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Abstract. Re-examination of sediment cores from Deep Sea

Drilling Project (DSDP) Site 277 on the western margin of

the Campbell Plateau (paleolatitude of ∼ 65◦ S) has iden-

tified an intact Paleocene–Eocene (P–E) boundary overlain

by a 34 cm thick record of the Paleocene–Eocene Thermal

Maximum (PETM) within nannofossil chalk. The upper part

of the PETM is truncated, either due to drilling disturbance

or a sedimentary hiatus. An intact record of the onset of

the PETM is indicated by a gradual decrease in δ13C val-

ues over 20 cm, followed by a 14 cm interval in which δ13C

is 2 ‰ lighter than uppermost Paleocene values. After ac-

counting for effects of diagenetic alteration, we use δ18O and

Mg /Ca values from foraminiferal tests to determine that in-

termediate and surface waters warmed by ∼ 5–6◦ at the on-

set of the PETM prior to the full development of the neg-

ative δ13C excursion. After this initial warming, sea tem-

peratures were relatively stable through the PETM but de-

clined abruptly across the horizon that truncates the event

at this site. Mg /Ca analysis of foraminiferal tests indicates

peak intermediate and surface water temperatures of ∼ 19

and ∼ 32 ◦C, respectively. These temperatures may be influ-

enced by residual diagenetic factors and changes in ocean

circulation, and surface water values may also be biased to-

wards warm-season temperatures.

1 Introduction

Stable isotope analysis of foraminiferal tests from sediments

cored at DSDP Site 277 (Shackleton and Kennett, 1975) pro-

vided the first paleotemperature record for the Paleogene of

the Southern Ocean and laid the foundation for many subse-

quent studies of the regional paleoclimate and paleoceanog-

raphy (e.g., Kennett, 1977, 1980; Kennett and Shackleton,

1976; Hornibrook, 1992; Nelson and Cook, 2001). Over the

last decade, there has been renewed interest in the early Pale-

ogene (66 to 35 Ma) climate history of the Southern Ocean,

partly driven by a societal imperative to understand how

the Antarctic ice sheet will respond to anthropogenic global

warming (e.g., Joughin et al., 2014). The early Paleogene was

the last time that Earth is inferred to have experienced green-

house gas levels in excess of ∼ 600 ppm CO2 (Zachos et al.,

2008; Beerling and Royer, 2011)). Study of climatic events

of this time period insight into a climate state that civilization

may experience in coming centuries. One event in particu-

lar has been touted as a geological analogue for greenhouse

gas-driven global warming: the Paleocene–Eocene Thermal

Maximum (PETM, ∼ 56 Ma). This event was a short-lived

(∼ 220 kyr) perturbation to the climate and carbon cycle in

which global temperatures rose by 4–5 ◦C within a few thou-

sand years (Sluijs et al., 2007; McInerney and Wing, 2011;
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Figure 1. Location of DSDP Site 277 on a tectonic reconstruction

for the southwest Pacific during the early Eocene (∼ 54 Ma) (after

Cande and Stock, 2004). Other localities mentioned in the text are

also shown: ODP Site 1172, Campbell Island (CI), Tawanui (TW),

mid-Waipara River (MW) and Mead Stream (MS).

Dunkley Jones et al., 2013; Schmidt, 2014), with warming

of up to 8 ◦C in higher latitudes and some coastal settings

(Thomas et al., 2002; Sluijs et al., 2006, 2011; Zachos et al.,

2006; Hollis et al., 2012; Frieling et al., 2014). Multiple lines

of evidence suggest that this warming may have been driven

by a rapid injection of greenhouse gases, possibly sourced

from submarine gas hydrates, as evidenced by coupled neg-

ative excursions in oxygen and carbon isotopes (Dickens et

al., 1995, 1997). Several other potential sources of the light

carbon have also been implicated to account for all or part of

the carbon isotope (δ13C) excursion (Dickens, 2003, 2011;

Kent et al., 2003; Svensen et al., 2004; Higgins and Schrag,

2006; De Conto et al., 2012).

The PETM has been identified in several sites in the south-

west Pacific, including onshore records in both siliciclastic

and pelagic bathyal sections in eastern New Zealand (Kaiho

et al., 1996; Crouch et al., 2001; Hancock et al., 2003; Hol-

lis et al., 2005a, b, 2012; Nicolo et al., 2010), non-marine to

marginal marine sediments in western New Zealand (Hand-

ley et al., 2011) and in shelfal sediments at Ocean Drilling

Program (ODP) Site 1172, offshore of eastern Tasmania

(Sluijs et al., 2011). Here we report a new record of the

PETM in pelagic bathyal sediments at DSDP Site 277, at a

similar paleolatitude to Site 1172 (∼ 65◦ S). These two sites

represent the southernmost records of the PETM in the Pa-

cific Ocean (Fig. 1).

Initial studies of Site 277 suggested that the Paleocene–

Eocene (P–E) boundary occurred within a gap between cores

43 and 44 (Kennett et al., 1975). A subsequent biostrati-

graphic review of the site (Hollis et al., 1997) revealed that

the boundary was lower in the drillhole, potentially within

a relatively continuous interval preserved in core 45. De-

tailed re-sampling confirmed the location of the P–E bound-

ary (Fig. 2), based on the highest occurrence (HO) of benthic

foraminifer Stensionina beccariformis at 457.3 mbsf (277-

45-3, 80 cm). High-resolution stable isotope analysis of bulk

carbonate confirms that this horizon marks the base of a

34 cm thick negative excursion in δ13C (CIE) that defines the

PETM (Aubry et al., 2007).

DSDP Site 277 was drilled on the western margin of the

Campbell Plateau in a water depth of 1214 m as part of

DSDP Leg 29 (Kennett et al., 1975). Paleogene sedimen-

tation occurred in fully oceanic conditions well above the

lysocline (Kennett et al., 1975), with benthic foraminiferal

assemblages indicating lower to middle bathyal water depths

since the Paleocene (Hollis et al., 1997). In order to identify

the paleoceanographic changes associated with the PETM

at this site we have undertaken a multidisciplinary study

that includes foraminiferal and calcareous nannofossil bios-

tratigraphy, magnetic susceptibility, CaCO3 content, elemen-

tal abundance using X-ray fluorescence (XRF), δ13C and

δ18O analysis of bulk carbonate and foraminifera, and single-

test analysis of foraminifera for Mg /Ca ratios by laser ab-

lation inductively coupled plasma mass spectrometry (LA-

ICPMS).

2 Material and methods

2.1 Material

We analyzed samples over a 45 m interval spanning the up-

per Paleocene to lower Eocene at DSDP Site 277 (470–

425 mbsf). Average sample spacing was 20 cm over much

of the interval, with a higher resolution of 2–3 cm sam-

pling across the PETM within core section 45-3 (∼ 457.30–

456.95 mbsf). In addition, this core section was scanned for

elemental abundance. Although the PETM interval is pre-

served, the overall record is discontinuous, with significant

gaps between cores from core 42 to 45 (Fig. 2).

2.2 Methods

2.2.1 X-ray fluorescence (XRF) core scanning

XRF data were acquired using an Avaatech XRF scan-

ner with a Canberra X-PIPS silicon drift detector, model

SXD 15C-150-500 150 eV resolution X-ray detector, which

is housed at the International Ocean Discovery Program

(IODP) Gulf Coast Repository at Texas A&M University in

College Station, Texas (Table S1 in Supplement). This scan-

ner is configured for analysis of split core section halves,

with the X-ray tube and detector mounted on a moving track

(Richter et al., 2006). Section 277-45-3 was removed from

the core refrigerator and allowed to equilibrate to room tem-

perature prior to analysis. We leveled all rock pieces within

the section, as the detector requires a flush surface with no

gaps between pieces, and then covered the section with 4 µm

thick Ultralene plastic film (SPEX Centriprep, Inc.) to pro-

tect the detector. The section was scanned at 2 mm intervals
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Figure 2. Biostratigraphy, lithologies, carbonate content (b) and stable isotopes from bulk carbonate and foraminifera (a, c, d) across

the Paleocene–Eocene transition at DSDP Site 277. Abbreviations: Mangaorapan local stage: Dm; Paleocene–Eocene Thermal Maximum:

PETM; benthic foraminiferal extinction event: BFEE. In (a) the new bulk carbonate δ18O record is plotted alongside the uncorrected, mixed

planktic and benthic δ18O values of Shackleton and Kennett (1975); in (d) and subsequent figures, benthic δ18O values include a correction

factor of 0.28 ‰ (Katz et al., 2003).

using a voltage of 10 kV for elements Al, Si, P, S, Cl, Ar, K,

Ca, Ti, Cr, Mn, Fe, Rh, and Ba. The scan was completed us-

ing a 1 mA tube current, no filter, and a detector live time of

30 s, with an X-ray detection area of 2 mm in the downcore

direction and 15 mm across the core. During measurement,

intervals were skipped where gaps of more than ∼ 2 mm ex-

isted between pieces. Smaller gaps were noted so that suspect

data across these gaps could be removed.

2.2.2 Rock magnetism

Bulk magnetic susceptibility of a subset of discrete sam-

ples was measured at the Paleomagnetism Laboratory of

the Complutense University of Madrid, Spain (Table S2). A

KLY-4 (Agico) susceptibility bridge was employed, with an

applied magnetic field of 300 A m−1. Due to the low ferro-

magnetic content of most samples, each sample was mea-

sured 10 times and averaged. The error bars of the magnetic

susceptibility data correspond to the standard deviation of the

mean obtained during the averaging procedure.

2.2.3 Micropaleontology

Calcareous nannofossil and foraminifera sample preparation

and examination followed standard procedures. Samples for

calcareous nannofossils were prepared using standard smear-

slide techniques (Bown and Young, 1998). A small amount of

sediment was mixed with a drop of water on a coverslip, dis-

www.clim-past.net/11/1009/2015/ Clim. Past, 11, 1009–1025, 2015
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tributed with a toothpick, and then dried on a hot plate. The

coverslip was affixed to a glass microscope slide using Nor-

land Optical Adhesive 61 and cured under an ultraviolet light.

Slides were examined on a Leitz Ortholux II POL-BK mi-

croscope under cross-polarized and plane-transmitted light.

Nannofossil distribution was determined for 41 samples ex-

tending from Paleocene to the upper lower Eocene (Teurian

to Mangaorapan New Zealand stages) (Table S3). Counts of

400 specimens were conducted at 1000× magnification for

each sample, followed by a scan of at least 400 fields of view

at 630× to look for rare taxa). Foraminiferal distribution was

determined for 59 samples spanning the same time interval

(Table S4).

Foraminiferal biostratigraphy is correlated with New

Zealand stages (Cooper, 2004) and international biozones

(Olsson et al., 1999; Pearson et al., 2006). New Zealand stage

and biozone boundaries are calibrated to the 2012 geological

timescale (Gradstein et al., 2012) using criteria described by

Raine et al. (2015) and Norris et al. (2014). Foraminiferal

taxonomy is based on Hornibrook et al. (1989), Olsson et

al. (1999) and Pearson et al. (2006). Biostratigraphic results

for calcareous nannofossils are correlated to the biostrati-

graphic zonation scheme of Martini (1970, 1971), calibrated

to the 2012 geological timescale (Gradstein et al., 2012).

Taxonomic concepts for species are those given in Perch-

Nielsen (1985) and Bown (1998).

2.2.4 Stable isotopes and carbonate content

Analysis for stable isotopes and carbonate content was un-

dertaken at three laboratories. Results are tabulated in Ta-

ble S5. Bulk carbonate δ13C and δ18O measurements were

undertaken at the National Isotope Centre, GNS Science,

Lower Hutt. Samples were analyzed at 25 ◦C on a GVI

Isoprime carbonate system coupled to an IsoPrime dual-

inlet isotope ratio mass spectrometer. All results are reported

with respect to VPDB, normalized to the GNS marble in-

ternal standard with reported values of 2.04 ‰ for δ13C and

−6.40 ‰ for δ18O. The external precision (1σ ) for these

measurements is 0.05 ‰ for δ13C and 0.12 ‰ for δ18O.

Individual specimens from five foraminiferal genera were

used for stable isotope analysis and elemental geochemistry.

Specimens were selected for analysis based on visual assess-

ment of their preservation under a stereo microscope. Wher-

ever possible, analyses were performed on Morozovella ae-

qua, Acarinina coalingensis, Subbotina patagonica, S. roes-

nasensis, and Cibicides proprius/praemundulus, and Sten-

sioina beccariformis. The following species were substituted

when these species were not available: Morozovella subboti-

nae, M. acuta, M. apanthesma, Acarinina soldadoensis, A.

subsphaerica, A. esnaensis, A. nitida and Cibicides tholus.

The stable isotope signature of Acarinina soldadoensis, A.

subsphaerica, A. nitida and all species of Morozovella indi-

cates they were mixed-layer dwellers (Olsson et al., 1999;

Quillévéré and Norris, 2003) and therefore are appropriate

indicators of near-surface conditions. Subbotina patagonica

is inferred to have had a deeper planktonic habitat (Pear-

son et al., 2006), within the thermocline. There are no data

on the habitat of S. roesnasensis. Stable isotope analysis of

foraminifera was carried out in the Stable Isotope Labora-

tory at the University of California, Santa Cruz. Between 1

and 6 (average of 3) specimens of Cibicides, 1 and 5 (av-

erage of 3) specimens of Stensioina, 3–17 (average of 10)

specimens of Acarinina, 2–10 (average of 4) specimens of

Morozovella, and 1–8 (average of 5) specimens of Subbotina

were used in each analysis. Specimens were first sonicated

in deionized water to remove clay and detrital calcite. Iso-

topic measurements were carried out on a Thermo Finni-

gan MAT253 mass spectrometer interfaced with a Kiel de-

vice. The analytical precision (1σ ) is based on repeat anal-

ysis of an in-house standard (Carrara marble), calibrated to

the international standards NBS18 and NBS19, and averages

±0.05 ‰ for δ13C and ±0.08 ‰ for δ18O. All values are re-

ported relative to VPDB. For the δ18O values of Cibicides

(i.e. Cibicidoides; see Schweizer et al., 2009) and Stensioina,

we apply an isotopic correction factor of +0.28 ‰ (Katz et

al., 2003). Paleotemperatures for both benthic and planktic

taxa were calculated from δ18O using the equation of Kim

and O’Neil (1997):

T (◦C)= 16.1+−4.64(δ18OM− δ
18OSW)

+ 0.09(δ18OM− δ
18OSW)2, (1)

where δ18OM =measured value and δ18OSW =−1.23 ‰,

which incorporates a SMOW to PDB correction of −0.27 ‰

(Kim and O’Neil, 1997) and an ice volume component of

−0.96 ‰ (Zachos et al., 1994), assuming ice-free conditions

for the Paleocene–Eocene transition. Planktic values are also

corrected for paleolatitude (Zachos et al., 1994; correction of

−0.23 ‰ for ∼ 65◦ S).

The carbonate content of dried powdered samples was de-

termined at the National Institute of Water and Atmosphere

(NIWA, Wellington) via gasometric quantitative analysis af-

ter acidification (Jones and Kaiteris, 1983), with a precision

of ±2 %. The composition of the non-carbonate residue was

not determined.

2.2.5 Elemental geochemistry and Mg/Ca analysis

Foraminifera were picked from the 150–300 µm fraction of

washed sediment samples and individually washed in ultra-

pure (> 18.2 m�) water and analytical-grade methanol three

times before being mounted on double-sided tape adhered to

a glass slide. Mg /Ca analysis was carried out on 4–19 spec-

imens for each of the selected genera in each sample (Ta-

ble S6). Each foraminifer was analyzed at least three times

using a pulsed ArF laser (Lambda Physik LPFpro 205) with a

193 µm wavelength, 30 µm spot size, laser power of 3 J cm−2

and a repetition rate of 3 Hz, in conjunction with an ANU

HelEx laser ablation cell, at the Research School of Earth

Clim. Past, 11, 1009–1025, 2015 www.clim-past.net/11/1009/2015/
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Sciences of the Australian National University. An analysis

of the NIST-SRM610 silicate standard was taken between

every 9 and 12 foraminifer analyses to correct for elemen-

tal fractionation originating from laser ablation and mass-

spectrometry effects.

The final three chambers of the final whorl in each speci-

men were analyzed individually by ablating slowly at a rate

of 0.2–0.3 µm s−1 to produce a separate trace element profile

through the wall of each chamber (Fig. S1 in Supplement).

A Varian 820 LA-ICPMS was used to measure abundances

of the trace metal isotopes 24Mg, 27Al, 29Si, 47Ti, 55Mn,
66Zn, 88Sr and 138Ba relative to 43Ca during ablation. El-

emental ratios reported for each sample are average values

derived from multiple screened profile segments for multi-

ple specimens of a given taxon. Laser ablation sites were

selected using light microscopy and SEM imaging to avoid

zones of detrital contamination, recrystallization or test orna-

mentation that might cause irregular trace element /Ca pro-

files (Fig. S1). Individual chamber profiles were screened

to exclude zones with anomalously high Mg /Ca, Al /Ca,

Mn /Ca or Ba /Ca ratios, which indicate significant sili-

cate contamination (Barker et al., 2003; Greaves et al., 2005;

Creech et al., 2010). These profiles typically show zones en-

riched in Mg, Al, Mn, and Ba on the outside and inside sur-

faces of the chamber wall, consistent with silicate contam-

ination (Fig. S1). The Sr /Ca ratio is used as an indicator

of diagenetic alteration because the concentration of Sr may

decrease or increase during alteration or secondary calcifi-

cation (Eggins et al., 2003; Kozdon et al., 2013). A ratio of

∼ 1.4 is typical for well-preserved tests (Creech et al., 2010).

Therefore, samples with Sr /Ca values outside the range of

0.8–1.6 mmol mol−1 were considered to be affected by dia-

genesis (Fig. 3). Al /Ca and Mg /Ca data show a positive

linear correlation when plotted (Fig. 3), reflecting the influ-

ence of silicate contamination. We have used the method of

Creech (2010; after Barker et al., 2003) to screen for this

contamination. The Al /Mg composition of the contaminant

phase was identified by plotting Mg /Ca against Al /Ca and

finding the slope of the linear regression. Once this Al /Mg

composition had been determined for each genus, the screen-

ing threshold was set by calculating the Al /Ca ratio at which

paleotemperature estimates would be biased by more than

1 ◦C. This screening removes anomalously high Mg /Ca val-

ues and reduces the mean value for most samples (Figs. 4,

S2). After the measurements have been screened for silicate

contamination, the effects of diagenesis are more easily as-

sessed (Fig. 3). A weak negative correlation between Sr /Ca

and Mg /Ca suggests that diagenesis may also cause an in-

crease in Mg /Ca values, especially in the planktic genus

Acarinina. The reasons for this correlation and implications

are discussed below.

Marine paleotemperatures are calculated using the ex-

ponential relationship between Mg /Ca and temperature

(Eq. 2). Because the planktic foraminifera used in this study

are extinct, sea surface temperatures (SSTs) were calculated

using a general calibration based on the mean calcification

temperatures of nine modern planktic species (A= 0.09,

B = 0.38; Anand et al., 2003). Sea floor temperatures (SFTs)

were calculated using the calibration of Lear et al. (2002)

based on three benthic species of Cibicidoides/Cibicides

(A= 0.109, B = 0.867):

Mg/Catest =

(
Mg/Cat=tSW

Mg/Cat=1
SW

)
×B expAT . (2)

Marine temperature reconstructions based on early Eocene

foraminiferal calcite have shown that a high (> 3 mol mol−1)

Mg /Casw value is required to reconcile Mg /Ca-derived pa-

leotemperatures with those derived from δ18O (Lear et al.,

2002; Sexton et al., 2006). High Mg /Casw values are in

line with modeled values from Wilkinson and Algeo (1989)

but are at odds with several proxy studies (e.g., Horita et

al., 2002; Coggon et al., 2010) and more recent modeling

(e.g., Stanley and Hardie, 1998) that favor lower values for

Mg /CaSW (< 2 mol mol−1). However, recent studies (Ha-

suik and Lohmann, 2010; Evans and Müller, 2012) have rec-

onciled the empirical relationship between δ18O and Mg /Ca

paleotemperatures with these lower values for Mg /CaSW by

showing that a power law distribution, rather than an expo-

nential distribution, better describes the relationship between

Mg partitioning and temperature in foraminiferal calcite:

Mg/Catest =

(
B

Mg/Cat=0H

sw

)
×Mg/Cat=t

H

sw expAT . (3)

To apply this equation we use exponential and pre-

exponential calibration constants from modern multispecies

calibrations and paleotemperature values derived from

oxygen isotopes to estimate the function H for extinct

foraminifera. Published data from well-preserved Eocene

foraminifera at Hampden Beach (Burgess et al., 2008; Hollis

et al., 2012) and Tanzania (Pearson et al., 2007), for which

paired Mg /Ca and δ18O data are available, have been used

to derive H for the extinct species used in this study.

In calculating the value of H , we have used an early

Eocene Mg /Casw value of 1.6 mol mol−1 (Stanley and

Hardie, 1998; Evans and Müller, 2012) and a modern

Mg /Casw value of 5.17 mol mol−1. This H value does not

take into account possible variability in Mg /Casw values

through the early Paleogene. The Mg /Ca–temperature cal-

ibrations of Anand et al. (2003) and Lear et al. (2002) have

been used, although it is likely that the pre-exponential con-

stant of Paleogene planktic foraminifera differed from that

of the modern taxa. We calculate an H value of 20 for Pa-

leogene planktic foraminifera, which is significantly lower

thanH values for modern planktics, such as Globigerina sac-

culifer (H = 0.42; Hasuik and Lohmann, 2010). For benthic

foraminifera, Cramer et al. (2011) suggest that the value of

H would be similar between Cibicides sp. and Oridorsalis

umbonatus. The calculation for Mg /Ca-derived temperature

www.clim-past.net/11/1009/2015/ Clim. Past, 11, 1009–1025, 2015
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Figure 3. Cross-plots of Mg /Ca, Al /Ca and Sr /Ca with areas outside the screening limit shaded pink. All results are shown for the

Al /Ca–Mg /Ca cross-plots. For Sr /Ca–Mg /Ca cross-plots, we only include measurements that lie within the screening limit for Al /Ca

in order to exclude the effects of silicate contamination. Only R2 values significant at the 95 % confidence interval are shown for the trend

lines.

values is

T =

ln

(
[Mg /Catest]×

[
Mg /Cat=0

sw

]H
B×[Mg /Cat=tsw ]H

)
A

. (4)

Temperature values derived from Mg /Ca ratios of surface

mixed-layer dwelling taxa used in this study are normal-

ized to Morozovella crater following Creech et al. (2010).

Three types of error are applied to paleotemperatures derived

from Mg /Ca ratios: analytical error, sample error and a stan-

dard calibration error. The analytical error is accounted for in

the data processing step, and typically produces very small

uncertainties (2SE53 %) associated with counting statistics

during ablation and data acquisition. The sample error is

the 95 % confidence interval for the mean temperature value

from multiple analyses within a single sample, and is calcu-

lated by

X± t ×
σ
√
n
, (5)

where X is the sample mean, t is the inverse of the Student t

distribution, σ represents the standard deviation and n is the

number of analyses. The calibration error is the residual error

of ±1.6 ◦C on the regression of the multispecies calibrations

established by Lear et al. (2002) and Anand et al. (2003). The

cumulative error calculated from the sum of all three errors is

applied to each temperature value, providing upper and lower

uncertainties.

3 Results and discussion

3.1 Stratigraphy

The 45 m thick studied interval (425–470 mbsf) consists of

five cores, with significant gaps due to poor recovery in

three of the cores, which extend from middle Paleocene to

lower Eocene (Fig. 2). The sediments are greenish-white to

greenish-grey nannofossil chalk, with higher clay content

in the upper Paleocene (core 46; 463–470 mbsf) and low-
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Figure 4. Trace element–depth plots for Acarinina (a–c) and Cibicides (d–f) across the PETM interval, showing all measured Mg /Ca,

Al /Ca and Sr /Ca values, and the decrease in mean Mg /Ca value when Al /Ca and Sr /Ca screening protocols are imposed. Areas outsides

the screening limits are shaded pink. Note the change in scale on horizontal axes for Mg /Ca and Al /Ca for Acarinina and Cibicides.

ermost Eocene (core section 45-3; 456.96–457.3 mbsf) and

minor glauconite (cores 43–44) and chert nodules (cores 41–

43) in the overlying Eocene. A record of “incipient chert”

in core section 45-3 (Kennett et al., 1975) may have been

a misidentification of the darker-grey clay-rich sediments at

the base of the PETM (Fig. 5).

Calcareous microfossils are only moderately preserved

overall, and there is an interval directly below the

Paleocene–Eocene boundary (457.3 to 457.58 mbsf) in

which foraminifera are poorly preserved and sparse. Plank-

tic foraminifera are used to correlate the 45 m thick stud-

ied interval to New Zealand stages (Teurian to Mangaora-

pan) and to international foraminiferal zones P4a–b to E7

(Fig. 2). Nannofossil assemblages over the same interval

have been correlated with nannofossil zones NP6 to NP12.

Whereas previous studies indicated an undifferentiated upper

Paleocene succession spanning Zone NP6–8 (Edwards and

Perch-Nielsen, 1975; Hollis et al., 1997), we infer a ∼ 2 Myr
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values and Mg /Ca ratios; and (e) changes in paleotemperature relative to average Paleocene values.

hiatus near the top of core 46 (463.49–463.16 mbsf), repre-

senting all of zones NP7 and NP8. Immediately above the

hiatus, Discoaster multiradiatus makes up ∼ 2 % of the as-

semblage, suggesting that the lowermost part of Zone NP9

is missing. This lowest occurrence (LO) of D. multiradiatus

coincides with the LOs of D. lenticularis and D. salisburgen-

sis.

The PETM is a 34 cm thick interval within core 45

(457.3–456.96 mbsf) that is clearly delineated by a 40 % de-

crease in carbonate content and 2–3 ‰ negative excursions

in bulk carbonate δ13C and δ18O values (Fig. 2). The ben-

thic foraminiferal extinction event (BFEE) is identified at the

base of the PETM at 457.3 mbsf based on the highest oc-

currences of the Stensioina beccariformis and Gyroidinoides

globosus. The planktic foraminiferal genus Morozovella has

its lowest occurrence at the base of the PETM and greatest

diversity within the PETM. Morozovella aequa and M. ve-

lascoensis are restricted to the PETM. The latter species has

rarely been found outside the PETM in the SW Pacific but

M. aequa ranges into the middle late Eocene in New Zealand

sections (Hornibrook et al., 1989). For nannofossils, taxa typ-

ical of the PETM in other regions, such as the Rhomboaster

lineage, Discoaster araneus and D. anartios (e.g., Bybell and

Self-Trail, 1994; Kahn and Aubry, 2004), are absent here.

Instead, the nannofossil assemblage is characterized by de-

formed Discoaster specimens, many similar to Discoaster

nobilis (e.g., Raffi and De Bernardi, 2008), as well as in-

creased abundance of Coccolithus spp. and the presence of

Fasciculithus spp. and Bomolithus supremus, which is re-

stricted to the PETM interval at this site. Immediately above

the PETM (456.92 mbsf), the abundances of Fasciculithus

spp. and Coccolithus spp. decrease significantly, with a con-

comitant increase in Zygrhablithus bijugatus. As discussed

below, the stable isotope record through the P–E transition

indicates that the PETM is truncated, with only the onset and

body of the CIE represented by these 34 cm of sediment.

An age–depth plot (Fig. S3) based on calcareous nanno-

fossil and foraminiferal bioevents (Table S7) provides a pre-

liminary guide to compacted sedimentation rates. This rate

appears to have been relatively low in the Paleocene (0.4

to 0.45 cm kyr−1) either side of the hiatus at ∼ 463.4 mbsf,

but approximately 4 times higher in the early Eocene
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(1.68 cm kyr−1). However, a rather patchy distribution of

events and uncertainty over the duration of hiatuses means

that it is possible to construct an alternative age model in

which rates were consistent across the Paleocene–Eocene

transition (dashed line in Fig. S3). Although this implies that

the sedimentation rate for the PETM interval could lie any-

where between the low Paleocene rate and the high Eocene

rate, the lower rate is consistent with the duration of the CIE

from onset to δ13C minimum, i.e., ∼ 45–66 kyr (Röhl et al.,

2007).

The base of the PETM coincides with a distinct color

change to a darker greenish-grey chalk that grades back into

greenish-white chalk over 15 cm (Fig. 5). This dark interval

is also highly burrowed. Burrowing is also evident in other

parts of the core, but it is less obvious in more pale litholo-

gies. XRF core scanning shows an increase in Fe content at

the base of this interval, followed by a cyclical decrease to

background levels at 456.95 m (Fig. 5a). A lower-resolution

record of magnetic susceptibility in discrete samples reveals

a similar trend: a peak near the base of the darker interval,

followed by a quasi-cyclical decrease to background lev-

els. The peaks are inferred to represent intervals of higher

clay content based on the parallel trends in Fe and mag-

netic susceptibility. Many of the other peaks and troughs

in the Fe record below and above the PETM are scanning

artifacts related to core breaks. However, parallel peaks in

magnetic susceptibility and Fe content in the lower part of

core 45 (∼ 457.7 mbsf) appears to be a robust signal although

the cause is unknown. There are no accompanying changes

in isotopic signature or obvious lithological changes at this

level.

A 10 cm interval directly below the PETM has a re-

duced carbonate concentration but there is no change in δ13C

(Figs. 2, 5b). As there is no accompanying increase in mag-

netic susceptibility or Fe content (Fig. 5a), the decrease in

carbonate content seems to be due to an increase in sil-

ica, perhaps associated with the slight cooling indicated by

a small positive shift in δ18O of ∼ 0.4 ‰ in both bulk and

foraminiferal calcite (Figs. 2, 5d). Although the silica is pre-

sumed to be biogenic, siliceous microfossils have not been

recovered from this interval.

For a sedimentation rate of 0.45 cm kyr−1, the 34 cm thick

PETM interval represents ∼ 76 kyr and the three peaks in Fe

content represent a periodicity close to the precession band

(∼ 21 kyr). Indeed, there is good agreement between the Fe

cycles and δ13C record at Site 277 and ODP Site 690 (Röhl

et al., 2007), where the negative CIE occurs over three steps

and the δ13C minimum (Horizon C of Zachos et al., 2005)

occurs within the third Fe peak. Based on this correlation

with Site 690, we infer that the interval from the CIE onset to

the base of Cycle 4 is preserved at Site 277, or the first 66 kyr

of the PETM (Röhl et al., 2007), implying a slight increase

in sedimentation rate through the PETM (52 cm kyr−1).

3.2 Stable isotopes

Bulk carbonate stable isotopes display a significant offset be-

tween δ18O and δ13C minima, with the δ18O minimum oc-

curring at the base and the δ13C minimum in the upper part

of the PETM (Figs. 2, 5b). The negative CIE of ∼ 2 ‰ is

slightly smaller than the average for marine sections ( 2.7 ‰;

McInerney and Wing, 2011) and occurs gradually over the

lower 20 cm of the PETM. In contrast, the 3 ‰ negative δ18O

excursion (OIE) is abrupt at the base of the PETM and is

larger in magnitude than is known elsewhere (e.g., Bains et

al., 1999; Dunkley Jones et al., 2013). If this is a primary fea-

ture and due solely to a change in temperature, this excursion

would equate to ∼ 12 ◦C of warming (Fig. 5d); however, the

OIE is most likely accentuated by diagenesis as is discussed

below.

Examination of foraminiferal δ18O and Mg /Ca ratios

help to separate the diagenetic effects from the paleotem-

perature record. As none of the foraminifera recovered in

this study have “glassy” preservation (Sexton et al. 2006;

Pearson and Burgess, 2008; Kozdon et al., 2013), all are

assumed to have been altered to varying degrees. We se-

lected the best-preserved specimens for isotopic analysis

(Figs. 2, 5b, 6). Our results indicate that normal surface to

deep δ13C gradients are preserved in the foraminiferal tests,

with bulk carbonate δ13C values lying within the range of,

or slightly lighter than, planktic foraminiferal δ13C through-

out the studied interval. An exception is noted in the basal

PETM, where two values are more positive than planktic

δ13C (Figs. 5b, 6b). Benthic δ13C values are > 0.7 ‰ lighter

than both planktic and bulk carbonate values, apart from the

basal PETM sample where a negative gradient of −0.37 ‰

occurs between Acarinina and Cibicides (Figs. 5b, 6b). The

implication is that the onset of the CIE is recorded more

strongly in planktic foraminifera (i.e., surface water CIE of

−1.85 ‰) than in either benthic foraminifera (deep water

CIE of −0.55 ‰) or bulk carbonate (CIE of −0.34 ‰ across

equivalent sample interval).

If it were not for the large magnitude of the OIE across the

same sample interval (−1.42 and −2.82 ‰ for the full OIE),

we might argue for mixing across the boundary dampening

the bulk carbonate CIE. However, the marked differences in

the pattern of onset for the CIE and OIE suggest that there

was no mixing of sediment across the boundary. Similarly,

there is little evidence for the isotope record being affected

by carbonate dissolution or burn-down (Dickens, 2000; Koz-

don et al, 2013) below the base of the PETM. A weak positive

shift in pre-PETM δ18O values and reduced carbonate con-

tent may reflect cooler conditions as the shift is accompanied

by a cooling trend in the benthic Mg /Ca ratio (Fig. 5d–e).

A similar offset between bulk and planktic δ13C in

the basal PETM was described for ODP Site 690, where

Stoll (2005) showed close agreement between trends in

stable isotopes for bulk carbonate, coccolith fractions and

Subbotina but significant offsets with Acarinina, the latter
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recording an earlier CIE onset and a later OIE minimum.

Stoll (2005) considered several possible causes for this off-

set and favored differences in habitat and seasonal produc-

tion. For Site 690, the correspondence between coccoliths

and Subbotina suggests that coccolith production may have

occurred at a lower level within the photic zone than the level

preferred by Acarinina. For Site 277, the δ13C gradient sug-

gests a similar explanation but a different relationship. Dur-

ing the PETM onset, coccolith production appears to have

occurred at a shallower level than that preferred by plank-

tic foraminifera at this site. This may also explain why bulk

carbonate δ18O is more depleted than planktic values in this

interval, i.e., coccolith production in shallower and warmer

waters. Given that this relationship is only fully expressed

at the PETM onset, we suggest that this might have been a

time of increased stratification and differentiation between

water masses in the upper water column at this site. Nunes

and Norris (2006) used ageing gradients in benthic δ13C to

infer a switch in deep water formation across the P–E bound-

ary from the Southern Ocean to the Northern Hemisphere.

Our benthic δ13C data from Site 277 support this hypothe-

sis. Site 277 benthic δ13C is 0.46 ‰ higher than values in the

equatorial Pacific prior to the PETM but 0.12 ‰ lower within

the PETM. It seems likely that comparable changes occurred

in surface water circulation.

With the CIE onset seeming explicable in terms of re-

lationships between coccolith and foraminiferal niches and

changes in ocean circulation, we turn our attention to the

stepped decline in the bulk carbonate CIE at Site 277.

Stoll (2005) argued that a similar series of three steps in

the bulk carbonate CIE seen at Site 690 reflect the greater

capacity for coccoliths to record changes in ocean condi-

tions at a finer scale than is possible from the less abundant

foraminiferal fraction. Although we lack the resolution in the

foraminiferal record to compare sites 277 and 690 in detail,

we observe the same trend and note a broad correlation with

the three Fe peaks. It seems likely that these steps represent

precessional modulation of the release of 13C-depleted car-

bon into the ocean over ∼ 60 kyr (Röhl et al., 2007; Sluijs et

al., 2007).

3.3 Diagenetic modification of δ18O values

As noted above, bulk carbonate δ18O values at Site 277 in-

tergrade between benthic and planktic foraminiferal values

in the Paleocene and in the Eocene interval above the PETM

(Fig. 6a, c). Moreover, several planktic foraminiferal δ18O

values are only ∼ 0.3 ‰ lighter than benthic values in the

Paleocene (Figs. 2, 6c). Conversely, all bulk carbonate δ18O

values lie within the range of planktic foraminiferal δ18O

within the PETM (Fig. 6b) and, indeed, bulk carbonate δ18O

is lighter than planktic foraminiferal δ18O in the basal PETM

(Figs. 2, 5d). We contend that diagenesis accounts for these

relationships (Schrag et al., 1995; Schrag, 1999; Sexton et

al., 2006; Kozdon et al., 2013). The bulk carbonate δ18O has

been shifted toward heavier values during early diagenesis (at

seafloor temperature) over much of the section above and be-

low the CIE, whereas within the PETM interval the bulk and

foraminiferal carbonate appears to have undergone less dia-

genetic alteration. We suggest that the increase in clay in the

PETM protected coccoliths and foraminifera from wholesale

recrystallization, preserving more of the original δ18O sig-

nal. The presence of clay serves to reduce sediment porosity

and retard carbonate recrystallization (Sexton et al., 2006).

This explains the large magnitude of the bulk carbonate δ18O

excursion across the P–E boundary, with the δ18O values be-
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low the excursion having been altered toward heavier values

(Figs. 2, 5d–e).

The planktic foraminiferal δ18O values at Site 277 appear

to be compromised to varying degrees by seafloor diagene-

sis throughout the interval studied. The surface-to-deep tem-

perature gradient may be expected to be reduced in high-

latitude regions such as the Campbell Plateau. Mean annual

Subantarctic Water is ∼ 6◦ warmer than Antarctic Interme-

diate Water in the present-day Southern Ocean (Carter et al.,

1999). However, the very low planktic–benthic δ18O gradi-

ent in the Paleocene and post-PETM Eocene (0.8 ‰, 3 ◦C)

suggests alteration of planktic δ18O toward benthic values

(Figs. 2, 5d, 6c). The gradient is only slightly greater in the

PETM (1.1 ‰, 4 ◦C), suggesting that a cool bias affects all

paleotemperatures derived from planktic δ18O through the P–

E transition at this site. The degree of this bias is uncertain.

The warmer paleotemperature derived from Mg /Ca ratios

may be more reliable but, as is discussed below, diagenesis

may cause a warm bias in this proxy.

3.4 Diagenetic modification of Mg/Ca ratios

There is evidence that diagenesis also has significant and spe-

cific effects on Mg /Ca values (Oomori et al., 1987; Koz-

don et al., 2013). As noted earlier, we observe a distinct

relationship between the Mg /Ca ratio and the geochemi-

cal proxy for diagenesis, the Sr /Ca ratio, once we have

screened for silicate contamination (Fig. 3). For Cibicides,

the full screened data set shows a roughly horizontal trend,

with little change in Sr /Ca as Mg /Ca varies. This suggests

that this genus is relatively immune to the effects of diagen-

esis, perhaps related to its relatively thick and smooth wall.

However, if we consider Paleocene and PETM samples sepa-

rately, we observe that Paleocene analyses tend to have lower

Sr /Ca ratios than PETM samples and exhibit a weak trend

in which Mg /Ca increases as Sr /Ca decreases. This general

relationship has also been identified by Kozdon et al. (2013)

as a guide to diagenetic alteration, even though the impact on

Mg /Ca ratios is an order of magnitude smaller than found

in laboratory experiments (Oomori et al., 1987). The trend

is more obvious in Acarinina at Site 277, probably because

the thinner-walled and more irregular test provides more sur-

faces for interaction with pore waters and hence facilitates di-

agenetic alteration. For the full data set, a significant negative

correlation is observed, with Mg /Ca increasing as Sr /Ca

decreases. A weaker trend is evident in the PETM data but

a much stronger trend is shown by the Paleocene data. From

these observations we can draw the following conclusions:

(i) Acarinina is more prone to diagenesis than Cibicides, (ii)

diagenesis is greater in the Paleocene than in the PETM,

and (iii) diagenesis causes an increase in the Mg /Ca ratio

and implies that paleotemperatures may be overestimated for

some taxa, such as Acarinina, and in some intervals such as

the Paleocene at this site. This may explain why the SST es-

timates for the Paleocene based on Acarinina Mg /Ca ratios

are higher than expected (Fig. 5d, e).

3.5 Paleotemperature

Taking into account these numerous complications, we can

make some general observations on temperature changes

through the P–E transition at Site 277. Estimates for SFT

from benthic foraminiferal δ18O and Mg /Ca are relatively

consistent at 12–15 ◦C for the late Paleocene (Fig. 5d), with

coolest SFTs of 11–12 ◦C occurring in the uppermost 10 cm

of Paleocene, where carbonate content is also lower than

background. Benthic δ18O and Mg /Ca values indicate SFT

warmed by∼ 5−6 ◦C across the P–E boundary, with SFTs of

up to ∼ 19 ◦C in the basal PETM. There is little evidence for

further warming of SFT in the body of the PETM. Following

the PETM, SFT drops abruptly by ∼ 5 ◦C and remains sta-

ble at ∼ 13 ◦C in the overlying Eocene interval (Fig. 5d–e).

Diagenesis may explain why some Paleocene Mg /Ca ratios

yield higher SFTs than the benthic δ18O values.

The SST record across the P–E boundary is much more

difficult to interpret. The small offset between benthic and

planktic δ18O (∼ 3 ◦C) and the large offset between planktic

δ18O and Mg /Ca values (∼ 12 ◦C) in the Paleocene are both

likely to be consequences of diagenetic alteration, with the

actual SST lying somewhere between 15 and 27 ◦C (Fig. 5d).

Similarly, the degree of warming across the PETM may be

accentuated for δ18O but effectively dampened for Mg /Ca

due to the effects discussed above. For this reason, the ob-

servation that the relative SST increase is ∼ 5–6 ◦C for both

proxies (Fig. 5e) is difficult to explain even though it is con-

sistent with the SFT record. Diagenetic effects appear to

decrease across the P–E boundary, based on our analysis

of the benthic–planktic δ18O gradient and the Sr /Ca ratio.

Therefore, we would predict that the relative increase in SST

across the boundary would be greater for planktic δ18O than

for Mg /Ca. It may be that the patchy nature of the record

through this interval is masking these relationships. Irrespec-

tive of the true magnitude of SST change across the P–E

boundary, planktic Mg /Ca ratios indicate warmest SSTs in

the lower PETM, stable SSTs through the body of the PETM

(albeit ∼ 3 ◦C cooler) and an abrupt ∼ 4 ◦C cooling directly

above the PETM.

The 5–6 ◦C increase in SST is similar to other PETM

records. At ODP Site 1172, the TEX86 record indicates that

SST increased by 6 ◦C across the P–E boundary (Sluijs et al.,

2011) and SST during the PETM was 3–4 ◦C warmer than

average Paleocene values (Fig. 7). Elsewhere, temperature

anomalies within the PETM range from +4–5 ◦C in low lati-

tudes (Zachos et al., 2003; Aze et al., 2014) to +8 ◦C in high

latitudes (Thomas et al., 2002; Frieling et al., 2014) and some

low-latitude coastal sites (Zachos et al., 2006).

The peak SSTs of ∼ 32 ◦C within the PETM are consis-

tent with TEX86-based SSTs from the PETM at ODP Site

1172 (Sluijs et al., 2011) and in the mid-Waipara section,
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eastern South Island, New Zealand (Hollis et al, 2012). At

these locations, the two calibrations for TEX86 introduced by

Kim et al. (2010) yield peak SSTs for the PETM of 32–34 ◦C

(TEXH86) or 26–28 ◦C (TEXL86). Although the TEXL86 calibra-

tion was considered more suitable for this region based on

comparisons with other SST proxies (Hollis et al., 2012), a

new Bayesian approach to TEX86 calibrations (Tierney and

Tingley, 2014) yields temperatures for the PETM that are

very similar to the TEXH86 calibration. These PETM SSTs

are also consistent with the SST estimates of 26 ◦C that were

derived from TEX86 and UK
′

37 for the late Eocene at Site 277

(Liu et al, 2009), given that deep sea temperatures cooled by

∼ 8 ◦C through the Eocene (Zachos et al., 2008).

There is considerable debate about the veracity of such

high-temperature estimates in high-latitude regions, with

concerns raised about calibrations, seasonal bias and ar-

chaeol physiology processes (Sluijs et al., 2006; Hollis et al.,

2012; Taylor et al. 2013; Inglis et al., 2015). However, the

consistency between SSTs derived from Mg /Ca and TEX86

(Burgess et al., 2008; Hollis et al., 2012) suggests that the

high temperatures are due to factors that the proxies may

have in common, such as a warm-season bias, rather than

problems with respective calibrations or physiological fac-

tors.

3.6 Comparison with other PETM records

A comparison of the PETM record at DSDP Site 277 with

nearby records at Mead Stream (Hollis et al., 2005a; Nicolo

et al., 2010) and ODP Site 1172 (Sluijs et al., 2011) reveals

several significant features (Fig. 7). Firstly, there seems lit-

tle doubt that only the onset of the CIE is preserved at Site

277. The pattern of decreasing δ13C is very similar to the ex-

panded onset at Mead Stream. As noted above, the stepped

decrease in δ13C is also observed at ODP Site 690 (Röhl et

al., 2007). However, the pattern of warming at Site 277 is

different from Site 1172. At Site 277, the most pronounced

increase in temperatures occurs at the base of the PETM and

is associated with a weak negative δ13C excursion. Higher in

the PETM, temperatures remain stable or decrease slightly

as δ13C decreases. At Site 1172, the TEX86 record indicates

pronounced warming at the base of the PETM but SST con-

tinues to increase and peaks just above the δ13C minimum.

No direct measurements of temperature have been obtained

from the indurated lithologies at Mead Stream. However,
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changes in radiolarian assemblages identify a definite peak in

low-latitude species, also directly above the δ13C minimum

(red star in Fig. 7) (Hollis, 2006).

The implication of these differences between SW Pacific

sites is that the primary warming pulse occurred in both in-

termediate and surface waters at the initiation of the PETM

on the Campbell Plateau, whereas this initial event was only

the precursor to progressive warming in the continental mar-

gin settings to the west and north (Fig. 1). A similar pat-

tern of warming is evident in the Atlantic Ocean, where the

δ18O records for ODP sites 690 and 1051 suggest that peak

warming occurred at the onset of the PETM in the south-

ern Atlantic (Site 690) but at the same level as the CIE

minimum in the western North Atlantic (Bains et al., 1999;

Stoll, 2005). We cannot be sure that there was not a second

warming pulse above the onset of the PETM on the Camp-

bell Plateau because the main phase of the PETM may not

be preserved at Site 277. However, the absolute SST values

at Site 277 are similar to the peak SSTs at Site 1172, i.e.,

30–32 ◦C. Therefore, we need to explain how the Campbell

Plateau warmed at the start of the PETM and stayed warm

through the onset, while the East Tasman Plateau warmed

to a lesser extent initially but then continued to warm into

the main phase of the PETM, with both sites experiencing

at least seasonal SST maxima in excess of 30 ◦C. We specu-

late that the gradual warming that followed Southern Ocean

cooling at 59 Ma (Hollis et al., 2014) exceeded a thresh-

old at the start of the PETM that caused the southward ex-

pansion of the subtropical–tropical gyre over the Campbell

Plateau. This gyre was sustained through the PETM onset

but resulted in no additional warming at this location. It is

notable that several warm-water species of Morozovella are

restricted to the PETM at Site 277. The influence of the gyre

may have also reached the East Tasman Plateau, but an ad-

ditional factor may have continued to warm the region into

the main phase of the PETM. This factor may have been a

proto-Eastern Australian Current, intensifying its southwest-

ern reach during times of extreme warming (e.g., Cortese et

al., 2013).

4 Conclusions

Part of the motivation in undertaking this study is that there

is interest in re-drilling this site as part of IODP Proposal 567

(Paleogene South Pacific APC Transect) using modern tech-

nology that will greatly improve the quantity and quality of

core recovery. We have shown that, even with this improved

recovery, extracting a paleoclimate record will still be com-

plicated by diagenesis, recrystallization and hiatuses. In or-

der to recover more reliable climate proxy records for the Pa-

leogene of this region, we recommend consideration of alter-

native or additional Campbell Plateau sites where sedimenta-

tion rates and clay input is predicted to have been higher than

at Site 277 (Cook et al., 1999). Nevertheless, we have also il-

lustrated how a multi-proxy approach can be used to extract

a climate history from this complicated record with due con-

sideration of the effects of differential diagenesis, both be-

tween taxonomic groups and across stratigraphic horizons.

The onset of the PETM is recorded in a 34 cm thick inter-

val within core 45 at DSDP Site 277. A significant and rapid

warming of surface and deep waters at the onset of the PETM

at Site 277 parallels a pronounced decline in carbonate con-

centration and a modest initial negative δ13C excursion of

∼ 1 ‰. The full extent of the 2 ‰ negative δ13C excursion

occurred gradually over an interval in which temperatures re-

mained stable or declined slightly. Therefore, it would seem

that an initial carbon perturbation had a pronounced effect on

southern Pacific Ocean circulation, causing poleward expan-

sion of warm surface and intermediate waters. In contrast,

the full expression of the event had little additional effect,

perhaps because a threshold was exceeded at the initial event.

The Supplement related to this article is available online

at doi:10.5194/cp-11-1009-2015-supplement.
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