

Supplement of

Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model

J. R. Alder and S. W. Hostetler

Correspondence to: J. R. Alder (jalder@usgs.gov)

Supplemental Materials for

Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model

J. R. Alder and S.W. Hostetler

Jay R. Alder, US Geological Survey, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States, jalder@usgs.gov

Steven W. Hostetler, US Geological Survey, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States, <u>swhostet@usgs.gov</u>

File contains: Supplemental Figures 1 – 16 Supplemental Table 1 Supplemental References

Fig. S1. Annual time series of global average 2-m surface air temperature displaying the approach to equilibrium from initializing the time-slice simulations with an isothermal atmosphere and ocean at rest.

Fig. S2. Simulated seasonal average 500 hPa geopotential height and wind for the time segments. a) December, January and February and b) June, July and August.

Fig. S3. Simulated seasonal average anomalies of sea level pressure and 2-m wind for the time segments. a) December, January and February and b) June, July and August.

Fig. S4. Simulated seasonal average anomalies of shortwave radiation at the surface for the time segments relative to PI. a) December, January and February and b) June, July and August.

Fig. S5. 21 ka December, January and February average 2-m surface air temperature anomalies relative to the PI for GENMOM and PMIP3.

Fig. S6. 21 ka June, July and August average 2-m surface air temperature anomalies relative to the PI for GENMOM and PMIP3.

Fig. S7. 6 ka December, January and February average 2-m surface air temperature anomalies relative to the PI for GENMOM and PMIP3.

Fig. S8. 6 ka June, July and August average 2-m surface air temperature anomalies relative to the PI for GENMOM and PMIP3.

Fig. S9. 21 ka June, July and August average precipitation anomalies relative to the PI for GENMOM and PMIP3.

Fig. S10. 21 ka June, July and August average precipitation anomalies relative to the PI for GENMOM and PMIP3.

Fig. S11. 6 ka December, January and February average precipitation anomalies relative to the PI for GENMOM and PMIP3.

Fig. S12. 6 ka June, July and August average precipitation anomalies relative to the PI for GENMOM and PMIP3.

Fig. S13. Northern Hemisphere (NH) fractional sea-ice extent for winter (Feburary-March) and summer (August-September).

Fig. S14. Southern Hemisphere (SH) fractional sea-ice extent for winter (August-September) and summer (Feburary-March).

Fig. S15. Simulated seasonal change of the total area covered by sea ice in the Southern Hemisphere for the time segment simulations. The total area includes the grid cells with \geq 15% fractional coverage.

Fig. S16. Average changes in mean-annual temperature (MAT) and precipitation (MAP) as simulated by the PMIP3 models. a) 21 ka TAS, b) 21 ka MAP, c) 6 ka TAS and d) 6 ka MAP.

Table S1. Description of the PMIP3 models used in the SFigs 5 - 12 and 16. Adapted from Harrison et al. (2013).

Model Code	Model Name	Туре	Resolution (number of gridcells: latitude, longitude)			Year	Simulations		Reference
			Atmosphere	Ocean	Sea Ice	Length	МН	LGM	
bcc-csm1-1	BCC	OAC	64, 128	232, 360	232, 360	365	х		(Wu et al., 2010)
CCSM4	CCSM4	OA	192, 288	320, 384	320384	365	Х	х	(Gent et al., 2011)
CNRM-CM5	CNRM5	OA	128, 256	292, 362	292, 362	365- 366	х	х	(Voldoire et al., 2013)
CSIRO-Mk3-6-0	CSIRO3.6	OA	96, 192	189, 192	96, 192	365	Х		(Rotstayn et al., 2010)
CSIRO-Mk3L-1-2	CSIRO3.1.2	OA	56, 64	128, 225	56, 64	365	х		(Phipps et al., 2011; Wu et al., 2008)
GISS-E2-R	GISS.E2	OA	90, 144	90, 144	90, 144	365	х	х	No publication
HadGEM2-CC	HadGEM2 (CC)	OAC	145, 192	216, 360	216, 360	360	х		(Jones et al., 2011; Martin et al., 2011)
HadGEM2-ES	HadGEM2 (ESM)	OAC	145, 192	216, 360	216, 360	360	х		(Jones et al., 2011; Martin et al., 2011)
IPSL-CM5A-LR	IPSL5	OAC	96, 96	149, 182	149, 182	365	Х	х	(Dufresne et al., 2013)
MIROC-ESM	MIROC (ESM)	OAC	64, 128	192, 256	192, 256	365	х		(Watanabe et al., 2011)
MPI-ESM-P	MPI (ESM)	OA	96, 192	220, 256	220, 256	365- 366	х	х	No publication
MRI-CGCM3	MRI3	OA	160, 320	360, 368	360, 368	365	х	х	(Yukimoto et al., 2011)

Supplemental References

- Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A. and Marti, O.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim Dynam, 2013.
- Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L. and Zhang, M.: The Community Climate System Model Version 4, J Climate, 24(19), 4973–4991, doi:10.1175/2011JCLI4083.1, 2011.
- Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K. and Willis, K.: Climate model benchmarking with glacial and mid-Holocene climates, Clim Dynam, doi:10.1007/s00382-013-1922-6, 2013.
- Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K. O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J. F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Chini, L. P., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M. and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4(3), 543–570, doi:10.5194/gmd-4-543-2011, 2011.
- Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., Wiltshire, A. and Team, H. D.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4(3), 723–757, doi:10.5194/gmd-4-723-2011, 2011.
- Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C. and Budd, W. F.: The CSIRO Mk3L climate system model version 1.0-Part 1: Description and evaluation, Geosci. Model Dev., 4(2), 483–509, doi:10.5194/gmd-4-483-2011, 2011.
- Rotstayn, L. D., Collier, M. A., Dix, M. R., Feng, Y., Gordon, H. B., O'Farrell, S. P., Smith, I. N. and Syktus, J.: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment, Int. J. Climatol., 30(7), 1067–1088, doi:10.1002/joc.1952, 2010.
- Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou, C., Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L. and Chauvin, F.: The CNRM-CM5.1 global climate model: description and basic evaluation, Clim Dynam, 40(9-10), 2091–2121, doi:10.1007/s00382-011-1259-y, 2013.
- Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S. and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4(4), 845–

872, doi:10.5194/gmd-4-845-2011, 2011.

- Wu, T., Yu, R. and Zhang, F.: A modified dynamic framework for the atmospheric spectral model and its application, Journal of the Atmospheric Sciences, 65(7), 2235–2253, doi:10.1175/2007JAS2514.1, 2008.
- Wu, T., Yu, R., Zhang, F., Wang, Z., Dong, M., Wang, L., Jin, X., Chen, D. and Li, L.: The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate, Clim Dynam, 34(1), 123–147, doi:10.1007/s00382-008-0487-2, 2010.
- Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M., Tanaka, T. Y., Deushi, M., Obata, A., Nakano, H., Adachi, Y., Shindo, E., Yabu, S., Ose, T. and Kitoh, A.: Meteorological Research Institute-Earth System 820 Model v1 (MRI-ESM1) – Model Description, Meteorological Research Institute. 2011.