earlier. This thus allows emulating a
system with a chosen amount of memory. However, although
this produces time series with low-frequency changes that are
similar to the reconstructions, general model-data agreement
is not substantially improved (Supplement Sect. S3).

Simulations with different GCMs are driven by similar cli-
mate forcings (see Sect. 2.1), which are thus expected to put
a similar imprint on all time series. However, all model re-

BCC-CSM1-1

B
C
C
-C
S
M
1
-1

Figure 8. Pearson correlation coefficients between annual mean P -
E over the last millennium (850–2005) as simulated by the differ-
ent GCMs. The results were filtered using a loess method with a
window of 100 years. The lower left half of the figure shows the re-
sults for the Challa–Naivasha region, the upper right half the results
for Masoko–Malawi. Squares with a central white circle represent
combinations for which the null hypothesis of no correlation can be
rejected at the 5 % level.
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CCSM4 CESM1 (r1-10i1p1) GISS-E2-R

IPSL-CM5A-LR MPI-ESM-P BCC-CSM1-1

Figure 9. Simulated time series of P -E (black lines) over the Challa–Naivasha and Masoko–Malawi regions throughout the last millennium
(850–2005). Results are mean annual values smoothed using a loess filter with a window of 100 years, and are presented as anomalies with
respect to the entire period. The horizontal red lines are displayed on both sides of the zero line at two times standard deviation of the
smoothed time series. The horizontal blue lines also represent 2 standard deviations on both sides of zero but based on the time series from
pre-industrial control simulations. The horizontal lines are dashed if the variance of the simulation with time-varying forcing is significantly
different (F test, considering a 5 % level) from the variance of the simulation with fixed forcing; if not, it is solid. For the CESM1 model, the
black line is the median of the 10 ensemble members, while their range is shown in grey shading.

sults seem different, which raises the question whether ex-
ternal forcing has any impact on the simulated hydroclimate.
The lack of common timing among models in the simulated
events actually suggests that the hydroclimate fluctuations
are mostly or exclusively driven by internal variability.

5 The contribution of forced and internal variability
in simulated hydroclimate changes

5.1 Hydroclimate changes over the past millennium

Whether the simulated East African hydroclimate results
from internal variability or from changes in forcing is as-
sessed in two steps: first by investigating potentially common
signals among models, and second by comparing variability
of the last-millennium hydroclimate changes against control
simulations. In the previous section we suggested that little
or no link can be established between last-millennium hydro-
climate changes simulated by the different models. Indeed, if
we first consider the Challa–Naivasha region, most correla-
tions between P -E time series simulated by different models
are not statistically significant and close to zero (Fig. 8). Ac-
tually, the fact that there is no positive correlation between
hydroclimate curves from different models does not neces-
sarily mean that there is no impact of forcing in each model.

Indeed, the effect of changes in forcing may be different from
one GCM to another, especially at the still relatively small
spatial scale considered in this study.

In this regard, it is of interest to note that for the one
model for which multiple ensemble members were available
(CESM1), there is also no correlation between the differ-
ent ensemble members that differ only in slightly different
air temperature at the start of the experiments (Otto-Bliesner
et al., 2016). This means that the forced response has a much
smaller magnitude than internal variability for P -E in that
region, even at the multi-decadal timescale.

For the Masoko–Malawi region, the link between the hy-
droclimate time series produced by different models is also
low. However, most ensemble members of CESM1 show sig-
nificantly positive correlations with each other, mainly due
to a common increase in P -E around 1800. This suggests
an impact, although limited, of external forcing on Masoko–
Malawi hydroclimate during the last two centuries, as sim-
ulated by CESM1. For the other models, if a significant re-
sponse to forcing is present, it is too different between them
to be revealed by the correlation, except for IPSL-CM5A-LR
which correlates positively with the ensemble members of
CESM1.

To complement this diagnostic, Fig. 9 shows P -E time se-
ries for the two regions from forced simulations, along with
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Figure 10. Pearson correlation coefficients between global SSTs and mean annual rainfall over the Challa–Naivasha (a) and Masoko–Malawi
(b) regions, in climate models for the period 850–1850 AD. In areas overprinted by white circles the null hypothesis of no correlation can be
rejected at the 5 % level.

the variability in these time series and in the pre-industrial
control runs, represented by the ±2 standard-deviation enve-
lope. It shows that the P -E variance simulated over the last
millennium is in most cases very similar to that of the control
simulations. This indicates that the radiative changes from
GHGs, solar variability and relatively short-lived volcanic ef-
fects have little influence on the selected variables compared
to internal variability. The only noticeable difference in these
variances is found for Masoko–Malawi in two of the models,
CEMS1 and IPSL-CM5A-LR, which both show a P -E in-
crease in recent time. The similarity of the variances of P -E
in fixed and time-varying forcing experiments, along with the
lack of common P -E changes in the last-millennium sim-
ulations among models, obviates the possibility of general
agreement with the proxy results, and suggests that any ap-
parent proxy-model agreement for this time period and these
regions is coincidental. To obtain more information on the
processes driving the simulated hydroclimate changes over
the last millennium, the next section deals with the stability
of teleconnections at different frequencies, and with the im-
pact of changes in forcing on those teleconnections.

5.2 The stability of large-scale teleconnections

Since East African hydroclimate fluctuations in models are
mostly driven by rainfall (see Sect. 4.2), only rainfall is
considered here. The modern-day large-scale teleconnections
have already been studied in Sect. 3.3. Hence, the period con-
sidered in this section is 850–1850 AD, which allows us to
focus on the last millennium without the influence of anthro-
pogenic forcing.

Annual mean large-scale teleconnections between simu-
lated East African rainfall and tropical SSTs over the (pre-
industrial portion of the) last millennium differ substan-
tially among models. However, for rainfall over the Challa–
Naivasha region, all GCMs except CCSM4 agree in simu-
lating a dipole pattern over the Indian Ocean, with positive
(negative) correlations in the western (eastern) half of the
basin (Fig. 10a), i.e. consistent with the IOD pattern and
its effect on East African precipitation. Interestingly, while
CCSM4, CESM1 and MPI-ESM-P do not show much dif-
ference between last-millennium and recent teleconnections,
this dipole is not simulated by GISS-E2-R, IPSL-CM5A-
LR and BCC-CSM1-1 with recent rainfall data (1950–2000;
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Figure 11. Pearson correlation coefficients between global SSTs and mean annual rainfall over the Challa–Naivasha (a) and Masoko–
Malawi (b) regions, using the pre-industrial control runs of the climate models. Rainfall and SSTs are mean annual values smoothed using a
loess filter with a window of 100 years. In areas overprinted by white circles the null hypothesis of no correlation can be rejected at the 5 %
level.

Fig. 4a). The role of equatorial Pacific SSTs during the last
millennium is less clear among models, with both positive
and negative correlations depending on the model selected.

Patterns of correlations between simulated Masoko–
Malawi rainfall and SSTs are more heterogeneous (Fig. 10b).
CCSM4 and MPI-ESM-P show a comparable picture as with
Challa–Naivasha rainfall, which is also the case for CESM1
but only for the Indian Ocean. GISS-E2-R and, to a lesser
extent, IPSL-CM5A-LR show an opposite pattern, and BCC-
CSM1-1 suggests almost no link between Masoko–Malawi
rainfall and SSTs. For this region, the pre-industrial last-
millennium teleconnections differ strongly from the recent
ones in all models except CCSM4 and GISS-E2-R (Fig. 4b).
For this pre-industrial last-millennium period, the effect of
changes in forcing on inter-annual rainfall teleconnections
appears to be weak, given the very similar results of the
last millennium runs (Fig. 10) and of the pre-industrial con-
trol runs for both regions (Fig. S3). It is thus likely that
the difference in teleconnection patterns between the pre-
industrial period and recent decades, observed in the mod-
els GISS-E2-R, IPSL-CM5A-LR and BCC-CSM1-1, is due

to anthropogenic forcing. Based on the control runs of two
global climate models, Tierney et al. (2013) showed that
at longer than decadal timescales, rainfall over the Horn of
Africa region (including our Challa–Naivasha domain) is
mostly influenced by Indian Ocean SSTs. This is investi-
gated here using smoothed GCM-simulation results with a
window of 100 years. Such a smoothing decreases drasti-
cally the number of degrees of freedom resulting in only a
few statistically significant patterns of correlation in control
simulations (Fig. 11). As regards simulated Challa–Naivasha
rainfall, the correlation with SSTs displays the characteris-
tic Indian Ocean dipole in all models except CCSM4. The
dipole is especially clear and robust in CESM1, the model
that best matches observations regarding recent large-scale
teleconnections (Sect. 3.3). By contrast, at this centennial
timescale, the link between Masoko–Malawi rainfall and the
Indian Ocean is neither consistent among models nor robust
in these control simulations. Additionally, for neither Challa–
Naivasha nor Masoko–Malawi a significant link is obtained
with Pacific SSTs.

Clim. Past, 12, 1499–1518, 2016 www.clim-past.net/12/1499/2016/



F. Klein et al.: Comparison of simulated and reconstructed East African hydroclimate 1513

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4

(a
)

C
ha

lla
/N

ai
va

sh
a

re
gi

on
CCSM4 CESM1 GISS-E2-R

IPSL-CM5A-LR MPI-ESM-P BCC-CSM1-1

(b
)

M
as

ok
o/

M
al

aw
ir

eg
io

n CCSM4 CESM1 GISS-E2-R

IPSL-CM5A-LR MPI-ESM-P BCC-CSM1-1

Correlation coefficient (r)

Figure 12. Pearson correlation coefficients between global SSTs and mean annual rainfall over the Challa–Naivasha (a) and Masoko–
Malawi (b) regions in climate models for the pre-industrial period 850–1850 AD. Rainfall and SSTs are mean annual values smoothed using
a loess filter with a window of 100 years. In areas overprinted by white circles the null hypothesis of no correlation can be rejected at the 5 %
level.

The patterns of correlations become completely differ-
ent when considering the smoothed last millennium simu-
lations with changes in forcing (Fig. 12). Most correlations
are not significant and relatively weak. Interestingly, in the
forced runs no Indian Ocean dipole is observed in most
model results at this centennial timescale and, more gener-
ally, there is substantial difference in modelled large-scale
teleconnections between simulations with time-varying forc-
ing (Fig. 12) or fixed forcing (Fig. 11). This suggests that,
at the centennial timescale, the forcing is able to mask the
weak correlations associated with natural variability through-
out the pre-industrial portion of the last millennium (850–
1850 AD). Nevertheless, the response of the different models
to the same forcing strongly varies. Some models are charac-
terized by a very homogeneous pattern of correlation that can
be both negative or positive, while some models show a more
patchy pattern.

6 General discussion and conclusions

Our analysis of East Africa’s hydroclimate over the last
millennium is based on recent observational data, lake-
based proxy reconstructions and the results of six GCMs.
When compared to recent observations (1979–2005), sim-
ulations of all models represent the unimodal seasonality
of precipitation characterizing the Masoko–Malawi spatial
domain rather well. The bimodal seasonality characteriz-
ing the Challa–Naivasha domain is generally less well cap-
tured by the GCMs, with a systematic underestimation of the
long rains and overestimation of the short rains. Model skill
in simulating modern-day (i.e. observed) large-scale tele-
connections between East African precipitation and tropical
SSTs strongly varies among the GCMs, with MPI-ESM-P
and CESM1 generally displaying the most consistent pat-
terns.

Both model results and observations show that lakes
Challa and Naivasha on the one hand, and Masoko and
Malawi on the other are located in hydroclimatically rela-
tively homogeneous regions. However, these two regions dis-
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play a different rainfall seasonality and different large-scale
teleconnections with ocean SSTs. Furthermore the lake-
based proxy reconstructions from these two regions even
show opposite moisture-balance changes during the second
half of the last millennium, highlighting the strong spatial
heterogeneity characterizing East African hydroclimate dy-
namics. Comparing the simulated variable P -E with the
available reconstructions, we found the contribution of rain-
fall to be dominant relative to actual evaporation in both re-
gions. Model results and reconstructions show a very differ-
ent timing of hydroclimate fluctuations over the past mil-
lennium. Furthermore, there is no common signal among
the time series modelled by different GCMs. This suggests
that simulated P -E in East Africa is largely driven by inter-
nal variability rather than by common forcing, at least un-
til 1850 AD. After that, half of the GCMs used simulate
a relatively clear, but model-specific, response to forcing.
These results are in line with those of Coats et al. (2015)
who showed, using approximately the same set of GCMs,
that multi-decadal droughts in the North American South-
west over the last millennium do not seem to be driven by ex-
ternal forcing. Similar conclusions were also reached by Kel-
ley et al. (2012) who used GCMs to investigate the possibil-
ity that the late winter drying trend observed in the Mediter-
ranean region could be explained by anthropogenic forcing.
In contrast, Fallah and Cubasch (2015) suggested an impact
of forcing on multi-decadal droughts in Asia over the last
millennium, namely through alteration of atmosphere–ocean
interactions. These contrasting results could mean that some
regions are more sensitive to forcing than others.

At the inter-annual timescale, models show robust telecon-
nections between mean annual Indian Ocean SSTs and rain-
fall over the Challa–Naivasha region during the pre-industrial
portion of the last millennium, with positive (negative) cor-
relation in the western (eastern) half of the basin. The link
between rainfall over the Masoko–Malawi region and SSTs
is less clear among models. At this timescale, the effect of
external forcing on large-scale teleconnections appears neg-
ligible. Although most of the time it is not significant, the In-
dian Ocean dipole is still present using time series smoothed
to highlight centennial variations, but only in fixed-forcing
simulations. When taking into account the last millennium
forcing, the result is completely different, with relatively ho-
mogeneous patterns of correlation between precipitation in
both regions and tropical SSTs. This means that, although
the correlation pattern between Challa–Naivasha rainfall and
Indian Ocean SSTs remains relatively similar for both inter-
annual and centennial timescales when only natural variabil-
ity is present, it is overwhelmed by the effect of forcing at
the centennial timescale. An interesting question is whether
the forcing actually alters the dynamical link between East
African rainfall and SSTs, or if it only masks it because of
a different impact on continental rainfall and SSTs. Answer-
ing this question is out of the scope of this study, but it is of
interest for the interpretation of records used for reconstruct-

ing phenomena like the IOD. Indeed, if dynamical relation-
ships are not stable when considering different timescales,
a record calibrated in observations of the recent period may
not be representative of the studied phenomena over longer
timescales.

Analysing an ensemble of models was particularly useful
here to test the robustness of the results. Additionally, using
individual models that contain several ensemble members al-
lows attributing the simulated change to internal variability
or to forcing, which is crucial in the present context of cli-
mate change in the vulnerable East African region. On the
other hand, using multi-model mean results to study varia-
tion in local hydroclimate during the last millennium should
be avoided. It does not make sense to average hydroclimate
time series which are mostly driven by internal variability,
since this would only result in concealing already weak re-
sponses.

7 Data availability

All model results used in this study are publicly available and
can be obtained in the Program for Climate Model Diagnosis
and Inter-comparison (PCMDI; http://pcmdi9.llnl.gov) and
the Earth System Grid (www.earthsystemgrid.org) archives.

The Supplement related to this article is available online
at doi:10.5194/cp-12-1499-2016-supplement.
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