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Abstract. The East Asian Monsoon (EAM) exhibits a sig-

nificant variability on timescales ranging from tectonic to

centennial as inferred from loess, speleothem and marine

records. However, the relative contributions and plausi-

ble driving forces of the monsoon variability at different

timescales remain controversial. Here, we spectrally explore

time series of loess grain size and speleothem δ18O records

and decompose the two proxies into intrinsic components us-

ing the empirical mode decomposition method. Spectral re-

sults of these two proxies display clear glacial and orbital pe-

riodicities corresponding to ice volume and solar cycles, and

evident millennial signals which are in pace with Heinrich

rhythm and Dansgaard–Oeschger (DO) cycles. Five intrin-

sic components are parsed out from loess grain size and six

intrinsic components from speleothem δ18O records. Com-

bined signals are correlated further with possible driving fac-

tors including the ice volume, insolation and North Atlantic

cooling from a linear point of view. The relative contribu-

tions of components differ significantly between loess grain

size and speleothem δ18O records. Coexistence of glacial

and orbital components in the loess grain size implies that

both ice volume and insolation have distinctive impacts on

the winter monsoon variability, in contrast to the predomi-

nant precessional impact on the speleothem δ18O variabil-

ity. Moreover, the millennial components are evident in loess

grain size and speleothem δ18O records with variances of 13

and 17 %, respectively. A comparison of the millennial-scale

signals of these two proxies reveals that abrupt changes in

the winter and summer monsoons over the last 260 kyr share

common features and similar driving forces linked to high-

latitude Northern Hemisphere climate.

1 Introduction

The East Asian Monsoon (EAM), as a significant part of

Asian monsoon circulation, plays an important role in driv-

ing the palaeoenvironmental changes in East Asia (An,

2000). The EAM fluctuations can be quantified at differ-

ent time intervals ranging from thousands of years to in-

traseasonal periodicities, and the primary driving force of

the monsoon variability on each timescale is not unique (An

et al., 2015). Multiscale monsoon variability has been in-

ferred from numerous proxies generated from deep-sea sed-

iments (e.g. Wang et al., 1999, 2005), eolian deposits (e.g.

An, 2000; Sun et al., 2012), and speleothem records (e.g.

Wang et al., 2001, 2008), which provide valuable insights

into the changing processes and potential driving forces of

the EAM variability. In particular, Chinese loess has been in-

vestigated intensively as a direct and complete preserver of

the EAM changes, with great effort spent on deciphering the

EAM variability at both orbital and millennial scales (e.g. An

et al., 1990; Ding et al., 1994, 2002; Porter and An, 1995;

Guo et al., 1996; Chen et al., 1997; Liu and Ding, 1998; Liu

et al., 1999; An, 2000; Chen et al., 2006).

On the orbital timescale, the EAM variation recorded

by Chinese loess–paleosol sequences was characterized by
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an alternation between the dry–cold winter monsoon and

the wet–warm summer monsoon (Liu and Ding, 1998; An,

2000). A strong 100 kyr periodicity was detected in the Chi-

nese loess particle size record, implying an important im-

pact of glacial boundary conditions on the EAM evolution

(Ding et al., 1995). Obliquity and precession signals were

also clear in loess-based proxies (Liu et al., 1999; Ding et

al., 2002; Sun et al., 2006). In addition to these dominant

periodicities, some harmonic periodicities related to orbital

parameters were also found in the EAM records, such as the

∼ 75, ∼ 55, and ∼ 30 ka spectral peaks (Lu et al., 2003; Sun

et al., 2006; Yang et al., 2011). In contrast, absolute-dated

speleothem δ18O records revealed an evident 23 kyr cycle,

implying a dominant role of summer insolation in driving

the summer monsoon variability (Wang et al., 2008; Cheng

et al., 2009). Different variances of obliquity and precession

signals in monsoonal proxies suggest that the responses of

the winter and summer monsoons to the orbital forcing were

dissimilar (Shi et al., 2011). The various patterns of orbital-

scale monsoon fluctuations between the loess proxies and

speleothem δ18O records most likely reflected the sensitiv-

ity of various archives and proxies to the EAM variability

(Clemens et al., 2010; Cheng et al., 2012; Sun et al., 2015;

Cai et al., 2015).

On the millennial timescale, the rapid monsoon oscilla-

tions inferred from Chinese loess were not only persistent

during the last two glacial cycles (Porter and An, 1995; Guo

et al., 1996; An and Porter, 1997; Chen et al., 1997; Ding et

al., 1999; Sun et al., 2010; Yang and Ding, 2014), they were

also evident during early glacial extreme climatic conditions

(Lu et al., 1999). The millennial-scale monsoon variability

during the last glacial period was strongly coupled to climate

changes recorded in the Greenland ice core and North At-

lantic sediments, indicating a dynamic connection between

the EAM variability and the high-latitude Northern Hemi-

sphere climate (Porter and An, 1995; Guo et al., 1996; Chen

et al., 1997; Fang et al., 1999). Recently, a combination of

proxies from Chinese loess, speleothem, and Greenland ice

core with modelling results indicated that the Atlantic merid-

ional overturning circulation might have played an important

role in driving the rapid monsoon changes in East Asia dur-

ing the last glaciation (Sun et al., 2012).

Although previous studies have revealed that past EAM

variability principally comprise a mixture of forcing signals

from ice volume, solar radiation, and North Atlantic cli-

mate, the relative contributions of glacial, orbital and mil-

lennial forcing to the EAM variability remain unclear. In this

study, we conducted a comprehensive investigation of mul-

tiscale EAM variability over the last 260 kyr by analysing

the mean grain size (MGS) record from a Gulang loess se-

quence (a proxy indicator of the East Asian winter monsoon

intensity) and speleothem δ18O record of Hulu and Sanbao

caves (a debatable indicator of the summer monsoon inten-

sity). Our objectives are to evaluate the relative contributions

of glacial–interglacial- to millennial-scale signals registered

Figure 1. Map showing the loess distribution and locations of the

Gulang loess section, Sanbao, and Hulu caves. Dotted lines indicate

the precipitation isohyets (PI).

in these two widely used monsoon proxies, and to emphasise

the glacial–interglacial discrepancy and millennial similar-

ity between loess and speleothem records during the last two

glacial cycles.

2 Data and methods

The data for the loess sequence was collected at a sec-

tion in Gulang, Gansu Province, China (37.49◦ N, 102.88◦ E,

2400 m a.s.l.), which is situated in the northwestern part of

the Chinese Loess Plateau. It is about 10 km to the south-

west, on the margin of the Tengger Desert (Fig. 1). In this re-

gion, the average annual precipitation and temperature over

the last 20 years are 350 mm and 5.7 ◦C. About 70 m of loess

accumulated at Gulang during the last two climate cycles. A

high sedimentation rate and weak pedogenesis in this region

made the Gulang loess sequence very sensitive to orbital and

millennial monsoon changes (Sun et al., 2012, 2015).

The samples used in this study were collected at 2 cm

intervals, corresponding to 50–100-year resolution for the

loess–paleosol sequence. The grain size data of the upper

20 m were from a 20 m pit near Gulang (Sun et al., 2012),

and the lower part spanning the last two glacial cycles were

from another 50 m section (for the full grain size data, see

Supplement Table S1). The mean grain size data of the com-

posite 70 m section have been employed for a chronologi-

cal reconstruction (for a detailed description, see Sun et al.,

2015). The Gulang chronology was evaluated by compari-

son with a 249 kyr Chinese loess millennial-scale oscillation

stack (CHILOMOS) record in the northern Loess Plateau

(Yang and Ding, 2014) (Fig. 2); the close matches between

these two records indicate a high reliability of our Gulang

age construction. Unlike previous studies (Sun et al., 2012,

2015), here we performed spectral and decomposing analy-
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Figure 2. Comparison of Gulang MGS (blue; Sun et al., 2015) and

CHILOMOS stack median grain size (Md, green; Yang and Ding,

2014) with the benthic δ18O (black; Lisiecki and Raymo, 2005) and

Sanbao/Hulu speleothem δ18O (magenta; Wang et al., 2008; Cheng

et al., 2009) records. The red and black dashed lines denote tie

points derived from optically stimulated luminescence (OSL) dat-

ing and benthic δ18O correlation, respectively.

sis on the mean grain size time series in order to decipher

multiscale variability and dynamics of the winter monsoon.

The absolute-dated speleothem δ18O records from San-

bao/Hulu caves (0–224 ka, Wang et al., 2008) and the San-

bao cave (224–260 ka, Cheng et al., 2009) (Fig. 1; Supple-

ment Table S2) were selected to infer the summer monsoon

variability spanning the last two glacial–interglacial cycles.

Compatible with the analysis by Wang et al. (2008), we

plotted the Hulu δ18O data 1.6 ‰ more negative than that

from the Sanbao cave (Fig. 2). Interpretation of the Chi-

nese speleothem δ18O records remains debatable as a di-

rect indicator of the summer monsoon intensity since var-

ious factors like seasonal changes in precipitation amount,

moisture sources, and circulation patterns would influence

the speleothem δ18O composition (e.g. Yuan et al., 2004;

Wang et al., 2001, 2008; Cheng et al., 2009; Clemens et al.,

2010; Dayem et al., 2010; Pausata et al., 2011; Maher and

Thompson, 2012; Caley et al., 2014). Nevertheless, the high

similarity between millennial events in Chinese speleothem

and Greenland ice core revealed that speleothem δ18O is

a reliable indicator of seasonal monsoon change (Wang et

al., 2001; Clemens et al., 2010). More recently, a model–

data comparison suggested that Chinese speleothem δ18O

can be regarded as a monsoon proxy to reflect the southerly

wind intensity rather than the precipitation change (Liu et al.,

2014). Thus, spectral and decomposed results of the com-

posite speleothem δ18O record time series were used in this

study to address multiscale variability and dynamics of the

summer monsoon.

To detect the presence of glacial–millennial periodicities,

we performed spectral analysis on the 260 ka records of

Gulang MGS and speleothem δ18O using both the Multi-

taper (MTM, implemented in the SSA toolkit, Vautard et

al., 1992) (http://www.atmos.ucla.edu/tcd/ssa/) and REDFIT

(Schulz and Mudelsee, 2002) methods, which are related to

the empirical orthogonal function and Lomb–Scargle Fourier

transform, respectively. The MTM method has the advan-

tages of quantified and optimized trade-off between the spec-

tral leakage reduction and variance reduction, and is suitable

for time series affected by high-noise levels (Lu et al., 1999),

but MTM requires equally spaced data and therefore an inter-

polation is needed. The REDFIT program estimates the first-

order autoregressive (AR1) parameter from unevenly sam-

pled time series without interpolation, which avoids a too

“red” spectrum (Schulz and Stattegger, 1997), but uses the

weighted overlapped segment averaging (WOSA) method

for the spectral leakage reduction and variance reduction,

which makes the trade-off not quantifiable. The similar spec-

tral periodicities derived from both REDFIT and MTM

methods were regarded as dominant frequencies at glacial–

millennial bands.

The decomposed components of loess MGS and

speleothem δ18O records were parsed out using the technique

of empirical mode decomposition (EMD; Huang et al., 1998)

(for the MATLAB code of EMD method, see the code in the

Supplement). EMD directly extracts energy which is associ-

ated with intrinsic timescales in nonlinear fluctuations, and

iteratively decomposes the raw complex signal with several

characteristic timescales coexisting into a series of elemen-

tary intrinsic model function (IMF) components, avoiding

any arbitrariness in the choices of frequency bands in this

multiscale study. The EMD method has been widely applied

to various palaeoclimate databases such as ice cover (Glo-

ersen and Huang, 2003), North Atlantic oscillation (Hu and

Wu, 2004), solar insolation (Lin and Wang, 2006), and tem-

perature under global warming (Molla et al., 2006). This ap-

proach has also been used to decipher the multiscale varia-

tions of Indian monsoon (Cai et al., 2015). However, the ap-

plication of the EMD method on the loess record remains

poorly investigated with limited understanding of decom-

posed components at glacial and orbital timescales due to the

low-resolution proxy variations (Yang et al., 2011, 2008). In

this study, we applied EMD on linearly interpolated loess and

speleothem data with a 100-year interval to quantify the rela-

tive contributions of both orbital and millennial components.

3 Multiscale monsoon variability

The highly comparable spectral results between REDFIT and

MTM methods showed that apparent periods identified in the

MGS spectrum are at∼ 100,∼ 41,∼ 23,∼ 15,∼ 7,∼ 5,∼ 4,

and ∼ 3–1 kyr, for REDFIT and MTM methods, over the 80

and 90 % confidence levels, respectively (Fig. 3). It is shown

that the potential forcing of the glacial–interglacial and or-

bital EAM variability is part of external (e.g. the orbital-

induced summer insolation; An, 1991; Wang et al., 2008)
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Figure 3. Spectra of Gulang MGS (a) and Sanbao/Hulu speleothem

δ18O (b) (Wang et al., 2008; Cheng et al., 2009) records using

REDFIT (lower) and MTM (higher) methods. The red, green and

black dotted lines represent the 80, 90 and 95 % confidence levels.

Periodicities are shown above the spectral curves. (for REDFIT:

nsim= 1000, mctest=T, ofac= 4.0, hifac= 1, rhopre=−99.0,

n50= 1, iwin= 2; for MTM: sampling interval= 0.1, MTM pa-

rameters= default value, computation of tapers window= default

value, median smoothing window width= 0.1).

and the internal factors (e.g. the changes in the ice volume

and CO2 concentrations; Ding et al., 1995; Lu et al., 2013;

Sun et al., 2015). The coexistence of the ∼ 100, ∼ 41, and

∼ 23 kyr periods in the Gulang MGS record confirms the dy-

namic linkage of the winter monsoon variability to glacial

and orbital forcing. Based on the spectral results, many mil-

lennial frequencies are detected, which can be mainly divided

into two groups, namely, ∼ 7–4 and ∼ 3–1 kyr, which pos-

sibly correspond to the Heinrich (∼ 6 kyr) rhythm and the

DO (∼ 1.5 kyr) cycles recorded in the North Atlantic sedi-

ments and Greenland ice core (Bond et al., 1993; Dansgaard

et al., 1993; Heinrich, 1988). Taking into account the sam-

pling resolution and surface mixing effect at Gulang, the

residual component (< 1 kyr) might contain both centennial

and noisy signals, which was excluded for further discussion

in this study.

Compared to the MGS spectral results, the speleothem

δ18O spectrum shares similar peaks at the precession

(∼ 23 kyr) and millennial bands (∼ 5, ∼ 3, ∼ 2.4, ∼ 2, ∼ 1.5,

∼ 1.3, and ∼ 1 kyr), but has a lack of distinct peaks at ∼ 100

kyr and ∼ 41 kyr (Fig. 3). Notably, precession peaks at ∼ 23

and∼ 19 kyr are more dominant in the speleothem δ18O than

in the loess MGS record. Moreover, the speleothem spec-

trum shows a peak over the 80 and 90 % confidence lev-

els in REDFIT and MTM spectra, respectively, centred at

∼ 10 kyr frequency, which is approximately related to the

semi-precession frequency.

The different oscillation patterns composing loess MGS

and speleothem δ18O time series are separated out using the

EMD method as presented in Figs. 4 and 5. REDFIT spec-

tral analysis is further carried out on each IMF with domi-

nant periods as shown. Five IMFs are generated for the Gu-

lang MGS data on the glacial-to-millennial timescale. The

variability of Gulang MGS is dominated by the lowest fre-

Figure 4. IMFs of Gulang MGS series (a) and corresponding spec-

tra (b). Numbers in black are dominant periods and dotted lines

represent the 90 % confidence level.

quency signal with a variance of 32 % (IMF5). Two peri-

odicities (41 and 23 kyr) in the orbital component (IMF4)

are linked to the obliquity and precession, contributing al-

together 40 % to the total variance. The IMF3 component

dominated by a 15 kyr periodicity likely either related to an-

other unknown driver or corresponding to the second pre-

cessional cycle (19 kyr) caused by the chronology uncer-

tainty. The variances of two millennial components (IMF2

and IMF1) are very close with variances of 8 and 5 %, re-

spectively, in the Gulang MGS record. Similarly, six IMFs

are decomposed for the speleothem δ18O record on frequen-

cies less than 1 kyr, and all the glacial-to-orbital periodici-

ties correspond to parameters in Milankovitch cycles. Com-

pared with decomposed results of the Gulang MGS record,

the glacial (IMF6) and obliquity (IMF5) components are un-

clear in the speleothem δ18O record; both of the variances

are 12 %. The precession component (IMF4), however, is the

most dominant signal among the six components, account-

ing for 59 % of the variance. Notable millennial components

(IMF3, IMF2, and IMF1) are evident with variances of 8, 6

and 3 %, respectively.

4 Dynamics of multiscale EAM variability

4.1 Glacial and orbital forcing of the EAM variability

We combine IMF3, IMF4 and IMF5 of Gulang MGS and

IMF4, IMF5 and IMF6 of speleothem δ18O records as the

low-frequency signals (period > 10 kyr) to reveal the glacial-

and orbital-scale variations of the winter and summer mon-
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Figure 5. IMFs of speleothem δ18O series (a) and corresponding

spectra (b). Numbers in black are dominant periods and dotted lines

represent the 90 % confidence level.

soon. The glacial and orbital variations of the loess and

speleothem records represent the total variances of ∼ 87 and

∼ 83 %, respectively. The low-frequency signals of the loess

MGS and speleothem δ18O records are compared with the

changes in the ice volume and solar insolation at 65◦ N

(Berger, 1978) to ascertain plausible impacts of glacial and

orbital factors on the EAM variability (Fig. 6).

The low-frequency component of the Gulang MGS record

is well correlated to the global ice volume change in-

ferred from the benthic δ18O record (Lisiecki and Raymo,

2005) with a correlation coefficient (R2) of 0.56, reinforc-

ing the strong coupling between the winter monsoon varia-

tion and ice volume changes, particularly in terms of glacial–

interglacial contrast (Ding et al., 1995). However, fine MGS

signals at the precessional scale seem more distinctive than

those in the benthic δ18O stack. For example, the remarkable

peaks in the MGS around 85, 110, and 170 ka have no coun-

terpoints in the benthic δ18O record. By comparing MGS

data with the summer insolation record, the overall ∼ 20 kyr

periodicity is damped but still visible during both glacial and

interglacial periods except for the insolation maxima around

150 and 220 ka (Fig. 6). The coexistence of the glacial and or-

bital cycles in loess MGS indicates that both the ice volume

and solar insolation have affected the winter monsoon vari-

ability, and their relative contributions are 32 and 55 %, re-

spectively, as estimated from variances of the glacial (IMF5)

and orbital (IMF4 and IMF3) components.

Figure 6. Comparison of the glacial- and orbital-scale components

of Gulang MGS (blue) and Sanbao/Hulu speleothem δ18O (ma-

genta; Wang et al., 2008; Cheng et al., 2009) records with sum-

mer insolation at 65◦ N (red; Berger, 1978) and benthic δ18O record

(black; Lisiecki and Raymo, 2005). The vertical gray bars represent

the interglacial periods.

The speleothem δ18O record varies quite synchronously

with the July insolation, characterized by a dominant preces-

sion frequency (Fig. 6). This in-phase change is thought to

support a dominant role of summer insolation in the North-

ern Hemisphere in driving the summer monsoon variability

at the precession period (Wang et al., 2008), given that the

palaeoclimatic interpretation of the speleothem δ18O is quite

controversial (Wang et al., 2001, 2008; Yuan et al., 2004; Hu

et al., 2008; Cheng et al., 2009; Peterse et al., 2011).

The different contributions of glacial and orbital variabil-

ity in the loess MGS and speleothem δ18O records indicate

that the driving forces associated with these two proxies are

different. The loess grain size is directly related to the north-

westerly wind intensity, reflecting that atmospheric process

is linked to the Siberian–Mongolian High (Porter and An,

1995). The speleothem δ18O might be influenced by multi-

ple factors such as the isotopic depletion along the vapour

transport path (Pausata et al., 2011), changes in δ18O values

of meteoric precipitation or the amount of summer monsoon

precipitation (Wang et al., 2001, 2008; Cheng et al., 2009),

and seasonality in the amount and isotopic composition of

rainfall (Clemens et al., 2010; Dayem et al., 2010; Maher

and Thompson, 2012). Even at the orbital timescale, proxy–

model comparison suggests that the response of the winter

and summer monsoon to obliquity and precession forcing are

dissimilar (Shi et al., 2011)

It is quite clear that the EAM is formed by the thermal

gradient between the Asian continent and the Pacific Ocean

www.clim-past.net/11/1067/2015/ Clim. Past, 11, 1067–1075, 2015
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to the east and southeast (Halley, 1986; Xiao et al., 1995;

Lestari and Iwasaki, 2006). In winter, due to a much larger

heat capacity of water in the ocean than that on the land

surface, a higher barometric pressure forms over the colder

Asian continent with a lower pressure over the warmer ocean.

This gradient is the driving force for the flow of cold and dry

air out of Asia, forming the winter monsoon (Gao, 1962). On

the glacial–interglacial timescale, the buildup of the northern

high-latitude ice sheets during the glacial periods strengthens

the barometric gradient which results in intense winter mon-

soons (Ding et al., 1995; Clark et al., 1999). The contem-

poraneous falling sea level and land–ocean pressure gradient

further enhances winter monsoon circulation during glacial

times (Xiao et al., 1995). The other factor that influences

the land–ocean differential thermal motion is the orbitally

induced changes in solar radiation. The precession-induced

insolation changes can lead to regional land–ocean thermal

gradients whilst obliquity-related insolation changes can re-

sult in meridional thermal gradients, both of which can sub-

stantially alter the evolution of the Siberian and Subtropical

Highs and the EAM variations (Shi et al., 2011).

4.2 Impacts of high-latitude cooling on millennial EAM

oscillations

The EAM variations are persistently punctuated by appar-

ent millennial-scale monsoon events (Garidel-Thoron et al.,

2001; Wang et al., 2001; Kelly et al., 2006). The millennial-

scale events of the last glacial cycle were firstly identified

in Greenland ice cores (Dansgaard et al., 1993; Meese et

al., 1997). Subsequently, well-dated loess grain size and

speleothem δ18O records in China have been found to appar-

ently correspond with rapid climate oscillations in the North

Atlantic (Porter and An, 1995; Guo et al., 1996; Chen et al.,

1997; Ding et al., 1998; Wang et al., 2001). The most strik-

ing evidence is the strong correlation between the loess grain

size, speleothem δ18O and Greenland ice core δ18O records

during the last glaciation (Ding et al., 1998; Wang et al.,

2001; Sun et al., 2012). The findings of these abrupt changes

have been extended to investigate glacial–interglacial cycles

using loess and speleothem records (Ding et al., 1999; Cheng

et al., 2006, 2009; Wang et al., 2008; Yang and Ding, 2014)

and North Atlantic sediments (McManus et al., 1999; Chan-

nell et al., 2012).

Unlike previous comparisons based on original proxy vari-

ability, here we combine the IMF1 and IMF2 components of

the loess MGS and IMF1, IMF2, and IMF3 components of

speleothem δ18O records as robust reflections of millennial-

scale signals of the winter and summer monsoons, with vari-

ances of 13 and 17 %, respectively. The combination of the

two millennial signals of the loess MGS and speleothem

δ18O records are compared further with the North Atlantic

cooling events over the last two glacial cycles to reveal the

dynamic links of abrupt climate changes in East Asia and the

North Atlantic (Fig. 7). The Younger Dryas (YD) and Hein-

Figure 7. Comparison of millennial-scale variations among Gulang

MGS (blue), CHILOMOS stack Md (green; Yang and Ding, 2014)

and Sanbao/Hulu speleothem δ18O (magenta; Wang et al., 2008;

Cheng et al., 2009) records over the last two glacial–interglacial cy-

cles. Cyan dotted lines are the YD and the Heinrich events identified

among the three records and gray bars indicate interglacial periods.

The numbers represent well-correlated Chinese interstadials identi-

fied among the three records.

rich events (H1-H6) are well detected in loess and speleothem

records around 12, 16, 24, 31, 39, 48, 55, and 60 ka. Most of

the millennial-scale events in the loess MGS and speleothem

δ18O records are well aligned with comparable timing and

duration during the last two glacial cycles. However, some

MGS valleys such as A17, A23, B17, B18, and B22 are not

well matched with the speleothem δ18O minima, possibly

due to uncertainties in the loess chronology. The compara-

ble millennial-scale events between grain size of Gulang and

the CHILOMOS stack (Yang and Ding, 2014) show the na-

ture of replication of Gulang MGS record within the dating

uncertainty, confirming the persistent millennial-scale win-

ter monsoon variability spanning the last two glacial cycles

(Fig. 7).

The millennial-scale monsoon signals over the last two

glacial cycles have been well compared with the cooling

events recorded in the North Atlantic sediments, demon-

strating a dynamic link between abrupt climate changes in

East Asia and the North Atlantic. As identified in Chinese

speleothem records, the magnitudes of abrupt climate events

are identical between the last and the penultimate glacial cy-

cles (Wang et al., 2008). However, the duration and ampli-

tude of these millennial events are quite different between

the glacials and interglacials. The duration of the millennial
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monsoon events is relatively shorter and the amplitude larger

during glacial periods, suggesting a plausible glacial modu-

lation of rapid climate changes (McManus et al., 1999; Wang

et al., 2008). The potential driving mechanism for rapid EAM

changes has been attributed to changing climate in the high-

latitude Northern Hemisphere, e.g. the reduction of the North

Atlantic deep water circulation triggered by fresh water in-

puts from melting icebergs (Broecker, 1994). The North At-

lantic cooling can affect the zonal high pressure systems, in-

cluding the Azores–Ural–Siberian–Mongolian high (Palmer

and Sun, 1985; Rodwell et al., 1999; Yuan et al., 2004),

which can further transmit the abrupt cooling effect into East

Asia and result in significant EAM changes (Porter and An,

1995; Wang et al., 2001). Apart from the geological evi-

dence, numerical modelling also suggests that the Atlantic

meridional overturning circulation might affect abrupt oscil-

lations of the EAM, while the westerly jet is the important

conveyor introducing the North Atlantic signal into the EAM

region (Miao et al., 2004; Zhang and Delworth, 2005; Jin et

al., 2007; Sun et al., 2012).

5 Conclusions

The EAM displays variabilities on timescales ranging from

thousands of years to intraseasonal periodicities as inferred

from numerous proxy indicators. Multiscale signals were

spectrally detected and naturally decomposed from Chinese

loess and speleothem records over the last two climatic cy-

cles in this study, permitting an evaluation of the relative

contributions of glacial, orbital and millennial components

in the EAM record from a linear point of view. The spec-

tra of Gulang MGS and speleothem δ18O data show similar

periodicities at glacial-to-orbital and millennial timescales,

corresponding to the rhythms of changing ice volume, or-

bitally induced insolation, and North Atlantic cooling (i.e.

Heinrich rhythm and Dansgaard–Oeschger cycles). Ampli-

tude variances of the decomposed components reveal signifi-

cant glacial and orbital impacts on the variation in loess grain

size and the dominant precession forcing in the speleothem

δ18O variability. The millennial components are evident in

the loess and speleothem proxies with variances of 13 and

17 %, respectively. Millennial IMFs were combined to de-

code the synchronous nature of rapid changes of these two

proxies. High similarity of millennial-scale monsoon events

both in terms of the rhythms and duration between the loess

and speleothem proxies implies that the winter and sum-

mer monsoons share common millennial features and similar

driving forces.

The Supplement related to this article is available online

at doi:10.5194/cp-11-1067-2015-supplement.
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