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Abstract. Cerrãdo savannas have the greatest fire activity

of all major global land-cover types and play a significant

role in the global carbon cycle. During the 21st century,

temperatures are projected to increase by ∼ 3 ◦C coupled

with a precipitation decrease of∼ 20 %. Although these con-

ditions could potentially intensify drought stress, it is un-

known how that might alter vegetation composition and fire

regimes. To assess how Neotropical savannas responded to

past climate changes, a 14 500-year, high-resolution, sedi-

mentary record from Huanchaca Mesetta, a palm swamp lo-

cated in the cerrãdo savanna in northeastern Bolivia, was an-

alyzed with phytoliths, stable isotopes, and charcoal. A non-

analogue, cold-adapted vegetation community dominated the

Lateglacial–early Holocene period (14 500–9000 cal yr BP,

which included trees and C3 Pooideae and C4 Panicoideae

grasses. The Lateglacial vegetation was fire-sensitive and fire

activity during this period was low, likely responding to fuel

availability and limitation. Although similar vegetation char-

acterized the early Holocene, the warming conditions associ-

ated with the onset of the Holocene led to an initial increase

in fire activity. Huanchaca Mesetta became increasingly fire-

dependent during the middle Holocene with the expansion

of C4 fire-adapted grasses. However, as warm, dry condi-

tions, characterized by increased length and severity of the

dry season, continued, fuel availability decreased. The estab-

lishment of the modern palm swamp vegetation occurred at

5000 cal yr BP. Edaphic factors are the first-order control on

vegetation on the rocky quartzite mesetta. Where soils are

sufficiently thick, climate is the second-order control of veg-

etation on the mesetta. The presence of the modern palm

swamp is attributed to two factors: (1) increased precipita-

tion that increased water table levels and (2) decreased fre-

quency and duration of surazos (cold wind incursions from

Patagonia) leading to increased temperature minima. Nat-

ural (soil, climate, fire) drivers rather than anthropogenic

drivers control the vegetation and fire activity at Huanchaca

Mesetta. Thus the cerrãdo savanna ecosystem of the Huan-

chaca Plateau has exhibited ecosystem resilience to major

climatic changes in both temperature and precipitation since

the Lateglacial period.

1 Introduction

The cerrãdo savanna of central South America is the

largest, richest, and likely most threatened savanna in the

world (DaSilva Meneses and Bates, 2002) The cerrãdo

is the second largest biome in South America, covering

1.86×106 km2 and is home to over 10 000 plant species

(Myers et al., 2000). The tropical forest–savanna ecotones

within the cerrãdo biome are of considerable interest to bi-

ologists because of their high habitat heterogeneity (beta di-

versity), importance in rainforest speciation (Russell-Smith

et al., 1997) and sensitivity to climate change (IPCC, 2014).

Published by Copernicus Publications on behalf of the European Geosciences Union.



836 S. Y. Maezumi et al.: Effects of past climate variability on fire and vegetation

According to current estimates, however, only 20 % of the

cerrãdo remains undisturbed and only 1.2 % of the area is

preserved in protected areas (Mittermeier et al., 1999). Addi-

tionally, cerrãdo savannas have a significant role in the mod-

ern global carbon cycle because of high CO2 loss associated

with frequent natural fire activity (Malhi et al., 2002). Cur-

rently savanna fires are considered the largest source of nat-

ural pyrogenic emissions, with the most fire activity of all

major global land-cover types (Pereira, 2003). In the last few

decades, deforestation for agriculture and increased drought

have resulted in increased burning in savannas, contributing

to approximately 12 % of the annual increase in atmospheric

carbon (Van der Werf et al., 2010).

The cerrãdo biome comprises forest, savanna, and

campestre (open-field) formations (Abreu et al., 2012; Mis-

try, 1998). Cerrãdo sensu stricto is characterized as a woody

savanna formation composed of dense, thin, and rocky out-

crops with cerrãdo physiognomies that are distinguishable

based on their densities, heights, and scattered tree–shrub

covers with roughly 50 % trees and 50 % grass (Abreu et al.,

2012). The principal determinants of the growth and devel-

opment of the cerrãdo vegetation types are largely related to

edaphic factors (Colgan et al., 2012). For example, the dis-

tribution of major cerrãdo vegetation types is closely related

to the geomorphology of the Precambrian Brazilian Shield in

South America (Killeen, 1998a). The development of the va-

riety of cerrãdo vegetation communities is largely the result

of the heterogeneous nature of the edaphic features (Killeen,

1998a) including the depth of the water table, drainage, the

effective depth of the soil profile, the presence of concre-

tions (Haridasan, 2000), soil texture, and the percentage of

exposed rock (Junior and Haridasan, 2005).

In addition to edaphic constraints, climate also has a

prominent role in determining cerrãdo savanna vegetation

structure and fire activity (Ribeiro and Walter, 2008). The

cerrãdo biome is dominated by a warm, wet–dry climate as-

sociated with the seasonal migration of the Intertropical Con-

vergence Zone (ITCZ) (DaSilva Meneses and Bates, 2002;

Latrubesse et al., 2012; Vuille et al., 2012). On synoptic cli-

matological timescales, temperature and precipitation are the

most important effects of climate on fire (e.g., months to sea-

sons to years) (Mistry, 1998). These factors govern net pri-

mary productivity (NPP) and the abundance of available fu-

els (Brown and Power, 2013; Marlon et al., 2013). Warmer

temperatures are typically associated with increased burning

through vegetation productivity and the occurrence of fire-

promoting climatic conditions. However, the role of temper-

ature can be mediated by precipitation (Brown and Power,

2013). Fire responds differently to increases in precipitation

depending on whether fuel is initially abundant or limited in

the ecosystem (Marlon et al., 2013; Mistry, 1998). In arid

and semi-arid environments, such as the cerrãdo, increases

in precipitation tend to increase fire, whereas increased pre-

cipitation in humid environments can reduce fire (Marlon et

al., 2008, 2013).

The seasonality of the precipitation coupled with abun-

dant wet-season lightning ignitions (Ramos-Neto and Piv-

ello, 2000) is linked to high fire frequency in the cerrãdo (Mi-

randa et al., 2009). Wet-season lightning fires typically start

in open vegetation (wet fields or grassy savannas), with sig-

nificantly higher incidence of fire in more open savanna veg-

etation (Ramos-Neto and Pivello, 2000). High biomass pro-

duction during the wet season results in abundant dry fuels

favoring frequent fires throughout the year (Ramos-Neto and

Pivello, 2000). Data show a positive correlation with fine fuel

build-up and both fire temperature and fire intensity (energy

output) (Fidelis et al., 2010). Thus, increased wet-season fuel

accumulation in the cerrãdo increases fire intensity. Based

on an ecosystems adaptation to fire it can be classified as

independent, fire-sensitive, and fire-dependent (Hardesty et

al., 2005). In fire-independent ecosystems such as tundra and

deserts, fire is rare, either because of unsuitable climate con-

ditions or lack of biomass to burn. Fire-sensitive ecosystems

such as tropical rainforests are damaged by fire, which dis-

rupts ecological processes that have not evolved with fire

(Hardesty et al., 2005). Fire-dependent systems such as the

well-drained grasslands of the cerrãdo biome have evolved

in the presence of periodic or episodic fires and depend on

fire to maintain their ecological processes (Hardesty et al.,

2005). Fire-dependent vegetation is fire-adapted, flammable,

and fire-maintained (Miranda et al., 2009; Pivello, 2011).

The study of fire and vegetation change in the cerrãdo

is increasingly important as population, agricultural activity,

and global warming create pressing management challenges

to preserve these biodiverse ecosystems (Mistry, 1998). The

long-term role of humans on vegetation and fire regimes of

the cerrãdo remains unclear. There is increasing evidence for

a late Holocene (3000 cal yr BP) increase in Mauritia flex-

uosa (M. flexuosa) and fire activity in Bolivia, Colombia,

Venezuela, and Brazil, which has been attributed to both nat-

ural and anthropogenic drivers (Behling and Hooghiemstra,

1999; Berrio et al., 2002a; DaSilva Meneses et al., 2013;

Kahn and de Castro, 1985; Kahn, 1987, 1988; Montoya and

Rull, 2011; Rull, 2009).

To investigate the drivers of vegetation and fire in the

cerrãdo, a long-term perspective is needed. The past few

decades have experienced increased global temperatures, in-

creased atmospheric CO2, and unprecedented levels of de-

forestation (Malhi et al., 2002). These recent changes heav-

ily influence modern ecological studies, thus limiting the un-

derstanding of the role of natural variability in these sys-

tems. Long-term paleoecological studies can provide base-

line information on processes shaping forest–savanna fire–

vegetation dynamics from centennial to millennial timescales

(Mayle and Whitney, 2012). These long-term studies can in-

form whether recent shifts in ecotones are the result of a

minor short-term oscillation around a relatively stable eco-

tone or a longer-term (e.g., millennial scale) unidirectional

ecotonal shift forced by climate change (Mayle et al., 2000;

Mayle and Whitney, 2012). Additionally, long-term paleoe-

Clim. Past, 11, 835–853, 2015 www.clim-past.net/11/835/2015/



S. Y. Maezumi et al.: Effects of past climate variability on fire and vegetation 837

cological records help form realistic conservation goals and

identify fire management strategies for the maintenance or

restoration of a desired biological state (Willis et al., 2007).

In this study, the long-term paleoecological perspective

provides a context for understanding the role of centennial to

millennial climate variability in the evolution of fire and veg-

etation in cerrãdo savanna ecosystems. The purpose of this

research is to explore long-term environmental change of cer-

rãdo savanna palm swamps in Bolivia from the Lateglacial

(ca. 15 000 cal yr BP) to present. Paleoecological proxies in-

cluding lithology, magnetic susceptibility, loss on ignition

(LOI), charcoal, stable isotope, and phytolith data are used

to investigate long-term ecosystem processes in the cerrãdo

savanna. There are three primary hypotheses investigated in

this study:

1. Edaphic conditions are the dominant control on the

presence of savanna versus forest vegetation on the

Huanchaca Mesetta.

2. Climate is the dominant control on savanna structure

and floristic composition.

3. The late Holocene rise in M. flexuosa was driven by cli-

mate rather than a change in human land use.

1.1 Study site

Noel Kempff Mercado National Park (NKMNP), a

15 230 km2 biological reserve in northeastern Bolivia, is lo-

cated on the Precambrian Brazilian Shield near the south-

western margin of the Amazon Basin, adjacent to the Brazil-

ian states of Rondônia and Mato Grosso (Burbridge et al.,

2004). It is a UNESCO World Heritage Site, in recogni-

tion of its globally important biodiversity and largely undis-

turbed ecosystems, including terra firme (non-flooded) ever-

green rainforest, riparian and seasonally flooded humid ev-

ergreen forest, seasonally flooded savanna, wetlands, upland

cerrãdo savannas, and semi-deciduous dry forests (Mayle et

al., 2007). NKMNP occupies an ecotone between Amazon

rainforest to the north and dry forests and savannas to the

south, containing 22 plant communities (Fig. 1) (Burn et

al., 2010). Huanchaca Mesetta palm swamp (14◦32′10.66′′ S,

60◦43′55.92′′W; elevation: 1070 m a.s.l.) is located within

NKMNP on the Huanchaca Mesetta – an 800–900 m eleva-

tion table mountain. The palm swamp is approximately 200

by 50 m, comprised entirely of a monospecific stand of the

palm M. flexuosa.

1.2 Climate

The climate of NKMNP is characterized by a tropical wet

and dry climate (DaSilva Meneses and Bates, 2002). The

mean annual precipitation at NKMNP derived from nearby

weather stations (Concepción, Magdalena, San Ignacio) is

ca. 1400–1500 mm per year, with mean annual temperatures

between 25 and 26 ◦C (Hanagarth, 1993; Montes de Oca,

1982; Roche and Rocha, 1985). There is a 3- to 5-month

dry season during the Southern Hemisphere winter (May to

September–October), when the mean monthly precipitation

is less than 30 mm (Killeen, 1990). Precipitation falls mainly

during the austral summer (December to March), originat-

ing from a combination of deep-cell convective activity in

the Amazon Basin from the South American summer mon-

soon (SASM) and the ITCZ (Vuille et al., 2012). The SASM

transports Atlantic moisture into the basin and corresponds

to the southern extension of the ITCZ. The ITCZ is driven

by seasonal variation in insolation; thus, maximum Southern

Hemisphere insolation and precipitation occur in the austral

summer (Bush and Silman, 2004; Vuille et al., 2012). Dur-

ing winter (June, July, August), cold, dry polar advections

from Patagonia, locally known as surazos, can cause short-

term cold temperatures to frequently decrease down to 10 ◦C

for several days at a time (Latrubesse et al., 2012; Mayle and

Whitney, 2012). These abrupt decreases in temperature may

potentially influence the distribution of temperature-limited

species on the Huanchaca Mesetta.

1.3 Geomorphology

The Huanchaca Mesetta table mountain is near the western

limit of the Precambrian Brazilian Shield and dominates the

eastern half of NKMNP. It is composed of Precambrian sand-

stone and quartzite (Litherland and Power, 1989). The top of

the mesetta is flat, with a gently rolling surface and at el-

evations ranging from 500 to 900 m above sea level (a.s.l.)

(DaSilva Meneses and Bates, 2002). The substrate of the

mesetta is rocky, and soils are thin and low in organic ma-

terial (Litherland and Power, 1989). Continuity of the crys-

talline or sedimentary blocks of the mesetta is broken by

an extensive network of peripheral or inter-mesetta depres-

sions formed from a combination of erosion, dolerite dike

intrusions, and faulting on the mesetta (DaSilva Meneses and

Bates, 2002; Litherland and Power, 1989). These depressions

act as catchments for sediment and water, resulting in sedi-

ment accumulation, which supports more complex vegeta-

tion communities. High species diversity exhibited on the

Huanchaca Mesetta, compared with other savanna regions of

South America, is attributed to the long history of isolation of

this edaphically controlled table-mountain savanna (Mayle et

al., 2007).

1.4 Vegetation

The cerrãdo savanna on Huanchaca Mesetta is dominated by

a continuous grass cover with sparsely scattered small trees

and shrubs that grows on the thin, well-drained, nutrient-poor

soils (Killeen, 1998b). Woody species include Byrsonima

coccolobifolia, Caryocar brasiliensis, Erythroxylum subero-

sum, Vochysia haenkeana, and Callisthene fasciculata. Trees

and shrubs include Qualea multiflora, Emmotum nitens, Myr-
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Figure 1. Huanchaca Mesetta study site (a) vegetation map of Noel Kempff Mercado National Park (NKMNP) modified from

Killeen (1998b), (b) view from atop Huanchaca Mesetta, (c) Huanchaca Mesetta palm swamp, and (d) monospecific stand of Mauritia

flexuosa. Photos by F. Mayle.

cia amazonica, Pouteria ramiflora, Diptychandra auranti-

aca, Kielmeyera coriacea, Ouratea spectabilis, and Alib-

ertia edulis. Small shrubs include Eugenia punicifolia and

Senna velutina, and herbaceous species include Chamae-

crista desvauxii and Borreria sp. Monocot families include

the Rapateaceae (C3) (Cephalostemon microglochin), Orchi-

daceae (Cleistes paranaensis) (CAM,C3), Iridaceae (Sisy-

rinchium spp.) (C4), Xyridaceae (Xyris spp.) (C4), and Eri-

ocaulaceae (Eriocaulon spp., Paepalanthus spp., Syngonan-

thus spp.) (C4) (Killeen, 1998b). In the interfluvial depres-

sions organic-rich soil is sufficiently deep to support hu-

mid evergreen forest islands, which are typically dominated

by monospecific stands of M. flexuosa (DaSilva Meneses

and Bates, 2002; Mayle and Whitney, 2012). M. flexuosa

is a monocaulous, arborescent palm, averaging 20–30 m tall

which is typically associated with a low, dense understory

(da Silva and Bates, 2002; Furley and Ratter, 1988; Kahn,

1988). M. flexuosa is confined to lower elevations (< ca.

1000 m elevation) in warm/wet climates (Rull and Mon-

toya, 2014). M. flexuosa swamps favor interfluvial depres-

sions that remain flooded during the dry season, when the

surrounding terrains dry out (Huber, 1995a, b; Kahn and de

Granville, 1992). The abundance of M. flexuosa in perma-

nently flooded, poorly drained soils is the result of pneu-

matophores (aerial roots), which enable its growth in anaer-

obic conditions (Kahn, 1988; Rull and Montoya, 2014). Sea-

sonal water deficits saturate the soil profile in the wet sea-

son and desiccate soil during the dry season, resulting in a

dominance of herbaceous versus woody plants surrounding

the interfluvial depressions (Killeen, 1998b). The seasonal

dryness leads to drought, plant water stress, and frequent

fire activity, resulting in the development of xeromorphic

and sclerophyllous plant characteristics on the open mesetta

(Killeen, 1998b). The spatial distribution of evergreen for-

est versus drought-tolerant savanna vegetation is addition-

ally constrained by edaphic conditions, limiting the expan-
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sion of forest vegetation because of the heavily weathered

sandstone soils dominant outside the interfluvial depressions

(Killeen and Schulenberg, 1998). Limited soil development

precludes rainforest from developing on the large, rocky ex-

panses of the mesetta (Killeen and Schulenberg, 1998). The

essentially treeless campo cerrãdo that grows around Huan-

chaca Mesetta palm swamp is edaphically constrained and

has likely grown on this mesetta for millions of years (Mayle

and Whitney, 2012). Thus, the vegetation of the Huanchaca

Mesetta is influenced by both climatic and non-climatic con-

trols including seasonal hydrologic conditions, edaphic soil

constraints, and frequent fire activity (Killeen and Schulen-

berg, 1998).

2 Materials and methods

2.1 Sediment core

A 5.48 m long sediment core from Huanchaca Mesetta palm

swamp was collected in 1995 using a Livingstone modified

square-rod piston corer from the center of the swamp. The

uppermost 15 cm, containing a dense root mat, was discarded

because of the presence of fibrous roots and potential for

sediment mixing. Huanchaca Mesetta sediment cores were

transported to the Utah Museum of Natural History for anal-

ysis. They were photographed and described using a Mun-

sell soil color chart. Visual descriptions, including sediment

type, structure, texture, and organic content, were undertaken

to assist interpretation of the paleoenvironmental data.

2.2 Chronology

The chronological framework for Huanchaca Mesetta was

based on eight accelerator mass spectrometry (AMS) radio-

carbon dates from non-calcareous bulk sediment and wood

macrofossils analyzed at the University of Georgia Center for

Applied Isotope Studies (Table 1). The uncalibrated radio-

metric ages are given in radiocarbon years before AD 1950

(years before “present”, yr BP). Radiocarbon ages were cal-

ibrated using CALIB 7.0 and the IntCal13 calibration data

set (Reimer et al., 2013). IntCal13 was selected in place of

the SHcal13 calibration curve because of the latitudinal lo-

cation (14◦ S) of Huanchaca Mesetta and the proximal hy-

drologic connection with the origin of the South American

monsoon in the Northern Hemisphere. The seasonal migra-

tion of the ITCZ is thought to introduce a Northern Hemi-

sphere 14C signal to the low-latitude Southern Hemisphere

(McCormac et al., 2004). This study area is located in the

low latitudes (14◦ S) and within the range of the ITCZ mi-

gration; thus, the IntCal13 calibration curve was selected for

the radiocarbon calibrations. Following calibration, the mean

age value of calibrated years before present (cal yr BP) of the

largest probability at 2σ standard deviation was used to re-

flect both statistical and experimental errors) (grey bars in

Fig. 2). These mean ages were used to create the smooth-

Figure 2. CLAM age–depth model for Huanchaca Mesetta. Grey

bars represent 2σ error.

ing spline age model using classical age–depth modeling in

the package CLAM (Blaauw, 2010) within the open-source

statistical software R.

2.3 Loss on ignition

The variability in the organic and carbonate content of sed-

iments is used, in conjunction with magnetic susceptibil-

ity, to identify periods of variability in sediment composi-

tion and organic content throughout the Holocene. Organic

and carbonate sediment composition was determined by loss

on ignition (LOI), conducted at contiguous 1 cm increments

throughout the cores. For each sample, 1 cm3 of sediment

was dried in an oven at 100 ◦C for 24 h. The samples un-

derwent a series of 2 h burns in a muffle furnace at 550 and

1000 ◦C to determine the relative percentage of the sample

composed of organics and carbonates. Concentration was de-

termined by weight following standard methodology (Dean

Jr., 1974).

2.4 Magnetic susceptibility

Magnetic susceptibility (MS) was measured to identify min-

eralogical variation in the sediments (Nowaczyk, 2001). The

MS of sediments is reflective of the relative concentration of

ferromagnetic (high positive MS), paramagnetic (low posi-

tive MS), and diamagnetic (weak negative MS) minerals or

materials. Typically, sediment derived from freshly eroded

rock has a relatively high MS, whereas sediments that are
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Table 1. AMS radiocarbon dates from Huanchaca Mesetta.

Lab number Material Depth 14C age δ13C IntCal13 2σ

(cm) (yr BP) ratio (cal year BP)

UGAMS 15158 Macrofossil 17 190 ± 20 −28.8 0–289

UGAMS 17252 Bulk sediment 58 2310 ± 25 −18.8 2211–2356

UGAMS 15264 Bulk sediment 118 1360 ± 20 −22.9 1272–1305

UGAMS 12023 Bulk sediment 190 2480 ± 20 −22.62 2473–2715

UGAMS 17253 Bulk sediment 225 3365 ± 25 −20.7 3561–3689

UGAMS 17254 Bulk sediment 277 6545 ± 30 −22.6 7422–9622

UGAMS 15159 Bulk sediment 320 8600 ± 30 −22.8 9524–9622

UGAMS 17255 Bulk sediment 380 11 905 ± 35 −16.3 13 577–13 789

dominated by organic debris, evaporites, or sediments that

have undergone significant diagenetic alteration typically

have a low or even negative MS (Reynolds et al., 2001).

Shifts in the magnetic signature of the sediment can be diag-

nostic of a disturbance event (Gedye et al., 2000). Sediment

cores were scanned horizontally, end to end, through the ring

sensor.

MS was conducted at 1 cm intervals using a Barington ring

sensor with a 75 mm aperture.

2.5 Charcoal

Sediment samples were analyzed for charcoal pieces greater

than 125 µm using a modified macroscopic sieving method

(Whitlock and Larsen, 2001) to reconstruct the history of

local and extra-local fires. Charcoal was analyzed in con-

tiguous 0.5 cm intervals for the entire length of the sediment

core at 1 cm3 volume. Samples were treated with 5 % potas-

sium hydroxide in a hot water bath for 15 min. The residue

was gently sieved through a 125 µm sieve. Macroscopic char-

coal (particles > 125 µm in minimum diameter) was counted

in a gridded Petri dish at 40× magnification on a dissect-

ing microscope. Non-arboreal charcoal was characterized by

two morphotypes: (1) cellular “graminoid” (thin rectangu-

lar pieces; one cell layer thick with pores and visible ves-

sels and cell wall separations) and (2) fibrous (collections

or bundles of this filamentous charcoal clumped together).

Arboreal charcoal was characterized by three morphotypes:

(1) dark (opaque, thick, solid, geometric in shape, some lus-

ter, and straight edges), (2) lattice (cross-hatched, forming

rectangular ladder-like structure with spaces between), and

(3) branched (dendroidal, generally cylindrical with succes-

sively smaller jutting arms) (Jensen et al., 2007; Mueller

et al., 2014; Tweiten et al., 2009). Charcoal pieces were

grouped into non-arboreal and arboreal categories based on

their morphology, which enabled the characterization of fuel

sources in the charcoal record (Mueller et al., 2014).

Charcoal counts were converted to charcoal influx (num-

ber of charcoal particles per cubic centimeter) and charcoal

influx rates by dividing by the deposition time (yr cm−1) us-

ing CharAnalysis statistical software (Higuera et al., 2009).

In CharAnalysis, charcoal data were decomposed to dis-

tinguish background charcoal from distinct charcoal peaks

based on a standard methodology to calculate a set of thresh-

old criteria (Higuera et al., 2007). The background thresh-

old was calculated using a 700-year moving average. If the

charcoal data exceed that background threshold, the charcoal

peak is interpreted as a fire episode.

2.6 Stable isotopes

Stable carbon isotopes were analyzed as an additional proxy

for changes in vegetation structure and composition. Car-

bon isotopic composition of terrestrial organic matter is de-

termined primarily by the photosynthetic pathway of vege-

tation (Malamud-Roam et al., 2006). Previous research on

δ13C values of the Huanchaca Mesetta have been used to de-

termine the relative proportions of C4 savanna grasses versus

C3 woody and herbaceous vegetation (Killeen et al., 2003;

Mayle et al., 2007).

Sediment δ15N integrates a variety of nutrient cycling pro-

cesses including the loss of inorganic N to the atmosphere

through denitrification (McLauchlan et al., 2013; Robin-

son, 1991). Denitrification and the subsequent enrichment

of δ15N requires abundant available carbon, available nitrate,

and anaerobic conditions (Seitzinger et al., 2006). Thus, wet,

anoxic soils tend to have enriched values of δ15N. Envi-

ronmental conditions that alter from wet (anaerobic) to dry

(aerobic) conditions also enrich δ15N values (Codron et al.,

2005). During dry periods, denitrification is shut off because

of an increase in available oxygen in sediments, and thus

δ15N values decrease. If dry soils become hydrated, there is

a preferential loss of 14N, enriching δ15N values (Codron et

al., 2005). Stable isotope analysis was conducted at 3 cm res-

olution for total carbon (C) and nitrogen (N) throughout the

length of the sediment core. One cubic centimeter of bulk

sediment was dried, powdered, and treated with 0.5 M hy-

drochloric acid to remove carbonates. A range of 1–25 mg

of the dried carbonate-free sediment was weighed into tin

capsules depending on organic matter content. The samples

were analyzed on a Finnigan Delta dual-inlet elemental an-

alyzer at the Sirfer Lab at the University of Utah. 13C / 12C

Clim. Past, 11, 835–853, 2015 www.clim-past.net/11/835/2015/



S. Y. Maezumi et al.: Effects of past climate variability on fire and vegetation 841

and 15N / 14N ratios are presented in delta (δ) notation, in

‰ (‰ relative to the PDB and N2 air standards) (Codron et

al., 2005).

2.7 Phytoliths

Phytoliths preserve well in sediment records and are espe-

cially useful in areas with intermittent dry periods. Phytoliths

were used as a proxy to reconstruct past vegetation compo-

sition and are especially useful in the lower taxonomic iden-

tification of grasses (Piperno and Pearsall, 1998). Grass phy-

toliths can provide important paleoecological information.

Tropical C4 grasses, adapted to open environments with high

seasonality of rainfall, typically expand at the expense of C3

grasses and other tropical forest species during drier inter-

vals (Hartley and Slater, 1960; Hartley, 1958a, b; Piperno,

1997). C4 Panicoideae grasses are generally adapted to warm

moist conditions, whereas C4 Chlorideae grasses are adapted

to warm, dry conditions (Hartley and Slater, 1960). C3 sub-

families, including the Pooideae, are adapted to cool and

moist conditions, and are currently confined to temperate cli-

mates with lower temperatures (Hartley, 1961, 1973; Iriarte,

2006). The presence of C3 Pooideae grasses from phytolith

data from southeastern Pampas grasslands in Uruguay have

been interpreted to indicate a shorter dry season with overall

conditions that were cooler than during the Holocene (Iri-

arte, 2006). Phytolith samples were taken every 4 cm along

the sediment core. The extraction and slide preparation of

phytoliths were conducted at the University of Exeter, UK,

following standard procedures described by Piperno (2005).

Slides were scanned and counted at the University of Utah

Power Paleoecology Lab using a Leica EMED compound

light microscope (400–1000×). The number of phytoliths

counted varied from 101 to 320 per slide. The modern palm

swamp is a monospecific stand of M. flexuosa that produces

globular echinate phytoliths but does not produce hat-shaped

phytoliths characteristic of other Arecaceae (Piperno, 2005).

Although other palms produce globular echinate phytoliths,

the current monospecific stand supports the identification of

globular echinate phytoliths as belonging to this palm.

Given the abundance of M. flexuosa during the middle and

late Holocene, phytolith percentages from globular echinate

phytoliths were calculated separately. Percentages of non-

Mauritia phytoliths were calculated on the basis of the to-

tal sum of phytoliths excluding M. flexuosa. Phytolith iden-

tification was made by comparison with modern plant ref-

erence collections curated at the University of Exeter Ar-

chaeobotany Lab. The classification of Poaceae implemented

a three-partite morphological classification related to grass

taxonomy (Panicoideae–Chloridoideae–Pooideae) (Twiss et

al., 1969) and further developed in both North America

(Fredlund and Tieszen, 1994) and the Neotropics (Bertoli de

Pomar, 1971; Iriarte and Paz, 2009; Iriarte, 2003; Piperno

and Pearsall, 1998; Piperno, 2005; Sendulsky and Labouriau,

1966; Söndahl and Labouriau, 1970; Teixeira da Silva and

Labouriau, 1970; Zucol, 1999, 2000, 1996, 1998). The phy-

tolith percentage diagrams were plotted using Tilia and

Tilia*Graph software (Grimm, 1987). CONISS was used to

calculate phytolith zones (Grimm, 1987). CONISS is based

on cluster analysis, with the constrain that clusters are formed

by hierarchical agglomeration of stratigraphically adjacent

samples to minimize dispersion within the clusters (Ben-

nett, 1996; Grimm, 1987). The divisions were chosen using

a broken-stick model to determine the number of statistically

significant zones at the lowest dispersion within the clusters

(Bennett, 1996).

3 Results

Five distinct zones were identified, i.e. zone 1, the

Lateglacial (14 500–11 800 cal yr BP); zone 2, the early

Holocene (11 800–9000 cal yr BP); zone 3, the middle

Holocene (8000–3500 cal yr BP); and zone 4 and zone 5, the

late Holocene (3500 cal yr BP to present).

Zone 1: 14 500–11 800 cal yr BP: Lateglacial

The Lateglacial vegetation on Huanchaca Mesetta was dom-

inated by arboreal taxa, grasses, and Asteraceae (opaque per-

forated platelets) phytoliths (Fig. 3). The phytolith assem-

blage likely contains both in situ vegetation production and

wind-blown vegetation from the surrounding rocky savanna.

Both C4 Panicoideae and C3 Pooideae grass phytoliths were

present during the Lateglacial. The presence of C3 Pooideae

grasses is interpreted as the result of cooler Lateglacial con-

ditions compared to present. The Lateglacial vegetation com-

munity at Huanchaca Mesetta lacks a modern analogue plant

community in NKMNP. The presence of both C3 Pooideae

and C4 Panicoideae grasses suggest some degree of land-

scape heterogeneity. A consistent layer of very dark sandy

silt dominated the lithology of Huanchaca Mesetta during the

Lateglacial. The magnetic susceptibility and bulk density val-

ues were low and exhibit minimum variability compared to

the rest of the record (Fig. 4). Coupled with LOI organic val-

ues below 10 %, the sediment lithology was summarized as a

low-energy depositional environment with relatively low nu-

trient input. Organic matter deposited during the Lateglacial

had δ13C values of −16 ‰ (Fig. 5), indicating a contribution

of C4 grasses to organic matter composition. The proportion

of C3 to C4 grass contribution was calculated by using values

of C3 and C4 grasses and a simple two-pool mixing model

(Perdue and Koprivnjak, 2007) with end-member values of

−27 ‰ for C3 and −12 ‰ for C4 plants. The contribution

of C4 vegetation was ca. 80 %, higher than any other time

in the Huanchaca record. Modern δ13C values in the basin

range from−18 to−22 ‰. The location of these C4 drought-

adapted grasses was likely the surrounding plateau. Organic

carbon concentrations gradually increased from 1 to 4 % dur-

ing the Lateglacial, indicating relatively low amounts of or-

ganic matter in the system compared to those of today. The
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Figure 3. Huanchaca Mesetta phytolith data separated by zones created by constrained cluster analysis (CONISS). Grey bars indicate core

breaks.

Figure 4. Huanchaca Mesetta lithology: (a) lithological description of the core profile, (b) magnetic susceptibility, (c) loss on ignition (LOI),

and (d) bulk density. Zones derived from phytolith data. Grey bars represent core breaks.
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Figure 5. Huanchaca Mesetta stable isotope data: (a) δ13C, (b) % total carbon, (c) carbon to nitrogen ratio, (d) δ15N, and (e) % total N.

Zones derived from phytolith data. Grey bars indicate core breaks.

C :N ratio ranged from 20 to 30, indicating a terrestrial or-

ganic matter source. N concentrations were low, from 0.1 to

0.2 %, and the δ15N values were ca. 5 ‰, indicating minimal

denitrification during the Lateglacial. The δ13C, % C4 con-

tribution, and high C :N values coupled with the phytolith

data dominated by trees and grasses suggest a predominantly

terrestrial signal characterized by an open savanna grassland

during the Lateglacial (Fig. 6). The δ15N values suggest that

sediments within the swamp were drier than present creating

aerobic conditions and low denitrification rates.

Charcoal influx levels were low during the Lateglacial

(14 500–12 000 cal yr BP). The fire return interval (FRI) was

two fire episodes per 1000 years (Fig. 7). Based on the 0.5 cm

sampling resolution of this record, fire “episodes” were in-

terpreted as periods of increased fire activity rather than

isolated fire “event”. The charcoal signature was consistent

with frequent, low intensity fires that likely occurred in the

open, grass-dominated mesetta surrounding the basin. Low

charcoal influx levels coupled with low-magnitude charcoal

peaks suggest that the non-analogue vegetation structure of

C3 Pooideae, C4 Panicoideae, and arboreal phytoliths likely

created a fuel structure that lacked sufficient density or fuel

connectivity to produce abundant arboreal or grass charcoal.

Low charcoal influx coupled with low fire frequency sug-

gest that the Lateglacial environment was likely fire-sensitive

within the basin.

Zone 2: 11 800–9000 cal yr BP: early Holocene

There were decreased C4 Panicoideae grasses, with con-

sistent levels of C3 Pooideae grasses, arboreal, and Aster-

aceae (opaque perforated platelets) phytoliths. The presence

of C3 grasses, and the absence of M. flexuosa, the dominant

component of the modern basin vegetation, suggest temper-

atures cooler than present. The lithology, magnetic suscepti-

bility, bulk density, and LOI values indicate minimal shift

during the vegetation transition. Organic geochemistry re-

flected a change in organic matter source, with δ13C values

becoming more negative, indicating an increase in the con-

tribution of C3 vegetation at ca. 11 000 cal yr BP. The δ13C

contribution of C4 grasses decreased dramatically from 60 to

20 % during this period (Fig. 8). These data correspond to a

decrease in C4 Panicoideae grass phytoliths and an increase

in arboreal phytoliths. Low levels of terrestrial organic in-

put into the system were indicated by low carbon concentra-

tions and C :N values ranging between 25 and 30. N cycling

changed during the time of this zone, with δ15N values ex-

hibiting greater amplitude and higher frequency variability.
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Figure 6. C :N ratio to δ13C stable isotopes by zones determined

from phytolith data.

The δ15N values ranged between 4 and 8 ‰, indicating in-

creased variability in denitrification rates associated with in-

creasing wet (anaerobic) to dry (aerobic) conditions. The N

concentrations were low, between 0.05 and 0.01 %, indicat-

ing minimal nitrogen availability in the system.

Charcoal influx at Huanchaca Mesetta increased at ca.

11 200 cal yr BP coupled with an increase in the fire fre-

quency to five episodes (periods of increased burning) per

1000 years. The peak magnitude values indicated two sub-

stantial fire episodes (periods of increased burning) at ca.

10 200 and 9100 cal yr BP. The lack of significant change

in the lithology suggests that taphonomic conditions were

consistent during this interval. The increase in grass phy-

toliths during this period coupled with the increase in char-

coal influx and fire episodes suggests that the early Holocene

vegetation community was becoming increasingly more fire-

dependent and vegetation was likely adapting to the increase

in fire frequency associated with the period.

Zone 3: 8000–3750 cal yr BP: middle Holocene

Significant vegetation changes occur through the middle

Holocene. From 8000 to 5500 cal yr BP, C4 Panicoideae

(warm/wet) grasses were at the lowest values in the

record. C3 Pooideae (cold/wet) grasses diminished after ca.

7000 cal yr BP and remain absent for the remainder of the

record. Arboreal phytoliths reached the highest levels in

the record at 8000 cal yr BP, followed by a slight decline

to 3500 cal yr BP. δ13C values ranged between −24 and

Figure 7. Huanchaca Mesetta charcoal data (a) charcoal influx in

grey, black background; (b) charcoal influx log base 10 in grey,

black background; (c) peaks indicated by crosses; (d) peak mag-

nitude; and (e) fire episodes per 1000 years. Zones derived from

phytolith data. Grey bars indicate core breaks.

−22 ‰ from 7900 to 5100 cal yr BP. These values corre-

sponded to a diminished C4 contribution to organic mat-

ter (approximately 18 %). Decreased C4 grass phytoliths

from 8000 to 5000 cal yr BP was interpreted as a decrease

in vegetation density in the open mesetta surrounding the

basin caused by drying conditions on the mesetta. After

5000 cal yr BP, C4 Panicoideae grasses and C4 Chlorideae

(warm/dry) grasses gradually increased in the surrounding

watershed, coupled increased δ13C values to−19 ‰. M. flex-

uosa phytoliths first appeared at 5000 cal yr BP, and grad-

ually increased to modern levels by 3750 cal yr BP. The

δ13C values decreased, potentially associated with the de-

velopment of the C3 M. flexuosa community. A dark-brown

clay–sand mixture from 8000 to 3750 cal yr BP dominated

the lithology that transitioned to black detrital peat at ca.

3750 cal yr BP associated with the establishment of M. flex-

uosa. After 4000 cal yr BP, LOI, magnetic susceptibility, and

C :N values increased, indicating increased organic material.

Nitrogen cycling continued to fluctuate throughout this pe-

riod. δ15N values exhibited the greatest frequency and ampli-
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Figure 8. Huanchaca Mesetta summary: (a) charcoal influx in grey, black background; (b) fire episodes per 1000 years; (c) peaks indicated

by crosses; (d) ratio of non-arboreal to total charcoal; (e) ratio of trees to trees and palms; (f) ratio of C3 to total grasses; (g) ratio of palms

to total phytoliths; (h) % C4 contribution; (i) lake level of Titicaca in m a.s.l.; and (j) insolation at 15◦ S. Zones derived from phytolith data.

Grey bars indicate core breaks.

tude of variability from 8000 to 3750 cal yr BP, ranging from

2 to 12 ‰, indicating repeated and extensive dry periods on

the mesetta.

Increased charcoal influx at ca. 8000 cal yr BP was fol-

lowed by an abrupt decrease to the lowest values during the

record from ca. 7900 to ca. 3800 cal yr BP. Peak frequency

reached the highest levels of six fire episodes (periods of in-

creased burning) per 1000 years during the middle Holocene.

These data corresponded to the highest levels of δ15N values,

indicating extended dry periods that likely promoted frequent

fires on the mesetta. The first evidence of grass charcoal ap-

peared at ca. 6500 cal yr BP, suggesting a change in the fire

ecology on the mesetta. From 5000 to 3750 cal year BP, grass

charcoal increased. This is coincident with the establishment

of M. flexuosa palm swamp and increased C4 grasses in the

surrounding watershed. After 3900 cal yr BP, charcoal influx

and fire frequency increased. Significant increases in grass

charcoal reflected a change in the fuel composition in the

watershed. Phytolith, isotope, and charcoal data suggest that,

after 3900 cal yr BP, the M. flexuosa within the basin became

increasingly fire-sensitive and the occurrence of a fire within

the palm stand would have had consequences for the vegeta-

tion not adapted to fire. The fire-adapted C4 grass-dominated

watershed continued to be fire-dependent.

Zone 4: 3750 to 2000 cal yr BP: late Holocene

There is a decrease in arboreal taxa coupled with in-

creased values of M. flexuosa. C4 Panicoideae (warm,

wet) grasses continued to dominate the surrounding wa-

tershed. The lithology consisted of black detrital peat at

ca. 2450–2050 cal yr BP associated with high LOI values

(ca. 22 % organics) and magnetic susceptibility values (ca.

1000× 10−5). After 2500 cal yr BP the %C, %N, and δ15N

increased, suggesting moist, anoxic conditions that enabled

moderate denitrification from the swamp. These lithologic

and isotopic data represented the establishment of modern

palm swamp characterized by increased autochthonous or-

ganic accumulation. The δ13C values reached modern levels

by 2800 cal yr BP, although values exhibit increased variabil-

ity co-varying with the C4 grass contribution.

Charcoal influx at Huanchaca Mesetta remained low 3750

to 2000 cal yr BP with a FRI of five episodes (periods of in-

creased burning) per 1000 years. Grass charcoal reached the

highest continuous levels at ca. 2800 to 2000 cal yr BP, cor-

responding to high levels of fire-adapted C4 grass phytoliths.

Increased grass charcoal coupled with low peak magnitude

values and high fire frequency indicated that the vegetation

surrounding the palm swamp was fire-dependent and fire-
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adapted. However, within the moist M. flexuosa palm stand,

the vegetation remained fire-sensitive.

Zone 5: 2000 cal yr BP to present: late Holocene

M. flexuosa reached the highest levels in the record at

ca. 1800 cal yr BP, followed by decreasing values towards

the present. The presence of hat-shaped phytoliths at ca.

200 cal yr BP indicates very low concentrations of other palm

species during this time. There was a gradual decrease in M.

flexuosa towards the present coupled with the highest lev-

els of C4 Panicoideae grasses at ca. 200 cal yr BP and a de-

crease in C4 Chloridoideae (warm, dry) grasses in the sur-

rounding watershed. The lithology was dominated by dark-

brown detrital peat. After ca. 800 cal yr BP δ13C values were

ca. −18 ‰ and the % C4 contribution was ca. 50 %. These

data corresponded to the highest levels of C4 Panicoideae

grass phytoliths in the record. The dark detrital peat lithol-

ogy was interrupted by two coarse sand layers at ca. 1550 and

ca. 300–200 cal yr BP, followed by a shift back to black de-

trital peat from ca. 200 cal yr BP to present. These sand lay-

ers were characterized by a decrease in LOI from ca. 22 to

2 % organics, C :N ratios from ca. 25 to 0, and δ15N from

ca. 5 to 0 ‰ coupled with increased magnetic susceptibility

and bulk density values, suggesting clastic flood events as-

sociated with sandy sediments low in organic material. After

300 cal yr BP, %C values increased from ca. 1 % to > 20 %,

reaching the highest values in the record. The %N values in-

creased from ca. 0.2 to the peak Holocene values of 1.2 at

present. The dramatic increases in both %C and %N were

likely the result of in situ carbon cycling and nitrogen fixa-

tion.

Charcoal influx increased after 2000 cal yr BP at ca. 1400

to 1200 cal yr BP, and reached peak Holocene values at ca.

500–400 cal yr BP. Increased charcoal was coupled with the

lowest FRI values in the record. Peak magnitude increased

significantly around 1200 cal yr BP and the largest peak mag-

nitude values at ca. 200 cal yr BP. These charcoal values

were cropped for plotting and visualization purposes. Raw

counts exceed 1200; thus the values are also provided log-

transformed (Fig. 8). Peak frequency increased after ca.

400 cal yr BP to ca. 4 fire episodes (periods of increased burn-

ing) per 1000 years towards the present. There was a de-

crease in grass charcoal, indicating increased woody biomass

burned. The increased charcoal influx coupled with low FRI

and more woody charcoal was interpreted as being the result

of fire episodes that infrequently penetrated the fire-sensitive

palm stand and burned the M. flexuosa woody biomass. The

charcoal, phytolith, and isotope data collectively suggest

that the vegetation surrounding the palm swamp was fire-

dependent and fire-adapted, while the vegetation within the

palm swamp was fire-sensitive.

4 Discussion

4.1 First-order control: edaphic constraints

Modern vegetation distribution of cerrãdo savannas are

largely related to edaphic factors (Colgan et al., 2012;

Killeen, 1998a). Since the Lateglacial, the vegetation, soil

geochemistry, and fire history indicate that edaphic con-

straints were the first order of control on vegetation on Huan-

chaca Mesetta. Despite significant climate variability since

the Lateglacial (Baker et al., 2001; Cruz et al., 2005), the

open savanna surrounding the basin was continuously dom-

inated by fire-adapted C4 grasses. Within the basin, soil was

sufficiently thick to support more complex vegetation com-

munities that exhibited greater response to climate variabil-

ity through time. On the highly weathered quartzite plateau,

however, vegetation was limited to drought- and fire-tolerant

C4 grasses, as indicated by the continued presence of C4 Pan-

icoideae grass phytoliths that co-varied with the δ13C values.

The first hypothesis, that edaphic conditions are the dom-

inant control of vegetation on the plateau, was supported

based on phytolith and isotope data. Irrespective of changes

in temperature, precipitation, and fire activity, savanna veg-

etation has been present on the mesetta for the past 14 500

years. Edaphic conditions on the open rocky plateau have

limited species composition to C4 drought-adapted grasses.

Arboreal and palm vegetation was limited to the topographic

depressions present on the plateau where soil was sufficiently

deep to support more complex vegetation communities.

4.2 Second-order control: climatological drivers

4.3 Lateglacial surazo winds and Mauritia flexuosa

Non-analogue Lateglacial vegetation communities are doc-

umented from low-elevation sites including Laguna Chaplin

(14◦28′ S, 61◦04′W; approximately 40 km west) and Laguna

Bella Vista (13◦, 37′ S, 61◦, 33◦W; 140 km northwest of

Huanchaca Mesetta). The absence of Anadenanthera, a key

indicator in present-day deciduous and semi-deciduous dry

forests, was interpreted as being the result of reduced precip-

itation (e.g., longer and/or more severe dry season), increased

aridity, and lowered atmospheric CO2 concentrations. These

conditions favored C4 grasses, sedges, and drought-adapted

savanna and dry forest arboreal species (Burbridge et al.,

2004). Similarly, the non-analogue Lateglacial vegetation

community at Huanchaca Mesetta is notable for the absence

of M. flexuosa. M. flexuosa can tolerate a broad precipitation

gradient ranging from 1500 to 3500 mm annually in areas

with annual temperature averages above 21 ◦C, roughly coin-

ciding with the 1000 m a.s.l. contour line (Rull and Montoya,

2014). M. flexuosa is dependent on local hydrology, includ-

ing water table depth and flooded conditions (Kahn, 1987).

The presence of M. flexuosa in the lowland records at Laguna

Chaplin and Laguna Bella Vista (ca. 200 m a.s.l.) during the

Lateglacial (Burbridge et al., 2004) indicates that conditions
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were sufficiently warm with a locally wet habitat below the

mesetta to support the palms despite an estimated 20 % de-

crease in precipitation (Mayle et al., 2004; Punyasena, 2008).

Temperature was thus likely a limiting factor for the estab-

lishment of M. flexuosa on the mesetta. However, tempera-

ture reconstructions of Lateglacial conditions from Laguna

La Gaiba (ca. 500 km SE of Huanchaca Mesetta) indicate

temperatures reached modern conditions (ca. 25 to 26.5 ◦C)

around 19 500 cal yr BP and have remained relatively stable

to present (Whitney et al., 2011). However, previous stud-

ies have suggested the increased frequency of surazo winds

(Bush and Silman, 2004). An ice cap located on the Patag-

onian Andes generated an anomalously high pressure center

in northwestern Patagonia, resulting in increased surazo cold

fronts blowing cold, dry, southerly winds northward and pen-

etrating the NKMNP region (Iriondo and Garcia, 1993; La-

trubesse and Ramonell, 1994). The surazos may have been

no more intense than those of present but likely occurred

more often and lasted more of the year (Bush and Silman,

2004). Increased frequency of surazos would have had lit-

tle effect on the absolute temperature minima, but the mean

monthly and annual temperature minima may have been ca.

5 ◦C lower (Bush and Silman, 2004). Based on a lapse rate

of 6.4 ◦C km−1 (Glickman, 2000), the 400 m difference be-

tween the lowland sites (Laguna Chaplin and Laguna Bella

Vista, ca. 250 m a.s.l.) and Huanchaca Mesetta (ca. 650–

800 m a.s.l.) could have resulted in up to ca. 2.6 ◦C difference

in average annual temperatures. Despite near-modern annual

temperatures at ca. 19 500 cal yr BP, the elevational lapse rate

coupled with lower mean monthly and annual temperature

minima accompanying more frequent surazos likely resulted

in climatic conditions below the thermal optimum of 21 ◦C

for M. flexuosa (Rull and Montoya, 2014). Thus, during the

Lateglacial, increased frequency of surazos likely resulted

in increased biological stress on the vegetation community

at Huanchaca Mesetta, resulting in vegetation dominated by

trees and grasses as opposed to M. flexuosa.

4.3.1 Interpreting CharAnalysis in paleofire

reconstructions at Huanchaca Mesetta

The charcoal record from the Huanchaca Mesetta provides

one of the first subcentennial paleofire records from the cer-

rãdo savanna ecosystem. Previous experimental studies on

sedimentary charcoal from African savanna ecosystems sup-

port the use of sedimentary charcoal to reconstruct past fire

activity in savanna systems (Aleman et al., 2013; Duffin et

al., 2008). The Huanchaca Mesetta charcoal record presents a

novel approach, combining charcoal influx data, CharAnaly-

sis software (Higuera et al., 2007), and arboreal/non-arboreal

charcoal ratios in Neotropical savanna ecosystems. Origi-

nally, CharAnalysis was designed as a peak-detection tool

for forest ecosystems with low FRI in the Northern Hemi-

sphere (Higuera et al., 2007). Paleoecological investigations

in fire-prone systems such as savannas can be challenging

because of the annual to multi-annual FRI complicating the

identification of fire peaks and isolated fire events.

To address the challenge of reconstructing cerrãdo pale-

ofire activity, charcoal influx was compared with the ratio

of arboreal to non-arboreal grass charcoal to infer the pri-

mary fuel source during periods of elevated fire activity. Low

charcoal influx values, coupled with low arboreal charcoal,

were interpreted as periods of decreased burning. Increased

charcoal influx values and/or increased arboreal charcoal that

exceeded the background threshold were identified as fire

episodes. Because of the temporal resolution of the record,

fire episodes were not interpreted as isolated fires but rather

as periods of time that experienced increased fire activity (in-

dicated by higher FRI values). Thus, an increase in the FRI

from 2 to 5 episodes per 1000 years, as seen from 8000 to

6000 cal yr BP, represents more than a 50 % increase in the

periods of burning over that 2000-year period. These data

indicate a substantial shift in paleofire activity during the

middle Holocene, particularly as there were no significant

changes in the vegetation record on the Huanchaca Mesetta

during this time.

4.3.2 Holocene precipitation, fuel moisture, and fuel

availability

During the middle Holocene in lowland Amazonia, the

presence of dry forest taxa and increased charcoal in-

flux at Laguna Chaplin and Laguna Bella Vista indicate

a combination of seasonally flooded savannas and semi-

deciduous dry forests (Mayle et al., 2004). At Laguna Orí-

core (13◦20′44.02′′ S, 63◦31′31.86′′W; 335 km northwest),

peaks in drought-tolerant arboreal taxa, coupled with max-

imum charcoal concentrations, indicate drier and regionally

more open vegetation (Carson et al., 2014). Laguna Granja

(13◦15′44′′ S, 63◦, 42′37′′W; 350 km northwest) was also

characterized by open savanna vegetation. These data sug-

gest lower mean annual precipitation (< 150 cm) and a longer

dry season (> 5 months with < 100 cm) during the middle

Holocene (Burbridge et al., 2004; Mayle et al., 2000). Ad-

ditionally, water levels at Lake Titicaca were ca. 100 m be-

low present (Fig. 8), attributed to precipitation levels ca.

40 % below present (Baker et al., 2001; Cross et al., 2000;

D’Agostino et al., 2002).

The discrepancy in increased fire activity in the lowland

sites and decreased fire activity on the mesetta is attributed to

fuel connectivity. In the lowland sites of Laguna Bella Vista,

Laguna Chapin, and Laguna Orícore, dry forest–savanna

vegetation provided sufficient fuel and increased fire activ-

ity during the middle Holocene. At Huanchaca Mesetta, de-

creased available moisture limited vegetation growth and fuel

availability, particularly in the edaphically constrained rocky

mesetta surrounding the basin. The lack of fine C4 grass con-

nective fuels resulted in decreased burning on the mesetta.

Lake Titicaca reached modern water levels between

3750 cal yr BP and the present (Rowe et al., 2003), indi-
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cating wetter regional conditions with less severe dry sea-

sons. The pollen assemblages of Laguna Bella Vista, Laguna

Chaplin, and Laguna Orícore indicate an expansion of humid

evergreen closed-canopy rainforest vegetation coupled with

significant decreases in charcoal concentrations (Burbridge

et al., 2004; Burn et al., 2010; Carson et al., 2014). The

rainforest–savanna ecotone is currently at its most southerly

extent in the Amazon Basin in at least the last 50 000 years.

(Mayle et al., 2000; Mayle and Whitney, 2012; Burbridge et

al., 2004). The progressive succession through the Holocene

in the lowlands of NKMNP from savanna/semi-deciduous

forest to semi-deciduous/evergreen forest to evergreen rain-

forest is part of a long-term unidirectional trend of climate-

driven rainforest expansion associated with the regional in-

crease in precipitation associated with a stronger SASM

(Mayle et al., 2004). The basin-wide increase in mean an-

nual precipitation and reduction in the length/severity of the

dry season is attributed to increasing summer insolation at

10–15◦ S driven by the Milankovitch precessional forcing

(Mayle and Whitney, 2012). The wet conditions of the late

Holocene created ideal waterlogged conditions for the es-

tablishment of the M. flexuosa palm swamp in the drainage

basin.

During the late Holocene, the asynchrony of charcoal

records between the low-elevation sites and Huanchaca

Mesetta is attributed to fuel flammability. Increased precip-

itation led to different effects on fire frequency, with de-

creases in the lowlands and increases in Huanchaca Mesetta.

Increased precipitation in the low-elevation closed-canopy

rainforests decreased fuel flammability along with fire activ-

ity. Whereas increased precipitation resulted in the buildup

of fire-adapted C4 grasses on the surrounding plateau.

Lightning-caused fire is common in cerrãdo savannas to-

day and highest in more open savanna ecosystems, such as

the Huanchaca Mesetta (Ramos-Neto and Pivello, 2000).

Increased precipitation would have been accompanied by

increased incidence of lightning-caused fire, fueled by the

abundance of fire-adapted grass fuels in the surrounding wa-

tershed.

The second hypothesis, that climate was the dominant con-

trol on savanna vegetation structure and floristic composi-

tion, was supported by the vegetation and fire data. Since the

Lateglacial, climate change has coincided with both the vege-

tation composition and fire regimes on the plateau. The asyn-

chrony in response to regional climate forcing at Huanchaca

Mesetta and the low-elevation sites emphasizes the need to

obtain more paleorecords across an elevational gradient to

determine the effects of climate variability across heteroge-

neous ecosystems.

4.4 Human versus natural drivers on the evolution of

Mauritia flexuosa

The development of M. flexuosa swamps and increases in

charcoal influx have been seen in numerous paleoecologi-

cal records from savanna ecosystems in Colombia (Behling

and Hooghiemstra, 1998, 1999; Berrio et al., 2002a, b),

Venezuela (Montoya et al., 2011b; Rull and Montoya, 2014;

Rull, 1999, 2009), and Brazil (DaSilva Meneses et al., 2013).

Previously two hypotheses have been proposed to account

for the late Holocene development of these M. flexuosa palm

swamps. The first hypothesis suggests that the increase in M.

flexuosa and charcoal influx is attributed to increased pre-

cipitation and wet-season lightning fires driven by strength-

ened SASM activity (Kahn and de Castro, 1985; Kahn and de

Granville, 1992; Kahn, 1987). The second hypothesis sug-

gests that the simultaneous rise in M. flexuosa and char-

coal was linked to intentional planting or semi-domestication

of M. flexuosa for human use (Behling and Hooghiemstra,

1998, 1999; Montoya et al., 2011a; Rull and Montoya, 2014).

Currently there is insufficient archeological evidence from

any of these savanna sites to support a robust anthropogenic

signal (Rull and Montoya, 2014). Previous paleoecological

studies in the lowlands demonstrate humans were the dom-

inant driver of local-scale forest–savanna ecotonal change

in those areas (e.g., Bolivian Llanos de Moxos) dominated

by complex earth-moving pre-Columbian cultures (Carson

et al., 2014; Whitney et al., 2014). These studies suggest that

even in areas with extensive geometric earthworks, inhabi-

tants likely exploited naturally open savanna landscapes that

they maintained around their settlement, rather than practic-

ing labor-intensive deforestation of dense rainforest (Carson

et al., 2014). Evidence for human occupation of the lowlands

has been found with ceramics from soil pits in an interfluve

ca. 25 km northwest of Laguna Chaplin and abundant ceram-

ics and charcoal dating to ca. 470 cal yr BP recovered from

Anthosols (terra preta) throughout La Chonta ca. 150 km

west of NKMNP (Burbridge et al., 2004). Implementing a

new methodology to concentrate and isolate cultigen pollen

(Whitney et al., 2012), the re-analysis of pollen data from

Laguna Bella Vista and Laguna Chaplin revealed Zea mays

pollen was present around 1000 to 400 cal yr BP; approxi-

mately 2000 years after the initial increase in M. flexuosa

at these sites (B. Whitney, personal communication, 2014).

Although humans were present in NKMNP, there is no evi-

dence that they drove regionally significant ecotonal changes

in forest–savanna boundaries. The patterns of forest–savanna

shifts exhibited at these sites are consistent with climate

forcing (Burbridge et al., 2004). The absence of archeologi-

cal data on Huanchaca Mesetta dominated by nutrient-poor,

rocky soil, which would have been infertile for the practice

of agriculture, coupled with the limited access to the mesetta

would have made human habitation unlikely. Although the

M. flexuosa swamps may have been used for hunting and

gathering purposes, these data do not suggest humans were

the driving mechanism behind the initial establishment or

proliferation of M. flexuosa in the interfluvial depressions of

the mesetta.

The comparison of the Huanchaca Mesetta record to pre-

vious studies coupled with the absence of archeological re-
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mains on the mesetta support the third hypothesis, that ex-

pansion of M. flexuosa at this site was largely controlled by

natural drivers (edaphic, climate, lightning caused fires) as

opposed to anthropogenic drivers. In contrast to the conclu-

sions from other studies, this record provides no evidence

for an anthropogenically driven fire regime, deforestation,

soil erosion, or cultivation on the mesetta. These data suggest

that natural drivers control the continued presence of savanna

vegetation and fire activity on the Huanchaca Mesetta for the

past 14 500 years.

5 Implications for savanna ecology and

conservation

The presence of savanna vegetation for the past 14 500 years

at Huanchaca Mesetta has significant implications for un-

derstanding modern savanna ecology and for the implemen-

tation of conservation strategies in the 21st century. Previ-

ous research on the evolution and development of savanna

ecosystems has attributed much of the development of sa-

vannas to anthropogenic origins driven by the intentional

use of fire (Arroyo-Kalin, 2012; Behling and Hooghiemstra,

1998, 1999; Behling, 2002; Berrio et al., 2002a; Ramos-

Neto and Pivello, 2000; Rull and Montoya, 2014). The re-

sults from this study demonstrate that the continued pres-

ence of the savanna ecosystem at Huanchaca Mesetta is at-

tributable to edaphic and climatic controls. The presence of

fire in this system for the past 14 500 years indicates that

naturally occurring, lightning-caused fire is an integral part

of the ecology of the savanna ecosystem. Despite changes

in floristic composition and tree density within the drainage

basin, the savanna ecosystem has been resilient to major cli-

matic changes in both temperature and precipitation since the

Lateglacial period. These data suggest that savanna ecosys-

tems will continue to be resilient to future climate change

associated with global warming. The long history of ecosys-

tem stability in the face of dramatic climate variability at-

tests to the fact that the Huanchaca Mesetta savanna is one

of the most floristically diverse savannas anywhere in the

Neotropics (DaSilva Meneses and Bates, 2002). The contin-

ued protection of the Huanchaca Mesetta savanna as a UN-

ESCO world heritage site, coupled with the savanna’s natu-

ral resilience to climatic change exhibited over at least the

past 14 500 years, indicates that, despite significant global

warming projected for the 21st century (IPCC, 2014), there

is good reason for optimism for the conservation and preser-

vation of biological diversity in the Huanchaca Mesetta sa-

vanna ecosystem.
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