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Sect. S1: processing of the model time series  1 

Model data were processed to correspond to the temporal and area-weighted spatial 2 
averaging of the PAGES 2k temperature reconstructions (PAGES 2k Consortium, 2013) for 3 
each region as follows: 4 

1. Antarctica (annual): 90° S-60° S ; 180° W-180° E 5 

2. Arctic (annual): 60° N-90° N ; 180° W-180° E 6 

3. Asia (June-August): 23.5° N-55° N ; 60° E-160° E 7 

4. Australasia (September-February): 50° S-0° S ; 110° E-180° E  8 

5. Europe (June-August): 35° N:70° N ; 10° W-40° E  9 

6. North America (annual)*: 30° N:55° N ; 130° W-75° W 10 

7. South America (December-February): 65° S-20° S ; 75° W-30° W 11 

Note that all simulations for North America were bilinearly interpolated to the 12 
HadCRUT3V latitude-longitude grid before the grid box centred at 52.5° N; 77.5° W was 13 
removed from the averaging calculation to match processing of the instrumental predictand 14 
(PAGES 2k Consortium, 2013). 15 

The ocean was masked for Antarctica, Asia, Europe and South America regions using 16 
the respective binary (1, 0) land masks for each simulation. No significant difference was 17 
found between the use of fractional land masking (proportion between and including 0 and 1) 18 
and the binary mask common to all simulations for the land-only PAGES 2k reconstruction 19 

equivalent. 20 
As the GISS-E2-R control simulation is known to contain a drift from non-equilibrated 21 

initial conditions (Schmidt et al., 2014), the transient as well as the control simulation from 22 

that model have been detrended by subtracting a low-frequency loess fit that has been 23 

estimated from the corresponding time period of the control simulation from each time series. 24 

 25 

Sect. S2: specific implementation of some methods 26 

S2.1 Probabilistic and climatological consistency  27 

The two concepts of probabilistic and climatological consistency can be seen as two 28 

alternative ways to evaluate biases and spreads in simulations and reconstructions. In the 29 

current study, however, the analyses use temperature anomalies from long-term averages, and 30 

hence the bias is always zero by construction. Thus, our analysis mainly assesses two different 31 

aspects of spread in the distributions of the regional temperature reconstructions and climate 32 

model simulations. 33 

The quantile-quantile (r-q-q) plots displayed to analyse the climatological consistency 34 

show the difference between the simulated and the target quantiles. Residuals should 35 

approach zero for a consistent simulation (a flat line in the plots). Offsets relative to y=0 on 36 

the quantile-quantile plot indicate biases between the simulation and the target. Slopes in the 37 

residuals indicate underestimation or overestimation of the variance, i.e. excessively narrow 38 

or wide distributions. We refer to such cases as being under- or over-dispersive. Negative 39 

slopes occur if the simulated variance is smaller than that of the target and positive ones for 40 

larger simulated variance. If a simulation and a reconstruction are consistent, the difference in 41 

their quantiles should be close to zero. Consequently, the plot should be approximately flat. If 42 

for low values of the reconstruction the residual quantile simulated minus reconstruction are 43 

always negative and always positive for positive value of the reconstructions (positive slope), 44 
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the simulated ensemble is too broad and thus the simulations have larger simulated variance 45 

compared to the reconstruction. 46 

To assess probabilistic consistency, we test whether the occurrence frequencies of the 47 

simulation ensemble agree with those of the verification target, within limits of uncertainty. At 48 

each time step, we identify the rank of the temperature reconstructions within the set formed 49 

by the combination of the simulation ensemble and those temperature reconstructions 50 

(Anderson, 1996). Flatness of the histograms is thus a necessary condition for our simulation 51 

ensemble to be considered as a reliable representation of the target. The histograms visually 52 

highlight biases (meaning here an offset in mean between the target and the ensemble) and 53 

differences in ensemble variance. Over-dispersion (ensembles that are too wide) and under-54 

dispersion (ensembles that are too narrow) are identified by dome- or U-shaped histograms, 55 

respectively. Such shapes imply that the target data are too often close to the central rank or 56 

too often on the outer ranks (i.e., far from the mean of the ensemble of simulations). Slopes in 57 

the histograms reveal biases, with positive (negative) slopes suggesting the target data are 58 

ranked high (low) too often.  59 

S2.2. Superposed epoch analysis  60 

The response to volcanic aerosol forcing is evaluated at interannual and multidecadal 61 

time scales for two different external forcing estimates (Gao et al., 2008; Crowley and 62 

Unterman, 2013) that have been used as last-millennium boundary conditions in the PMIP3-63 

CMIP5 simulations (Schmidt et al., 2011, 2012).  64 

The volcanic composite at interannual timescales is generated by first selecting the 12 65 

strongest volcanic events. The mean from 5 years before to 10 years after the date of the peak 66 

eruption is then computed for the forcing sequence as well as for the simulated and 67 

reconstructed temperature sequences. In the case of the multidecadal composites, the time 68 

series are first filtered with a 40-year low pass filter using least-squares coefficients 69 

(Bloomfield, 1976). For the multidecadal composites, the 5 strongest events are selected and 70 

the means from 40 years before to 40 years after the eruption are calculated, following 71 

Masson-Delmotte et al. (2013). All the events are individually selected for each of the PAGES 72 

2k regions making use of the latitudinal discretization of the volcanic forcing.  73 

The composites for the strongest multidecadal changes in the solar forcing are based on 74 

low solar forcing periods selected to be the same as in Fig. 5.8 of the IPCC AR5 (Masson-75 

Delmotte et al., 2013) for the sake of a better comparison. This corresponds to seven 80-year 76 

time windows centred on the years 1044, 1177, 1451, 1539, 1673, 1801 and 1905. 77 

S2.3 Framework for evaluation of climate model simulations: UR and UT statistics 78 

The statistical model underlying the framework developed by Sundberg et al. (2012, 79 

henceforth SUN12), Hind et al. (2012) and Moberg et al. (2015) has similar components to 80 

the one used in detection and attribution studies (see section 5.3), but there are some 81 

differences. An important similarity is the idea that temperature variations can be expressed as 82 

a sum of forced and unforced variability. The two frameworks explicitly distinguish internal 83 

variability in simulations and in observations, which can consist of instrumental observations 84 

or, as in this study, proxy-based climate reconstructions.  85 

The SUN12 framework also explicitly accounts for error variance in the observations, 86 

such as non-climatic noise in proxy data. It even allows this type of error to vary with time, if 87 
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such information is available. Despite similarities in the underlying assumptions, the main 88 

purposes of the SUN12 and detection and attribution approaches differ. While detection and 89 

attribution studies seek to identify the forced response in observations, the SUN12 framework 90 

was developed as a tool for evaluating forced simulations, with the aim of testing if one 91 

simulation significantly fits observations better than another simulation or to rank a set of 92 

plausible simulations. In the current study, this framework is mainly used to investigate the 93 

common behaviour of all simulations by means of how well they agree with the different 94 

regional reconstructions. 95 

UR and UT are calculated here for each forced simulation, using PAGES 2k regional 96 

temperature reconstructions as the observational basis and a time resolution of non-97 

overlapping 15-year averages. Three types of calculations have been done: separately for each 98 

region, combining information from all seven regions and combining regions only within each 99 

hemisphere, using equal regional weights (see Moberg et al., 2015). Whenever a certain 100 

control simulation is not sufficiently long, its data sequence is extended by repetition and 101 

concatenation. For the COSMOS ensembles with high and low solar forcing, and for the GISS 102 

ensemble, metrics are calculated for each individual simulation and for the entire ensembles, 103 

following Moberg et al. (2015). 104 

The statistical framework by Sundberg et al. (2012) requires that all proxy-based 105 

temperature reconstruction time series are re-calibrated against instrumental records to suit 106 

certain assumptions. Therefore, such a re-calibration was done here, but note that this is 107 

specific for the calculation of UR and UT statistics and is not applied for any other diagnostics. 108 

To obtain appropriate calibration target data series, gridded instrumental temperature 109 

data were used and averaged over exactly the same regions and seasons as explained in Sect. 110 

S1 for the models. To comply with the different boundaries and land/sea masks used, the 111 

respective instrumental series were derived from CRUTEM4 (Jones et al., 2012) for regions 5 112 

and 6, HadCRUT4 (Morice et al., 2012) for regions 2, 4 and 6 and CRU TS3 (Harris et al., 113 

2014; as updated and available on the KNMI Climate Explorer, http://climexp.knmi.nl/, on 114 

April 23, 2014) for region 3. For region 1, we used the same instrumental target series as the 115 

PAGES 2k Consortium (2013). Re-calibration was made for the same calibration periods as 116 

used by the PAGES 2k Consortium. Each instrumental target series was arbitrarily assumed to 117 

contain 10% noise variance. Sensitivity experiments were also made with assumptions of 5% 118 

and 15% noise. This had no effect on any main conclusions. 119 

For simplicity, it is assumed here that each proxy record has the same statistical 120 

precision over its entire length, despite the fact that their precision typically decreases back in 121 

time as the number of contributing local proxy series decreases. Therefore, the derived 122 

measures are only approximate values, but a more accurate treatment would require detailed 123 

work far beyond the scope of this study. As for some other methods in this study, the UR and 124 

UT analysis uses anomalies from long-term averages to avoid systematic climatological bias 125 

influencing the results. 126 

S2.4 Detection and attribution  127 

Detection and attribution techniques provide an estimate of the magnitude of the 128 

forced response in a reconstruction, with an uncertainty estimate. These techniques can be 129 

used to determine the relative contribution by different forcings simultaneously to a period or 130 

climatic event, with uncertainty estimates reflecting if the contribution of different forcings 131 
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can be separated from each other and from climate variability (see Bindoff et al., 2013; Hegerl 132 

and Zwiers, 2011). To estimate the different contributions from several individual forcings, it 133 

is necessary to have access to separately forced simulations with each individual forcing. This 134 

was not possible in this study however, because we are only using models driven by all 135 

forcings together; hence we focus here on estimating the magnitude of the overall forced 136 

response. 137 

Detection and attribution studies rely on a multiple regression of reconstructions onto 138 

the response expected by different individual contributing forcings. This assumes that climate 139 

models approximately capture the response to individual forcings in shape (e.g., pattern in 140 

time or spatial pattern of the response), but may misrepresent the magnitude of the overall 141 

response. This is a reasonable assumption since the magnitude of the response to forcings is 142 

affected by uncertainty in the transient climate sensitivity. Moreover, the magnitude of 143 

forcings itself is also often uncertain, such as for the low-frequency component of solar 144 

forcing (see e.g., Schmidt et al., 2011, 2012). A difficulty in the application of detection and 145 

attribution methods to the last millennium is accounting for uncertainty in both 146 

reconstructions and forcings. This can be addressed to some extent by using multiple 147 

reconstructions and forcing estimates (e.g., Schurer et al., 2014), but a more systematic 148 

approach is desirable.  149 

The detection and attribution framework applied here has been extensively used for 150 

instrumental data (Bindoff et al., 2013) and to some extent for paleoclimatic reconstructions 151 

(see Hegerl et al., 2007; Schurer et al., 2014). This approach calculates a possible scaling 152 

range for the response to the external forcing in the reconstruction (equation S1) based on 153 

total least squares regression (Allen and Stott, 2003): 154 
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        (S1) 155 

where Y, the reconstructed temperature, is equal to a linear combination of m different model 156 

fingerprints Xi (where m in this analysis is always equal to 1 as only the response to all the 157 

forcings together is analysed here) multiplied by a scaling factor βi. Each model simulation 158 

has associated internal variability i and the reconstructions contain a realization of internal 159 

variability 0. The scaling factors βi determine the amplitude of the fingerprints in the 160 

reconstructions. A range of scaling factors is obtained using samples of internal variability 161 

taken from model simulations. A forcing is said to be detected if a scaling value of zero is 162 

rejected at some significance level, for example, the 5% level. To evaluate the self-163 

consistency of the regression results, the residual of the fit is checked against estimates of 164 

model-based internal variability. This is the same method as used in Schurer et al. (2013).  165 

 166 

Sect. S3: correlation between simulated and reconstructed time series. 167 

Figure S1 displays the correlation between the 23-year Hamming filtered model 168 

simulation results and temperature reconstructions for individual regions. This illustrates the 169 

agreement between the contribution of radiative forcing on observed temperatures and in the 170 

model simulations. The highest correlation values are obtained for the Arctic region in most 171 

simulations (Figure S1a). Correlations for the North American pollen-based reconstruction 172 

and for Australasia and Europe tend to be highly significant. Correlations tend to be non-173 
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significant for the North American tree reconstruction, and for the South American and 174 

Antarctic reconstructions. 175 

If we consider the available single-model ensembles (Figure S1b; COSMOS and GISS), 176 

the correlation of the ensemble mean with the regional temperature reconstructions is always 177 

higher than the average of all individual member correlations. The ensemble averaging 178 

reduces the internal variability present in the simulated series in favour of the response to the 179 

external forcing common in simulation results and reconstructed temperature. 180 

 181 

Sect. S4: EOF analysis for GISS and COSMOS ensembles. 182 

Investigating the variability in the GISS and the COSMOS ensemble simulations 183 

provides insights into the intra-model spread. The (detrended) GISS simulations show a very 184 

coherent picture with similar loadings and variance explained by the leading EOF (~80-90 %) 185 

for the different regions within the single ensemble members (Fig. S7). However, the 186 

COSMOS simulations have a larger spread of the variance explained by the leading EOF. The 187 

larger heterogeneity in the COSMOS simulations might be indicative of a larger amount of 188 

internal variability and hence less externally forced spatial coherence among the regions. For 189 

the ensemble with the larger scaling of the solar forcing (COSMOS high, Fig. S7) the amount 190 

of variance represented by the leading EOF is larger compared to the weaker scaling 191 

(COSMOS low, Fig. S7), indicating a larger common forced signal in the different ensemble 192 

members. 193 

 194 

Sect. S5: correlation between hemispheres. 195 

An analysis of coherence between hemispheric temperatures, calculated herein simply 196 

by weighting the individual regions according to their area (Fig. S10), confirms the results of 197 

Neukom et al. (2014) in the sense that the two hemispheres are significantly correlated during 198 

most of the last millennium in model simulations. The control simulations indicate a natural 199 

tendency for inter-hemispheric correlation in models. Nevertheless, the correlation during 200 

periods with strong external forcing clearly exceeds the range derived from control 201 

simulations (not shown). In the reconstructions, the Southern Hemisphere experienced 202 

temperature anomalies opposite to the ones in the Northern Hemisphere during long periods 203 

of the first half of the millennium, indicative of non-coherence between the two hemispheres 204 

and potentially unforced variability.  205 

 206 

Sect. S6: superposed epoch analysis for the Gao et al. (2008) forcing. 207 

The simulated response to the Gao et al. (2008) forcing has an amplitude of the order of 208 

-1 to -0.5 ºC in all regions (Fig. S11). This means that the simulated response is, as for the 209 

Crowley and Untermann (2012) forcing (Fig. 8), larger than the reconstructed one, in 210 

particular for Australia and Antarctica. 211 

 212 

 213 
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 231 

Supplementary table S1: additional information on model simulation sources 232 

Model past1000 historical 
extension 

Source past1000 Source historical extension Reference 

CCSM4 r1i1p1 r1i2p2 PMIP31 PMIP3 Landrum et al. (2013) 

CESM1 Single continuous simulation 

(not contained in the 

CMIP5/PMIP3 database) 

Flavio Lehner 
(lehner@climate.unibe.ch) 

Flavio Lehner 
(lehner@climate.unibe.ch) 

Lehner et al. (submitted.) 

CSIRO-Mk3L-1-2 r1i1p1 r1i1p1 PMIP3 PMIP3 Phipps et al. (2013) 

GISS-E2-R r1i1p12[1,4,7] r1i1p12[1,4,7] PMIP3 PMIP3 Schmidt et al. (2013) 

HadCM3 r1i1p1 exists, but is 
not in 
CMIP5/PMIP3 
database 

PMIP32 Andrew Schurer 
(aschurer@staffmail.ed.ac.uk)  

Schurer et al. (2013) 

IPSL-CM5A-LR r1i1p1 exists, but is 
not in 
CMIP5/PMIP3 
database 

PMIP3 PMIP3 Dufresne et al. (2013) 

MPI-ESM-P r1i1p1 r1i1p1 PMIP3 PMIP3 Jungclaus et al. (2014) 

ECHAM5/MPIOM 
continuous simulations (pre-

PMIP3, no rip code) 
CERA3 CERA Jungclaus et al. (2010) 

 233 

1 http://pcmdi9.llnl.gov/esgf-web-fe 234 

2 http://badc.nerc.ac.uk/browse/badc/euroclim500/data/ALL/r1 235 

3 http://cera-www.dkrz.de/CERA 236 

 237 

238 

http://badc.nerc.ac.uk/browse/badc/euroclim500/data/ALL/r1
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 239 

Figure S1. a) Correlations between 23-year Hamming filtered PAGES2k temperature 240 

reconstructions and climate model simulations. Dots represent the correlation between each 241 

regional reconstruction (see legend for region-colour) and the simulation averaged over the 242 

corresponding domain. Filled (unfilled) circles stand for significant (non-significant) 243 

correlation values. b) As in a), but focused on the models with ensembles of simulations; 244 

individual ensemble member correlations are shown in grey and the ensemble average in 245 

colour. 246 

247 
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 248 

 249 

Figure S2. Normalized spectra of pre-PMIP3 (dashed) and PMIP3 (solid) simulations (grey) 250 

and reconstructions (red) for six PAGES 2k regional reconstructions for the period 850 to 251 

2000 CE. The spectra were computed from the normalized reconstructed and simulated 252 

regional temperatures using a 100 years Tukey-Hanning filter (Priestley, 1982). The 253 

simulations using solar forcing with higher (lower) variability are also highlighted in dark 254 

(light) grey.  255 

 256 

257 
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 259 

Figure S3. Climatological consistency: residual quantile-quantile plots for the full period for 260 

all the regions. In the left column, the uncertainty is neglected in the computations, in the 261 

middle column the original uncertainty divided by a factor 15 is used to take into account 262 

the smoothing while the original uncertainty is applied for the right column. There is no 263 

middle column for North American reconstructions because of their resolution. Positive and 264 

negative slopes or large differences from 0 emphasize lack of consistency. 265 

266 
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 268 

Figure S4. Probabilistic consistency for all the regions. The ² goodness-of-fit statistic is 269 

applied to evaluate the consistency between observed rank count and the flat null hypothesis. 270 

The statistic can be decomposed to test for individual deviations like bias or spread (Jolliffe 271 

and Primo, 2008), as in Bothe et al. (2013a, b). In the left column, the uncertainty is neglected 272 

in the computations, in the middle column the original uncertainty divided by a factor 15 is 273 

used to take into account the smoothing while the original uncertainty is applied for the right 274 

column. There is no middle column for North American reconstructions because of their 275 

resolution. U- or dome-shaped features highlight lack of consistency. 276 

277 
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 279 

Figure S5. Skill metric for the individual models for all periods (bars from left to right: 850-280 

1350, 1350-1850, 850-1850, 850-2000 CE). In the left column, the uncertainty is neglected in 281 

the computations, in the middle column the original uncertainty divided by a factor 15 is 282 

used to take into account the smoothing while the original uncertainty is applied for the right 283 

column. There is no middle column for North American reconstructions because of their 284 

resolution. When the skill is undefined no bar is shown. Positive values indicate skill in this 285 

simple evaluation. 286 

287 
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a) Correlation for the entire period 288 

 289 

b) Correlation for the preindustrial period 290 

 291 

Figure S6. Correlations among the PAGES 2k regions for the different models using 292 

detrended time series filtered with a 23-year Hamming filter. a) full period 1012 CE – 1978 293 

CE, b) pre-industrial period 1012 CE -1850 CE. The upper left triangle represents the 294 

correlations for the forced simulations while the lower right triangle represents the 295 

correlations for the control runs (based on the full length of the control runs). 296 

297 
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 298 
Figure S7. Same as Figure 6a for the leading EOF of the COSMOS ensemble with low (a) and 299 

high (b) solar activity changes and the GISS ensemble (c) models over the period 850–2004 300 
AD. The figure shows the spread among the single members for those models with multiple 301 
realizations. The eigenvectors are based on the covariance matrix with respect to temperature 302 

anomalies for the period 850–1850. Values in parentheses relate to the amount of variance 303 
represented by the leading EOF. The time series were filtered with a 23-year Hamming filter 304 

and were linearly detrended afterwards. Within their specific experimental setup (COSMOS 305 
low, COSMOS high, GISS) the individual simulation members show similarities related to 306 

both the amplitude of the temperature anomalies and the variance represented by the leading 307 
EOF. 308 
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 310 
 311 

Figure S8. Leading EOFs of the near-surface temperature simulated by each CMIP5/PMIP3 312 
model and in reconstructions over the period 850–1850 CE. The time series were filtered with 313 
a 23-year Hamming filter and were linearly detrended before the covariance matrix was 314 
calculated. Values in parentheses relate to the amount of variance represented by the leading 315 

EOF. The difference to Fig. 6a in the main text relates to a different basis for the calculation of 316 
the EOFs corresponding to the pre-industrial period. The pre-industrial EOF pattern is similar 317 

to Fig. 6a, albeit with differences in the amplitude of temperature anomalies in individual 318 

regions and the amount of variance represented by the leading EOF. 319 

 320 
321 
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 322 

 323 

 324 

Figure S9. 100-year moving Tukey window correlations between all PAGES 2k regions for 325 

the PAGES 2K reconstructions (blue) and PMIP3 models (8 models in orange, multi‐model 326 

mean in red) and observations from HadCRUT4 (black). Each 100-year segment is linearly 327 

detrended beforehand. Grey shading illustrates not significant correlation at the 5% level. 328 

 329 

330 
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 331 

 332 

Figure S10. 100-year moving Tukey window correlations between hemispheric averages for 333 

the PAGES 2k reconstructions (blue) and PMIP3 models (8 models in orange, multi‐model 334 

mean in red) and observations from HadCRUT4 (black). Each 100-year segment is linearly 335 

detrended beforehand. Grey shading illustrates not significant correlation at the 5% level. 336 

337 
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 338 

 

Figure S11. Same as Figure 8 but for the events selected in the Gao et al. (2008) 

reconstruction. 

 339 

 340 

 

 

Figure S12. Superposed Epoch Analysis of the impact of the volcanic activity at multidecadal 341 

timescales in the reconstructed and simulated temperatures. Superposed composites of 342 

temperature responses during time intervals in which the years with peak negative forcing in 343 

the Crowley and Unterman (2012) volcanic reconstruction are aligned. The composite is 344 

produced by selecting the 5 strongest volcanic events, and a composite of the 30-year low 345 

pass filtered temperature series from 40 years before to 40 years after the date of the peak 346 

eruption. All the other elements are the same as in Figure 8. 347 

 348 
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Figure S13. Same as Figure S12 but for the Gao et al. (2008) forcing. 

 349 

 

Figure S14. Superposed Epoch Analysis of the impact of the solar activity at multidecadal 

timescales in the reconstructed and simulated temperatures. Superposed composites of the 

temperature response during selected periods in which the solar forcing was lowest were 

performed (see text for details). Panels show results for reconstructions in six PAGES 2k 

regions and for model experiments performed using the volcanic forcing by: (top) the Crowley 

and Unterman (2012); and (bottom) Gao et al. (2008). Each panel indicates the reconstructed 

(dashed lines) and simulated (solid) composites of the temperature response for the same events 

for two different regions (see each panel for legend). The colour shading indicates the complete 

range of simulated temperature responses. 

 350 

351 
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 352 

Figure S15: Correlation (UR) and distance (UT) statistics for PAGES 2k regions, with 353 

hemispheric and global combinations of all regional data, in the period 856–1350 CE. Positive 354 

UR indicates that simulations and reconstructions have a positive correlation and that they 355 

share an effect of temporal changes in external forcings. Negative UT indicates that a forced 356 

simulation is closer to the observed temperature variations than its own control simulation. 357 

Coloured dots: individual simulations. Diamonds: ensemble-mean results for COSMOS and 358 

GISS models. Dashed lines show one-sided 5% and 1% significance levels. Note the reversed 359 

vertical axis in the UT graphs. 360 

 361 
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 362 

Figure S16: Same as Figure S15 but for the period 1356–1850.  363 

 364 

 365 
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 366 

Figure S17: Same as Figure S15 but for the period 861–2000.  367 

 368 

369 
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 370 

Figure S18: Distance (UT) statistics computed for a direct comparison between the high vs. 371 

low solar COSMOS simulation ensembles, using the method of Moberg et al. (2015, 372 

Appendix B4), for PAGES 2k regions and four different analysis periods. A negative UT 373 

(upwards in the graph) indicates that the high solar simulation ensemble is closer to the 374 

observed temperature variations than the low solar ensemble. Dashed lines show two-sided 375 

5% significance levels for the null hypothesis that the two simulations are equivalent. Results 376 

for each region are indicated with their abbreviated names. Results where regions are 377 

combined are shown with blue symbols: All regions (circle), Northern Hemisphere regions 378 

(diamond), Southern Hemisphere regions (cross). 379 


