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Abstract. The Southern Hemisphere Westerlies (SHW) play

a crucial role in large-scale ocean circulation and global car-

bon cycling. Accordingly, the reconstruction of how the lati-

tudinal position and intensity of the SHW belt changed dur-

ing the last glacial termination is essential for understand-

ing global climatic fluctuations. The southernmost part of the

South American continent is the only continental mass inter-

secting a large part of the SHW belt. However, due to the

scarcity of suitable palaeoclimate archives continuous proxy

records back to the last glacial are rare in southern Patag-

onia. Here, we show an oxygen isotope record from cellu-

lose and purified bulk organic matter of submerged aquatic

moss shoots from Laguna Potrok Aike (52◦ S, 70◦W), a

deep maar lake located in semi-arid, extra-Andean Patago-

nia, covering the last glacial–interglacial transition (26 000

to 8500 cal BP). Based on the highly significant correlation

between oxygen isotope values of modern aquatic mosses

and their host waters and abundant well-preserved moss re-

mains in the sediment record a high-resolution reconstruc-

tion of the lake water oxygen isotope (δ18Olw−corr) compo-

sition is presented. The reconstructed δ18Olw−corr values for

the last glacial are ca. 3 ‰ lower than modern values, which

can best be explained by generally cooler air temperatures

and changes in the moisture source area, together with the

occurrence of permafrost leading to a prolonged lake water

residence time. Thus, the overall glacial δ18Olw−corr level un-

til 21 000 cal BP is consistent with a scenario of weakened or

absent SHW at 52◦ S compared to the present. During the

last deglaciation, reconstructed δ18Olw−corr values reveal a

significant two-step rise describing the detailed response of

the lake’s hydrological balance to this fundamental climatic

shift. Rapid warming is seen as the cause of the first rise of ca.

2 ‰ in δ18Olw−corr during the first two millennia of deglacia-

tion (17 600 to 15 600 cal BP) owing to more 18O enriched

precipitation and increasing temperature-induced evapora-

tion. Following this interpretation, an early strengthening of

the SHW would not be necessary. The subsequent decrease

in δ18Olw−corr by up to 0.7 ‰ marks a millennial-scale tran-

sition period between 15 600 and 14 600 cal BP interpreted as

the transition from a system driven by temperature-induced

evaporation to a system more dominated by wind-induced

evaporation. The δ18Olw−corr record resumes its pronounced

increase around 14 600 cal BP. This further cumulative en-

richment in 18O of lake water could be interpreted as re-

sponse to strengthened wind-driven evaporation as induced

by the intensification and establishment of the SHW at the

latitude of Laguna Potrok Aike (52◦ S) since 14 600 cal BP.

δ18Olw−corr approaching modern values around 8500 cal BP

reflect that the SHW exerted their full influence on the lake
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water balance at that time provoking a prevailing more arid

steppe climate in the Laguna Potrok Aike region.

1 Introduction

Studying the climate evolution from the last glacial towards

the current interglacial enables us to better understand the

responses of the climate system to external and internal forc-

ing without anthropogenic impacts. Palaeoclimatic sites in

southern South America (Patagonia) play an important role

for climate reconstructions, as Patagonia is the only conti-

nental mass intersecting the core of the Southern Hemisphere

Westerlies (SHW). The SHW control large-scale ocean ven-

tilation and carbon cycling and could have played a decisive

role in driving the global deglacial warming during the last

glacial termination (Toggweiler et al., 2006; Anderson et al.,

2009; Denton et al., 2010; Mayr et al., 2013). However, re-

constructing the position and intensity of the SHW during

the last glacial–interglacial transition is limited, because the

Andean area of southern Patagonia, where most palaeocli-

mate sites are located, was covered by the Patagonian Ice

Sheet during the Last Glacial Maximum (LGM). The avail-

able continuous proxy records in the region south of 45◦ S

are mostly restricted to the periods since the late glacial and,

especially, the Holocene (e.g. Ariztegui et al., 2010; Mark-

graf and Huber, 2010; Moreno et al., 2010, 2012; Kilian and

Lamy, 2012). The scarcity of long and continuous terrestrial

records in these southern latitudes leaves a gap for linking

Antarctic ice cores with low southern latitude and Northern

Hemispheric records.

A key location to bridge this gap is Laguna Potrok Aike,

a deep maar lake located in southern extra-Andean Patag-

onia (52◦ S, 70◦W). The site was investigated within the

framework of the interdisciplinary multiproxy ICDP project

“Potrok Aike maar lake sediment archive drilling project”

(PASADO) and provided a lake sediment record reaching

back more than 50 000 years (Ohlendorf et al., 2011; Kliem

et al., 2013b; Zolitschka et al., 2013). Palynological and

geochemical studies based on the Laguna Potrok Aike sedi-

ments have shown the long-term environmental and climatic

changes in southern Patagonia throughout the last glacial–

interglacial cycle and shed light on the behaviour of the SHW

during this transition (e.g. Recasens et al., 2012; Hahn et al.,

2013; Mayr et al., 2013; Zhu et al., 2013).

The reconstruction of the intensity of the SHW in southern

Patagonia is usually based on the correlation between wind

strength and precipitation amount (Kilian and Lamy, 2012).

As revealed by Garreaud et al. (2013), the humid western

side of the Andes exhibits a significantly positive correlation

between precipitation and westerly wind strength, while the

semi-arid eastern side of the Andes shows a distinct negative

correlation. The significance of the relationship between pre-

cipitation and westerly wind intensity on the semi-arid lee-

ward side of the southern Andes is in fact not as strong as

it is on the windward side (Wagner et al., 2007; Garreaud et

al., 2013), likely as a consequence of overall low and variable

annual precipitation.

However, the SHW affect water balances of lakes on the

leeward side of the Andes not only through their linkage with

precipitation amount but also by evaporative enrichment,

which is also controlled by wind intensity. Thus, the modern

oxygen isotope composition of Laguna Potrok Aike’s lake

water (δ18Olw) is mainly controlled by the δ18O of regional

precipitation and evaporative processes (Mayr et al., 2007,

2013). The former is dependent on air temperature during

rainfall events and δ18O of precipitation of different mois-

ture sources that are in turn associated with the strength of

westerly winds. The δ18O of precipitation brought by east-

erly winds from the Atlantic is considerably more enriched

in 18O than that from the Pacific over the southern Andes

(Mayr et al., 2007). Evaporative processes in arid southeast-

ern Patagonia are driven by insolation and westerly winds.

Since the processes controlling Laguna Potrok Aike’s δ18Olw

are largely related to changes in SHW intensity, a sediment

proxy allowing for the reconstruction of past δ18Olw compo-

sition provides valuable insights into the SHW evolution at

high southern latitudes.

Over recent decades, it has been widely recognized that the

oxygen isotope composition of aquatic cellulose (δ18Ocell) is

a reliable recorder of host water δ18O values (e.g. Epstein

et al., 1977; DeNiro and Epstein, 1981; Sternberg, 1989,

2009). Furthermore, results from laboratory (Sauer et al.,

2001) and field studies (Mayr et al., 2013) demonstrate con-

vincingly that δ18O of cellulose extracted from submerged

aquatic mosses are highly correlated to their host waters ow-

ing to the absence of uncertainties related to evapotranspi-

ration. However, achieving a high-resolution δ18Ocell record

could be impeded, because oxygen isotope analysis of moss

cellulose requires large quantities of moss remains for cel-

lulose extraction. An approach to tackle this problem is the

isotope analyses of purified bulk organic matter (OM) of pre-

served aquatic moss shoots, which needs much less mate-

rial, and can potentially improve the temporal resolution of

palaeoclimatic reconstructions based on the moss cellulose

alone without losing palaeoclimatic information (Zhu et al.,

2014).

In a previous study, δ18Ocell values of aquatic moss debris

were used to infer δ18Olw of Laguna Potrok Aike over the last

deglaciation (Mayr et al., 2013). In the present study, we used

hand-picked subfossil shoots of a single aquatic moss species

from sediment sections covering the last glacial–interglacial

transition period to generate a composite record of the δ18Olw

inferred from purified bulk moss OM and extracted cellu-

lose fractions. The aims of the study are (1) to present a

high-resolution δ18Olw record of Laguna Potrok Aike for the

period containing large global climatic shifts by employing

isotope proxies of aquatic mosses, (2) to highlight climatic

changes on the southern South American continent during
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Figure 1. (a) Location of Laguna Potrok Aike (red star) in south-

ern Patagonia indicated by the black area on the inserted map.

Location of sites presented in Fig. 9: 1, MD07-3128 offshore the

Chilean coast (Caniupán et al., 2011); 2, TN057-13-4PC in the

southern Atlantic (Anderson et al., 2009); 3, WDC in West Antarc-

tica (WAIS Divide Project Members, 2013); 4, EDML of East

Antarctica (EPICA Community Members, 2006); 5, Botuverá Cave

in southern Brazil (Wang et al., 2007); and 6, Cariaco Basin (De-

plazes et al., 2013). (b) Sediment samples investigated in the present

study derive from the drilling site 2 shown on the bathymetric map

of Laguna Potrok Aike inserted into an aerial photography (pro-

vided by Hugo Corbella). At site 2, hydraulic piston cores were

taken in 2008 within the framework of PASADO. The piston core

PTA03/12+13 taken in 2003 has been used for the reconstruction

of oxygen isotope composition of lake water in Mayr et al. (2013).

the last glacial–interglacial transition and (3) to evaluate the

SHW’ impact on factors determining the δ18Olw of Laguna

Potrok Aike.

2 Regional setting

The maar Laguna Potrok Aike is located on the southern

side of the Río Gallegos Valley in the Pali Aike Volcanic

Field in southern Patagonia, Argentina (51◦58′ S, 70◦23′W;

113 m a.s.l.; Fig. 1a). The bedrock of the lake area is domi-

nated by fine-grained molasse-type fluvial sediments (Lower

Miocene Santa Cruz Formation) that are about 660 m thick

in the investigated area (Zolitschka et al., 2006; Coronato et

al., 2013). The nearly flat and broad surface is mainly over-

lain by degraded late Miocene and early Pleistocene basaltic

lava flows and tablelands and early Pleistocene fluvioglacial

deposits (Coronato et al., 2013). Glaciers of the last glacial

were restricted to the western Río Gallegos Valley and to the

southern Strait of Magellan and did not reach the Laguna

Potrok Aike area (Coronato et al., 2013). The regional vege-

tation is a dry Magellanic steppe with grasses, dwarf shrubs

and bushes (Wille et al., 2007).

The near-circular maar lake originates from a phreatomag-

matic eruption with a 40Ar / 39Ar age of 770± 240 ka BP

(Zolitschka et al., 2006) and has a flat lake floor (Fig. 1b).

Under present-day conditions, Laguna Potrok Aike is a

Figure 2. Mean near-surface (1000 mb) zonal wind (m s−1) in the

Southern Hemisphere for austral summer (left) and winter months

(right) based on NCEP/NCAR Reanalysis. Location of Laguna

Potrok Aike is indicated by white stars. Data source: http://www.

esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl; last access:

19 August 2014.

phosphorous-rich and subsaline lake with a surface area of

7.58 km2 and a maximum depth of 100 m (Zolitschka et al.,

2006). The lake has only episodic inflows through gullies and

canyons from a catchment area of about 200 km2. Accord-

ing to isotope modelling calculations, about 60 % of the wa-

ter entering groundwater-fed Laguna Potrok Aike evaporates

(Mayr et al., 2007). The water body circulates constantly

under the prevailing strong west-wind conditions, which in-

hibits the development of summer stratification in the water

column. Subaerial and submerged palaeoshorelines indicate

pronounced lake-level fluctuations resulting from past hy-

drological changes (Zolitschka et al., 2006; Haberzettl et al.,

2008; Anselmetti et al., 2009; Gebhardt et al., 2012; Kliem

et al., 2013a).

Dense aquatic vegetation predominantly formed by Pota-

mogeton pectinatus and Myriophyllum cf. quitense covers

the lake floor from a water depth of ca. 1.5 to 15 m (Wille

et al., 2007). Aquatic mosses (Drepanocladus perplicatus)

and Ruppia sp. were also observed in the littoral zone during

snorkelling explorations. However, a detailed survey of the

recent limnic habitat has so far not been conducted.

Laguna Potrok Aike is located on the leeward side of the

southern Andes and in the core of the modern SHW (Fig. 2).

The regional cool and semi-arid climate is characterized by a

low precipitation to evaporation ratio and predominant strong

westerly wind reaching more than 10 m s−1 during austral

summers (Garreaud et al., 2013; Ohlendorf et al., 2013). An-

nual precipitation on the leeward side of the southern An-

des can be less than 200 mm owing to strong rain-shadow

effects. An even seasonal distribution of precipitation in this

region was attributed to the influence of relatively humid air

masses from the Atlantic (Paruelo et al., 1998; Schneider et

al., 2003; Garreaud et al., 2013). Mean annual precipitation

at Laguna Potrok Aike is around 200 mm during the period

from 2000 to 2011, being nearly 300 mm in wet years and

only around 150 mm in dry years (Ohlendorf et al., 2013).
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By comparison, evaporation rates from the surface of the lake

can be more than 1200 mm per year and show clear seasonal

variations with high rates during austral summers and low

rates during austral winters (Ohlendorf et al., 2013). This

seasonal pattern results from seasonal variation of relative

humidity with high values (up to 85 %) during austral win-

ters and low values (down to 30 %) during austral summers

(Ohlendorf et al., 2013). Proximity to the Antarctic continent

and oceans causes cool summer and mild winter tempera-

tures in southern Patagonia. Mean temperatures of austral

summer (DJF) and winter (JJA) recorded at the local weather

station at Laguna Potrok Aike are 13 and 2 ◦C, respectively,

resulting in an annual mean temperature of 7.5 ◦C (Ohlendorf

et al., 2013).

Whereas meteorological parameters such as wind speed,

air temperature and relative humidity exhibit a clear sea-

sonal variation pattern at Laguna Potrok Aike, δ18Olw values

show relatively little interannual and intra-annual isotopic

variations within a range between −3.4 and −3.9 ‰ and re-

main constant with increasing water depth, presumably due

to groundwater recharge and strong wind-driven circulation

in the whole water column (Mayr et al., 2007). δ18Olw val-

ues of lakes and ponds in the southern Patagonian steppe plot

along a local evaporation line, regardless of depth, mixing,

surface area and type, suggesting that isotope composition

of the main source waters (precipitation and groundwater) is

similar for all water bodies and evaporation is a main driver

of the δ18Olw (Mayr et al., 2007).

3 Material and methods

3.1 Material

In 2008 sediment cores were retrieved from two drilling

sites in Laguna Potrok Aike within the framework of the

PASADO project (Ohlendorf et al., 2011; Zolitschka et al.,

2013; Fig. 1b). Sediment samples used in this study are

from the composite profile 5022-2CP of site 2, which has

a composite depth (cd) of 106 m, consisting of undisturbed

pelagic sediments, volcanic tephra layers and mass move-

ment sediments that resulted from lake-internal sediment re-

distribution. The composite profile is divided into five litho-

logical units based on the prevailing sedimentary structures

and frequency of deposits of mass movement (Kliem et al.,

2013b). Mass movement deposits and tephra layers were

removed from the composite profile resulting in an event-

corrected composite depth profile (cd-ec) of 45.8 m (Kliem

et al., 2013b). The sediment section investigated in this study

ranges between ca. 10 and 30 m (cd) or between 9.6 and

21.4 m (cd-ec) and consist of lithological unit B and C-1

(Fig. 3). Both unit B and C-1 mainly comprise pelagic lami-

nated silts intercalated with thin, fine sand and coarse silt lay-

ers originating from mass movement deposits. Pelagic silts

are poorly laminated in unit C-1, which has a greenish and

Figure 3. Age–depth model for the sediment section between 9 and

20 m event-corrected composite depth (cd-ec) from the composite

profile 5022-2CP of Laguna Potrok Aike (see Table 1 for details).

The age–depth model used in the present study is shown as a black

line which is constructed with clam 2.2 applying a smooth spline

with a smoothing level of 0.5 (Blaauw, 2010). Dashed lines rep-

resent the upper and lower boundary of 95 % confidence intervals.

The accepted AMS 14C ages are shown as black diamonds and the

rejected ones in grey. Error bars represent the range of calibrated

ages at 95 % confidence intervals. The previous age–depth model

by Kliem et al. (2013b) is given as a blue line. The red open square

represents the depth of the Reclús R1 tephra. Its 14C age from Mc-

Culloch et al. (2005) is recalibrated with CALIB 7.0 using SHCal13

(Hogg et al., 2013). Error bars are given for 2σ age range. Two

lithological units (see text for details) occurring in the investigating

depth range are shown on the right.

bluish-grey colour spectrum compared to dark- and light-

grey laminations of unit B (Kliem et al., 2013b). A 0.2 m

long sediment section between 20.2 and 20.4 m (cd) has been

newly identified as mass movement deposits and therefore

removed from the event-corrected composite depth profile.

Well-preserved moss fragments occurred frequently in the

sediments. There are mainly three species: Drepanocladus

perplicatus (Amblystegiaceae), Blindia inundata (Seligeri-

aceae) and Vittia pachyloma (Amblystegiaceae) (see Fig. 2

in Zhu et al., 2014). These moss species were all reported as

submerged aquatic species (Ochyra and Lightowlers, 1988;

Hedenäs, 1997; Frahm, 2001). D. perplicatus fragments were

dominant in most sediment samples. Mainly shoots and indi-

vidual leaves were found in the sediments. Some shoots were

preserved with attached leaves, but in many cases leaf lam-

inae were completely eroded before sedimentation and only

costae remained on the central axis of the shoot.

3.2 Age–depth model

An age–depth model based mostly on AMS radiocarbon dat-

ing of aquatic mosses has been previously established for

the entire composite profile 5022-2CP (Kliem et al., 2013b).

To constrain this existing model in the investigated sediment

Clim. Past, 10, 2153–2169, 2014 www.clim-past.net/10/2153/2014/
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Table 1. AMS 14C ages for the modelled event-corrected sediment depth in the range of 9.37–26.48 m (cd-ec) for 5022-2CP of Laguna Potrok

Aike. All 14C ages derive from samples collected in pelagic sediment sections. Ranges of calibrated ages (at 95 % confidence intervals, 2 s)

are the output of age-modelling software clam 2.2 (Blaauw, 2010) applying the SHCal13 calibration curve (Hogg et al., 2013) and smoothed

spline with a smoothing level of 0.5. Accepted 14C ages are shown in bold.

Lab. no.∗ Sediment Event-corrected sediment 14C age Error δ13C C mass Sample description Range of calibrated Median

depth (m cd) depth (m cd-ec) (BP) (±) (‰) (mg) ages (2σ ) probability

Poz-8392a 9.69 9.37 7580 50 −28.3 2.56 Stems of aquatic moss 8203–8421 8355

Poz-48915 10.81 10.35 9390 90 −28.7 1.74 Bulk aquatic moss tissues 10 254–10 784 10 557

AA93659 10.95 10.49 11 379 57 −25.6 – Bulk sediment 13 079–13 292 13 185

AA93660 12.22 11.52 12 200 200 −29.4 – Wood, plant fragments 13 574–14 902 14 115

AA93661 12.99 12.18 14 042 70 −25.3 – Bulk sediment 16 674–17 276 17 000

Poz-5985a 13.04 12.22 8930 50 −18.9 2.28 Tuco-tuco bone 9780–10 188 10 016

AA93662 14.06 12.34 16 101 84 −25.5 – Wood, transparent shell fragments 19 122–19 612 19 378

Poz-48917 14.08 12.36 16 360 90 −29.3 1.18 Bulk aquatic moss tissues 19 476–19 980 19 704

Poz-49760 14.37 12.66 19 380 100 −27.3 1.77 Bulk aquatic moss tissues 22 983– 23 581 23 284

Poz-8548a 14.78 13.00 10 240 60 8.4 3.61 Calcite fraction of bulk sample 11 611–12 067 11 872

Poz-48918 15.07 13.30 17 460 100 −28.5 3.14 Bulk aquatic moss tissues 20 717–21 355 21 026

Poz-49761 15.37 13.60 11 490 60 −25.1 1.50 Bulk aquatic moss tissues 13 147–13 428 13 291

Poz-8396a 15.55 13.78 11 200 60 −30.0 1.69 Stems of aquatic moss 12 831–13 130 13 023

Poz-48919 15.73 13.95 12 050 70 −31.6 1.41 Bulk aquatic moss tissues 13 712–14 089 13 868

Poz-49763 15.87 14.08 10 840 60 −28.8 2.03 Bulk aquatic moss tissues 12 654–12 790 12 711

Poz-48920 15.95 14.18 11 120 70 −33.1 2.97 Bulk aquatic moss tissues 12 771–13 081 12 935

AA93664 16.07 14.30 10 980 140 −29.7 – Wood, seeds, plant fragments 12 663–13 082 12 847

Poz-49764 16.15 14.38 12 040 60 −27.4 1.70 Bulk aquatic moss tissues 13 719–14 054 13 856

Poz-8397a 16.40 14.61 12 490 70 −31.2 1.60 Stems of aquatic moss 14 198–15 001 14 583

Poz-49765 16.42 14.65 12 590 60 −27.4 1.52 Bulk aquatic moss tissues 14 409–15 139 14 844

Poz-5072a 16.48 14.70 12 850 70 −25.8 2.64 Stems of aquatic moss 15 068–15 575 15 267

Poz-49022 18.28 14.73 12 720 70 −29.2 2.43 Bulk aquatic moss tissues 14 753–15 304 15 082

AA93666 18.28 14.73 12 783 64 −27.3 – Plant fragments 14 906–15 415 15 179

Poz-48922 18.40 14.85 13 530 70 −27.6 1.82 Bulk aquatic moss tissues 14 409–15 139 16 235

Poz-5073a 18.51 14.96 13 450 70 −28.7 2.69 Stems of aquatic moss 15 881–16 354 16 132

Poz-48923 18.67 15.11 14 540 80 −29.3 1.58 Bulk aquatic moss tissues 17 450–17 913 17 671

Poz-37017b 18.69 15.13 14 540 70 −27.6 1.56 Stems of aquatic moss 17 465–17 900 17 672

Poz-48925 21.13 15.94 16 150 80 −24.0 1.30 Bulk aquatic moss tissues 19 190–19 662 19 435

Poz-37022b 22.09 16.54 17 460 80 −29.2 1.63 Stems of aquatic moss 20 760–21 317 21 023

AA93669 22.57 17.23 18 850 170 −26.3 – Bulk sediment 22 363–23 080 22 686

Poz-37007b 23.25 17.70 18 700 120 −39.9 0.91 Stems of aquatic moss 22 304–22 852 22 527

AA93670 25.01 18.93 20 600 270 −26.0 – Bulk sediment 24 118–25 442 24 762

Poz-37020b 27.20 19.50 20 490 120 −28.0 1.11 Stems of aquatic moss 24 242–25 045 24 604

Poz-34236bc 36.38 26.48 25 110 180 −25.0 1.45 Stems of aquatic moss 28 713–29 531 29 108

∗ Poz: Poznan Radiocarbon Laboratory; AA: NSF-Arizona AMS Laboratory. a Haberzettl et al. (2007). b Kliem et al. (2013b).
c Not shown in Fig. 3, but serving as connection point with previous age–depth model by Kliem et al. (2013b).

section, 22 additional samples of bulk aquatic moss and other

organic matter were selected from the undisturbed pelagic

sediment sections and sent to the Poznan Radiocarbon Labo-

ratory and the NSF-Arizona AMS Laboratory for AMS 14C

determination (see Table 1 for detailed sample information).

The age–depth model used in the present study (Fig. 3) was

constructed with the software clam 2.2 (Blaauw, 2010), us-

ing the SHCal13 calibration curve (Hogg et al., 2013) and

smoothed spline interpolation with a smoothing level of 0.5.

The modelled depth range is from 9.4 to 26.5 m (cd-ec), in-

cluding the sample Poz-8392 on the top and Poz-34236 on

the bottom serving as connection points with the previous

age–depth model by Kliem et al. (2013b). In total, 34 AMS
14C dates from pelagic sediment sections were available for

the modelled depth range (Table 1, Fig. 3).

There is a strong scatter between calibrated ages and

event-corrected composite depth, particularly between 10

and 13.5 m cd-ec (Fig. 3). In order to obtain a reliable age–

depth model, only the youngest ages were included in the

age–depth model under the assumption that older than ex-

pected 14C ages are the result of admixture of reworked

old organic matter to the young counterparts. The main

difference between the present and the previous age–depth

model by Kliem et al. (2013b) is in the depth range be-

tween 12 and 15 m (cd-ec), where the calibrated ages de-

rived from the present age–depth model are up to 1700 years

younger than in the previous one (Fig. 3). We argue that

the present age model based on more AMS 14C dates tends

to be more reliable in this depth range based on a 1.5 m

thick sediment section consisting of a multi-layered volcanic

tephra bed at the depth from 16.8–18.2 m (cd) correspond-

ing to the event-corrected composite depth of 14.7 m (cd-ec)

(Wastegård et al., 2013). Chemical analyses indicated that

this volcanic tephra is theR1 tephra derived from the volcano

Reclús (Wastegård et al., 2013). Based on high-resolution

dating of 1 mm peat layers immediately beneath the Reclús

tephra layer at two sites at the Strait of Magellan, McCul-

loch et al. (2005) provided a weighted pooled mean age of

12 638± 60 14C years BP for the ReclúsR1 tephra. We recal-

ibrated this 14C age with CALIB 7.0 using SHCal13 (Hogg et

www.clim-past.net/10/2153/2014/ Clim. Past, 10, 2153–2169, 2014



2158 J. Zhu et al.: Climate history of the Southern Hemisphere Westerlies belt

al., 2013) and obtained a 2σ range of calibrated ages between

14 559 and 15 210 cal BP (Fig. 3). Stern (2008) and Sagredo

et al. (2011) reported nearly the same ages. According to the

new age–depth model, the depth of 14.7 m (cd-ec) has an age

of 15 102 cal BP well within the reported age range of the

Reclús R1 tephra, whereas the previous model gives a con-

siderably older age of 16 034 cal BP (Kliem et al., 2013b).

The higher reliability of the present age–depth model is vali-

dated by its consistency with the independently dated tephra

ages. We refer to the refined age–depth model for the com-

posite profile 5022-2CP of site 2 as version 3.1 (v3.1). This

refined age–depth model is composed of 10 previously pub-

lished and 8 new radiocarbon ages for the depth interval from

26.5 to 9.4 m (cd-ec). Outside of this depth interval the age–

depth model is identical with the age–depth model (v3) of

Kliem et al. (2013b).

According to the new age–depth model (v3.1) the inves-

tigated sediment section covers the last glacial–interglacial

transition from 26 000 to 8500 cal BP and ranges from the

LGM to the early Holocene. The temporal boundary between

lithological units B and C-1 is around 17 600 cal BP.

3.3 Laboratory methods

3.3.1 Isolation of moss remains

To acquire as many moss remains as possible, ca. 10 cm3

of sediments from every sample was screened. Each freeze-

dried sediment sample was moistened with deionized wa-

ter, placed on a magnetic stirrer and stirred for 2 h to dis-

aggregate the material. Subsequently, the sample was care-

fully sieved through a 200 µm sieve to obtain the coarse

plant-debris fraction. The sieve fraction (> 200 µm) consists

mainly of subfossil plant fragments such as shoots and leaves

of mosses and remains of vascular plants, which were usu-

ally well preserved. Moss shoots were hand-picked from the

coarse sieve fraction under a binocular microscope. To gain

species-specific moss samples, we tried to pick only shoots

of D. perplicatus. However, due to the similarity of the frag-

ments of D. perplicatus and V. pachyloma and some not eas-

ily identifiable branches without leaves, an admixture of such

moss fragments to the D. perplicatus samples cannot be ruled

out. The remaining plant material in the coarse sieve fraction

(> 200 µm) could contain fragments of B. inundata, V. pachy-

loma and other unidentifiable mosses and individual leaves

of D. perplicatus, as well as remains of aquatic and possibly

terrestrial vascular plants, and is termed “residue” hereafter.

Each moss sample was first treated with a mixture of HCl

and HF (both 10 %) and left for 16 h at room temperature

to completely remove attached carbonates and minerogenic

components. Samples were then rinsed with deionized water

three times to remove reagents and remaining clastic matter

and freeze-dried. The cleaned moss samples were weighed

and homogenized by cutting the moss branches into fine seg-

ments with scissors to avoid loss of fine moss material com-

pared to milling. Bulk OM of moss branches was first anal-

ysed for δ18O and δ13C values, before cellulose extraction

was conducted. HCl-HF treatment of moss tissue prior to cel-

lulose extraction has no effect on the δ18O and δ13C values

of cellulose (Zhu et al., 2014).

3.3.2 Cellulose extraction

Cellulose was extracted from moss shoots and the residue

fraction using the cuprammonium solution (CUAM) method

that has shown high reliability in yielding clean and pure cel-

lulose from freshwater sediments, peat mosses and aquatic

plants (Wissel et al., 2008; Moschen et al., 2009; Zhu et

al., 2014). This method produces pure cellulose by dissolv-

ing and re-precipitating cellulose from whole plant mate-

rial. Samples were first bleached with NaClO2 (7 %) acidi-

fied with concentrated acetic acid (96 %) in a water bath for

10 h at 60 ◦C. The residual material was washed two times

with hot deionized water (∼ 70 ◦C) to remove the reagents

and freeze-dried. The dry sample was mixed with ca. 30 mL

of CUAM solution (15 g L−1) while placed in a dark room

and stirred on a magnetic stirrer for 6 h and then left for a

further 10 h at room temperature to completely dissolve the

cellulose. To separate the not dissolved non-cellulose mate-

rial, the cellulose solution was carefully decanted into a cen-

trifuge tube and treated with 3 mL of H2SO4 (20 %) for cellu-

lose precipitation. The white precipitated cellulose was then

rinsed three times with deionized water and freeze-dried.

3.3.3 Stable isotope measurements

For carbon isotope analyses, an amount of moss OM or cel-

lulose equivalent to 100 µg of carbon was weighed into tin

capsules. Samples were combusted at 1020 ◦C using an el-

emental analyser (Thermo Scientific Flash 2000) interfaced

online with an isotope ratio mass spectrometer (Thermo Sci-

entific Delta V Advantage). Carbon content was determined

by peak integration of mass-to-charge ratio (m/z) 44, 45

and 46 and calibrated against elemental standards. For oxy-

gen isotope analyses, an amount of moss OM or cellulose

providing 125 µg of oxygen was weighed into silver cap-

sules. Immediately prior to oxygen isotope analysis, samples

were placed overnight (16 h) in a vacuum drier at 100 ◦C

to avoid analytical bias by adsorbed air moisture. Vacuum-

dried samples were then pyrolysed at 1450 ◦C in a high-

temperature pyrolysis analyser (HTO, HEKAtech) and mea-

sured online with a coupled isotope ratio mass spectrome-

ter (Micromass IsoPrime). Oxygen content was determined

by peak integration of m/z 28, 29 and 30, and calibrated

against elemental standards. Each sample was measured at

least two times for both carbon and oxygen isotopes. Iso-

tope ratios are expressed as δ values in per mil (‰), where

δ = (Rsample /Rstandard−1)×1000, with Rsample and Rstandard

as isotope ratios (13C / 12C, 18O / 16O) of samples and stan-

dards, respectively. Isotope values are reported on the VPDB
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scale for carbon and the VSMOW scale for oxygen. Lab-

oratory standards were inserted between samples to mon-

itor the performance of the instrument and for calibration

purposes. The standards USGS24 (−16.05 ‰), IAEA-CH-

6 (−10.45 ‰) and IAEA-CH-7 (−32.15 ‰) were used for

calibration of carbon isotope ratios of laboratory standards

and samples, respectively (Coplen et al., 2006). The benzoic

acid standards IAEA-601 (23.14± 0.19 ‰) and IAEA-602

(71.28± 0.36 ‰) (Brand et al., 2009) were used for cali-

bration of oxygen isotope ratios of laboratory standards and

samples, respectively. The overall precision of replicate anal-

yses was better than ±0.1 ‰ for carbon and ±0.3 ‰ for

oxygen isotope ratios. Ratios of carbon and oxygen con-

tent (C /O) of moss OM and cellulose were calculated on

a weight base.

3.4 Reconstructed lake water δ18O values

Modern field calibration data sets published in Zhu et

al. (2014) were used to reconstruct the δ18Olw values from

both bulk OM (δ18OOM) and cellulose (δ18Ocell) of sub-

merged aquatic mosses as well as the residue fraction ap-

plying the following equations:

δ18Olw = 1.156 (±0.036)δ18OOM− 32.2 (±0.8), (1)

δ18Olw = 1.028 (±0.021)δ18Ocell− 30.4 (±0.5). (2)

The uncertainty of the prediction (standard error of the re-

gression) is 0.4 ‰ for Eq. (1) and 0.3 ‰ for Eq. (2) (Zhu

et al., 2014). The application of both equations in the in-

vestigation period is primarily based on the assumption that

biochemical oxygen isotope fractionation during cellulose

synthesis is almost constant under different temperatures.

However, Sternberg and Ellsworth (2011) proposed a tem-

perature effect on cellulose oxygen isotope enrichment rela-

tive to source water, especially at temperatures below 20 ◦C.

Accordingly, isotopic enrichment would increase with de-

creased temperature and the mean of increased enrichment

between 4 and 15 ◦C is about 2 ‰ (Sternberg and Ellsworth,

2011). This value is, however, derived by summarizing vari-

ous field studies under different analytical conditions and has

not been further confirmed by the latest modern calibration

data set from sites in southern Patagonia (Mayr et al., 2013),

which shows no apparent effect of host water temperature on

the fractionation between aquatic cellulose and host waters.

Samples with sufficient moss cellulose are much less than

those providing sufficient moss OM and residue cellulose.

Due to the potential of contamination, the quality of re-

constructed δ18Olw values from moss OM and residue cel-

lulose needs to be critically evaluated (Zhu et al., 2014).

For this reason, we have compared the δ18Olw values re-

constructed from moss OM and residue cellulose with those

from moss cellulose by using the approach suggested by Zhu

et al. (2014).

The effect of ocean water δ18O changes on the iso-

topic composition of meteoric water during the last glacial–

interglacial transition had to be accounted for. Thus, recon-

structed ocean water δ18O values (Lea et al., 2002) were

used to correct the effect of ocean water changes on the La-

guna Potrok Aike lake water isotopic composition. The data

of Lea et al. (2002) were interpolated with a cubic spline

function and subtracted from the reconstructed δ18Olw val-

ues (Mayr et al., 2013). In the following, the reconstructed

δ18Olw corrected for changes in ocean water δ18O is denoted

as δ18Olw−corr.

4 Results

The dry weight of subfossil aquatic moss remains in sedi-

ment samples (∼ 10 cm3) varied from complete absence to

more than 100 mg (Fig. 4). This large range expresses the

variability of moss burial rate within the sedimentary record

likely controlled by the abundance of moss habitats in the

lake, the vicinity of these habitats to the coring location,

the sedimentation rate and the redistribution processes by

lake-internal currents. The occurrence of moss organic mat-

ter is more discontinuous in lithological unit C-1 than in

unit B. Moreover, a trend of reduced moss remains in the

sediments towards younger sections, particularly above 16 m

(cd), was observed. The C /O ratios of subfossil bulk moss

OM, moss cellulose and residue cellulose have mean values

of 1.17 (±0.05, n= 362), 0.88 (±0.02, n= 144) and 0.90

(±0.02, n= 185), respectively. These values are consistent

with the mean value of 1.17 determined for bulk OM of

modern aquatic moss samples and the stoichiometrically ex-

pected C /O ratio of 0.90 for cellulose (Wissel et al., 2008;

Zhu et al., 2014), which confirms the purity of extracted

cellulose and good preservation of moss remains in Laguna

Potrok Aike sediments.

The δ18O values range from 22.1 to 25.4 ‰ for bulk moss

OM, from 22.8 to 26.7 ‰ for moss cellulose and from 23.2

to 26.9 ‰ for residue cellulose (Fig. 5). The δ18O values are

generally more 18O-enriched for samples in lithological unit

B than for those in unit C-1. The 18O enrichment in unit B

is more pronounced with up to 2.5 ‰ for both cellulose frac-

tions than with around 1 ‰ for bulk moss OM. A δ18O in-

crease occurs in the transition between the two lithological

units within a composite depth range from 22 to 16 m (cd).

Between 30 and 22 m (cd) and between 16 and 10 m (cd), no

general trend is observed for the δ18O values of all three frac-

tions, but short-term fluctuations of up to 2 ‰ occur (Fig. 5).

The amount of moss material preserved in each sample had

no effect on the observed δ18O of moss OM (Fig. 6) and any

bias due to material availability can thus be excluded. The

δ18O values of samples from mass movement deposits and

volcanic tephra layers are similar to those from the pelagic

sediment sections and thus confirm their same lake-internal

origin. For further interpretations and reconstructions, the

samples from mass movement deposits are excluded.
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Figure 4. Weighed dry mass of subfossil aquatic moss remains

hand-picked from sediment samples within the investigated com-

posite depth range of 5022-2CP of Laguna Potrok Aike. Vertical

grey bars represent mass movement deposits and volcanic ash lay-

ers. Two lithological units (see text for details) occurring in the in-

vestigating depth range are shown at the top of the figure. Note that

the y axis is in log scale.

Quality assessment shows that δ18Olw−corr values inferred

from moss OM and residue cellulose are commonly paral-

lel to the one-to-one moss cellulose line (Fig. 7) and thus

confirm the validity of these two fractions for lake water

inferences (Zhu et al., 2014). Nevertheless, some samples

from lithological unit C-1 show around 1 ‰ more positive

δ18Olw−corr values inferred from bulk moss OM compared to

the moss cellulose reference line (1 : 1), while more positive

δ18Olw−corr values inferred from residue cellulose are found

for a couple of samples from lithological unit B. In terms

of δ13C values, bulk moss OM generally follows the moss

cellulose reference line with an almost constant depletion.

However, a marked bias towards more 13C-enriched values

is observed for the samples of residue cellulose from litho-

logical unit B, which indicates the presence of the remains of

aquatic vascular plants in the residue fraction. According to

Fig. 7 and Zhu et al. (2014), the observed positive δ13C bias

range of 2–4 ‰ suggests a 10–20 % contribution of aquatic

vascular plants to the residue fraction, which results, how-

ever, only in a positive δ18O bias of less than 0.2 ‰, which

is well within the analytical uncertainty. Therefore, it is reli-

able to use the residue cellulose for an auxiliary δ18Olw re-

construction in the present study.

A composite δ18Olw−corr record based on aquatic moss

shoots is constructed by the combination of bulk moss OM

and moss cellulose applying moving-average smoothing with

a 500-year window (Fig. 8). The composite δ18Olw−corr

record documents a mean δ18Olw−corr value of ca. −6.5 ‰

between 26 000 and 21 000 cal BP (Fig. 8). Subsequently,

a δ18Olw−corr decrease of ca. 1 ‰ occurred between 21 000

and 17 600 cal BP and the minimum of the complete record

of −7.5 ‰ was reached. From 17 600 to 12 800 cal BP,

δ18Olw−corr strongly increased by nearly 3 ‰ interrupted

by a millennial period with declining values of up to ca.

0.7 ‰ beginning at around 15 600 cal BP. Afterwards, the

δ18Olw−corr values appeared to be subjected to millennial

Figure 5. δ18O values of all measured samples within the investi-

gated composite depth range of 5022-2CP of Laguna Potrok Aike.

Bulk aquatic moss organic matter (OM) is represented by open di-

amonds, aquatic moss cellulose by closed circles and residue cellu-

lose by open circles. Standard deviations are shown as bars. Vertical

grey bars represent mass movement sediment sections and volcanic

ash layers. Two lithological units (see text for details) occurring in

the investigating depth range are shown at the top of the figure.

scale fluctuations and reached ultimately close to −3 ‰ in

the early Holocene, similar to the present-day values (Fig. 8).

5 Discussion

5.1 Factors controlling lake water δ18O of

Laguna Potrok Aike

Variations in δ18Olw are controlled by changes in the iso-

tope composition of input waters (precipitation, surface in-

flow and groundwater inflow) and changes in the magnitude

of subsequent evaporative 18O enrichment (Edwards et al.,

2004). It has been found that long-term temporal isotopic

variation in precipitation at middle and high latitudes closely

follows long-term changes in mean annual air temperature

(Rozanski et al., 1992; Teranes and McKenzie, 2001; Dar-

ling et al., 2005). Other than temperature change, δ18O vari-

ations of precipitation can, however, also arise from changes

in the direction of air masses bringing moisture to southern

Patagonia. Precipitation brought from easterly directions is

more enriched in heavy isotopes than those brought by west-

erly winds. The mean δ18Op of the former and the latter

is −8 and −15 ‰, respectively (Mayr et al., 2007). Thus,

within a longer period with increasing air temperature and

more frequent easterlies, the δ18Op and, in turn, δ18O of in-

flow and δ18Olw could shift to more positive values. In ad-

dition, δ18Olw of lakes in semi-arid southern Patagonia are

subjected to strong modification by evaporation, based on the

fact that dry, extremely windy and highly evaporative condi-

tions dominate the leeward side of the southern Andes (Gar-

reaud et al., 2013). Today, the mean δ18O of inflow (precip-

itation and groundwater) of Laguna Potrok Aike is around

−13 ‰, while δ18Olw values have a range between −3 and
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Figure 6. Relationship between dry mass of hand-picked Drepan-

ocladus perplicatus and δ18O values of moss organic matter for

samples within the composite depth between 10 and 16 m. Note that

the x axis is in log scale.

−4 ‰ (Mayr et al., 2007), indicating high evaporative 18O

enrichment of more than 9 ‰ relative to meteoric waters.

In general, the degree of 18O enrichment in through-flow

lakes at a hydrological and isotopic steady state is a func-

tion of the hydrologic balance, i.e. the ratio of evaporation

to inflow (E / I) and relative humidity (Gat, 2010). Accord-

ingly, low relative humidity and high E / I, as exemplified by

increased evaporation and reduced inflow, can cause strong
18O enrichment of lake water. However, under non-steady-

state conditions a similar effect could also be induced by

a marked increase of the lake water residence time as a re-

sult of reduced outflow rates. Presently, relative humidity at

Laguna Potrok Aike has an annual average of about 65 %

(Ohlendorf et al., 2013) and the calculated E / I based on iso-

tope modelling is around 0.6 (Mayr et al., 2007). Any sub-

stantial changes in factors controlling evaporation and rela-

tive humidity as well as lake water residence time and iso-

topic composition of meteoric water during the glacial and

the last deglaciation would play a significant role in deter-

mining δ18Olw values of Laguna Potrok Aike.

5.2 δ18Olw−corr of the full glacial

(26 000–21 000 cal BP)

Understanding the initial δ18Olw−corr under the full glacial

conditions is crucial for the interpretation of the entire record.

The overall amplitude observed for δ18Olw−corr is about

3.5 ‰ (Fig. 8). This amplitude is smaller than probably ex-

pected for the last glacial–interglacial transition with dra-

matic changes in climatic conditions. δ18Olw−corr of the

glacial period (26 000–21 000 cal BP) seems to be unexpect-

edly enriched compared to the modern system under strong

evaporation conditions (Mayr et al., 2007). Zhu et al. (2014)

showed that the δ18Olw values reconstructed from aquatic

moss shoots are not affected by decomposition effects, which

potentially could mask the original signal. To account for the

glacial δ18Olw−corr, which is more enriched than expected,

Figure 7. (a) Reconstructed lake-water δ18O (δ18Olw−corr) from

bulk aquatic moss organic matter (OM) (diamonds) and residue

cellulose (circles) in relation to δ18Olw−corr values reconstructed

from aquatic moss cellulose. Samples from the sediment sections

of mass movement deposits and tephra layers are excluded. Sam-

ples from lithological unit B and C-1 are shown in open and closed

symbols, respectively. The one-to-one line of δ18Olw−corr values

reconstructed from aquatic moss cellulose is presented as a black

line. (b) Same as (a), but for δ13C values. The lower and upper

limits of the one-to-one line in (a) are presented as dashed lines ac-

cording to the standard error of regression for modern calibration

data set (Zhu et al., 2014). Standard deviations of individual values

are given as bars in (a) and (b).

two alternative scenarios with either (i) a markedly 18O-

depleted inflow or (ii) a moderately changed δ18O inflow

compared to modern inflow into Laguna Potrok Aike are dis-

cussed.

δ18O of meteoric water and groundwater markedly

lower than present

All estimates of regional temperatures in southern Patago-

nia indicate a pronounced decrease during the last glacial.

Alkenone-derived sea-surface temperatures (SST) from ma-

rine sediment cores off the Chilean coast (Fig. 9f) indi-

cate lower SSTs by ca. 6 ◦C for the last glacial relative to

the present (Lamy et al., 2007; Caniupan et al., 2011). For

the South American continent, lower air temperatures by 8–

10 ◦C during the LGM than today have been inferred from

coupled ocean–atmosphere simulations (Rojas et al., 2009).

Furthermore, Trombotto (2002) suggested a lowering of the

mean annual air temperature of at least 14 ◦C in southern

Patagonia during the LGM based on the presence of ice-

wedge casts.

As discussed in Sect. 5.1, δ18Op is positively correlated

with surface air temperature. A mean spatial gradient of

δ18Op with surface air temperature of 0.53 ‰ per ◦C (Gourcy

et al., 2005) or 0.58 ‰ per ◦C (Rozanski et al., 1993) has

been reported. On the temporal scale, an average δ18Op-

temperature coefficient of about 0.6 ‰ per ◦C is observed

at mid- and high latitudes (Rozanski et al., 1992). According

to this relation, distinctly lowered temperatures would cause

a strong 18O depletion of precipitation of the order of 6 ‰
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Figure 8. Isotopic record of reconstructed lake-water δ18O

(δ18Olw−corr) from bulk aquatic moss organic matter (OM), aquatic

moss cellulose and residue cellulose during the last glacial–

interglacial transition period. Samples from the sediment sections of

mass movement deposits and tephra layers are excluded. Coloured

lines represent the moving average smoothing using a 500-year win-

dow (red: smoothing of average δ18Olw−corr of composite aquatic

moss record combining moss OM with moss cellulose; pale red:

smoothing of δ18Olw−corr of residue cellulose). Discontinuity prior

to 17 600 cal BP is caused by insufficient moss material.

in southern Patagonia during the full glacial compared to the

present. If the groundwater flowing into Laguna Potrok Aike

is mainly recharged by regional precipitation, the strong 18O

depletion of glacial precipitation would also have a direct im-

pact on the δ18O of inflow. Under these circumstances, δ18O

of surface and subsurface inflow into Laguna Potrok Aike

during the full glacial would be about−19 ‰ (present value:

−13 ‰) assuming that the balance of precipitation from the

Pacific and Atlantic was similar to today. This large 18O de-

pletion of inflow would result in an 18O enrichment of about

12 ‰ between δ18Olw−corr (−6.5 ‰) recorded and δ18O of

inflow (−19 ‰) during the full glacial compared to a mod-

ern 18O enrichment of about 9 ‰ (Mayr et al., 2007).

Today, the climate in the southeastern Patagonian steppe

is characterized by strong westerly winds which are adia-

batically warmed and dried while passing the Andes, lead-

ing to semi-arid and highly evaporative conditions in east-

ern Patagonia (Garreaud et al., 2013) that explain the mod-

ern 18O enrichment of lake water. Enrichment during the full

glacial might also have been caused by evaporation induced

by a similar föhn-wind effect. It might have been strength-

ened by the thick Patagonian Ice Sheet covering the southern

Andes, which might have increased adiabatic warming and

drying of subsiding air masses coming from westerly direc-

tions. This föhn-wind effect could be very pronounced in a

cold and dry environment during the glacial, which is corrob-

orated by palynological studies of Laguna Potrok Aike sed-

iments (Recasens et al., 2012). At Lake Hoare in the mod-

ern McMurdo Dry Valley of Antarctica, strong and dry re-

gional föhn winds heat adiabatically by about 20 ◦C (from

−30 to −10 ◦C) upon their descent from the surrounding ice

plateau, even in sunless austral winters (Clow et al., 1988).

At a mean annual temperature of less than−15 ◦C in the Dry

Valley region, relative humidity averages to only 0.54 and

the annual sublimation (ablation) rate of surface ice of lakes

reaches about 300 mm (Clow et al., 1988; Chinn, 1993). In a

similar way, strong and extremely dry downslope föhn winds

passing the ice-covered southern Andes could have resulted

in higher-than-present evaporation and sublimation rates dur-

ing the glacial. Thus, isotopic enrichment of lake water dur-

ing the full glacial could have been stronger than expected.

This interpretation is largely based on the predominance of

the SHW at the latitude of Laguna Potrok Aike (52◦ S) during

the glacial. The Patagonian Ice Sheet covering the southern

Andes from 38 to 56◦ S during the LGM (Glasser et al., 2008)

implies the existence of westerly winds within this latitudi-

nal belt, because a positive mass balance of modern glaciers

in the southern Andes is favoured by low summer tempera-

ture and high precipitation, and the latter is, in turn, largely

related to the westerly winds from the Pacific (Schneider et

al., 2003). In fact, palaeoclimate studies from sites between

30 and 45◦ S in southwestern South America have implied

much higher precipitation during the glacial compared to the

present (e.g. Heusser, 1989; Lamy et al., 1999; Moreno et al.,

1999; Valero-Garcés et al., 2005). Taken together, that would

imply a broader latitudinal extension of the SHW belt during

the glacial compared to the present.

(ii) Moderate change in δ18O of source water

compared to the present

If the SHW were located in a more equatorward position

(Williams and Bryan, 2006), the balance between westerly

and easterly winds would shift towards more easterly winds,

which consequently could have dominated in southern Patag-

onia during the glacial. Assuming almost 100 % precipita-

tion moisture from the Atlantic, δ18Op could be roughly esti-

mated for about −14 ‰ (see Sect. 5.1: present value easter-

lies −8 ‰). In this case, δ18O of inflow into Laguna Potrok

Aike would be more positive than the estimation (−19 ‰) in

scenario (i) and the magnitude of 18O enrichment would be

smaller accordingly.

If the glacial temperature in southern Patagonia was low-

ered by more than 10 ◦C (cf. discussion in scenario (i)), the

local mean annual temperature at Laguna Potrok Aike would

be lower than −3 ◦C during the glacial and the formation

of permafrost would be fostered. The occurrence of a relict

sand wedge dated to 35± 3 ka in the Laguna Potrok Aike

catchment area (Kliem et al., 2013a) indeed suggests per-

mafrost conditions during the glacial around the lake. Deep

permafrost during the glacial would have major impacts on

the hydrological and isotopic water balance of Laguna Potrok

Aike. Groundwater recharge from meteoric water may have

been strongly reduced due to impervious permafrost layers.

Hence, any isotopic change in the precipitation may not have

been fully transmitted into the groundwater. Decreased pre-

cipitation and accordingly limited surface and subsurface in-

flows during the full glacial would also generally make a

smaller contribution to the lake water budget than today.

Thus, the expected large negative shift in δ18O of inflow, as
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discussed in scenario (i), may not have occurred. In addi-

tion, deep permafrost could have largely prohibited the ex-

change between the groundwater and the lake water body

(subsurface in- and outflow), thus converting Laguna Potrok

Aike into a closed lake system with extremely prolonged lake

water residence time under non-overflow conditions. Under

these circumstances, even small evaporative isotopic enrich-

ment effects could sum up to considerable cumulative 18O

enrichment of lake water.

In the absence of any further knowledge on key parame-

ters determining the isotopic water balance of Laguna Potrok

Aike, especially relative humidity and isotopic composition

of atmospheric moisture and considering the occurrence of

permafrost, it seems more likely that the δ18O value of source

water was not as negative as discussed in scenario (i), mainly

due to a shift in the moisture source area, and that prolonged

lake water residence time led to further cumulative 18O en-

richment of lake water. Scenario (ii) is thus preferred for

explaining the observed glacial δ18Olw−corr values. Accord-

ingly, the factor of SHW wind-driven evaporation would not

be a determinant for the lake water balance, which is con-

sistent with the hypothesis of an equatorward shift of 7–

10◦ latitude of the SHW belt during the LGM (Toggweiler

et al., 2006). However, the changes in strength and latitudi-

nal position of the SHW during the LGM relative to today

are still in an open debate, as a consequence of uncertain-

ties in modelling results (Chavaillaz et al., 2013; Pollock and

Bush, 2013; Rojas, 2013; Sime et al., 2013) and ambiguities

in proxy interpretations (Kohfeld et al., 2013).

Besides several other important factors, this interpretation

is conceptually based on the modern spatial temperature–

δ18O-precipitation relation of the mid-latitudes (Kohn and

Welker, 2005) and its stationarity in time to explain temporal

δ18O variations. Several studies with isotope-enabled general

circulation models (GCM) confirm this principle (Schmidt

et al, 2007), even for the large climatic changes during the

last glacial–interglacial cycle (Jouzel et al., 2000, 2003; Risi

et al., 2010). In these studies, comparison of modern and

LGM scenarios suggest temporal slopes similar to the spatial

slopes with differences attributed, for example, to changes

in seasonal temperatures (Lee et al., 2008) or to model forc-

ings (Risi et al., 2010). Interestingly, in their GCM study,

Jouzel et al. (2000) also derived a difference of about 3 ‰ for

δ18O in precipitation between their modern and LGM zonal

means at 52◦ S. An alteration in δ18O precipitation of this

order of magnitude would be consistent with the glacial to

early Holocene change in δ18Olw−corr observed in our study

at Laguna Potrok Aike and might thus explain the change in

lake water isotopic composition during deglaciation. How-

ever, such a comparably small LGM to modern change in

δ18O precipitation would evidently contradict the stationar-

ity of the temperature–δ18O-precipitation relation in time or

the temperature change reconstructed for these latitudes in

southern South America (e.g. Rojas et al., 2009). For the

moment, more evidence seems to be in support of a tempo-

Figure 9. Reconstructed lake-water δ18Olw−corr of Laguna Potrok

Aike in comparison to global proxy records. (a) δ18O record from

the WDC in West Antarctica (WAIS Divide Project Members,

2013). (b) δ18O record from EDML of East Antarctica (EPICA

Community Members, 2006). (c) CO2 concentration from Antarc-

tic ice cores (Schmitt et al., 2012). (d) Opal flux of TN057-13-4PC

(53◦ S) in the southern Atlantic (Anderson et al., 2009). (e) Re-

constructed lake-water δ18O (δ18Olw−corr) of Laguna Potrok Aike

in this study, smoothed by a 500-year window (red: smoothing of

average δ18Olw−corr of composite aquatic moss record combining

moss cellulose with moss OM; pale red: smoothing of δ18Olw−corr

of residue cellulose). The ocean water effect during the LGM and

deglaciation has been corrected according to Lea et al. (2002).

(f) Alkenone-derived SST record from the offshore core MD07-

3128 (53◦ S) (Caniupán et al., 2011). (g) δ18O record of Botuverá

Cave (27◦ S) in southern Brazil (indicator of the ITCZ position)

(Wang et al., 2007). (h) Sediment total reflectance from Cariaco

Basin (indicator of the ITCZ position) (Deplazes et al., 2013). Note

the reverse scale of the y axis. (i) δ18O record of NGRIP on GICC05

timescale (Anderson et al., 2006; Rasmussen et al., 2006). ACR:

Antarctic Cold Reversal.
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rally stationary local T / 18O ‰ gradient in precipitation. Ir-

respective of that, palaeogeographical changes (e.g. distance

to the coast), changes in seasonality or changes in atmo-

spheric circulation patterns like in our scenario (ii) could in-

duce additional δ18O source value effects that might mimic

a non-stationarity of the T / 18O ‰ gradient (Sturm et al.,

2010). Our study enables and hopefully stimulates further

studies with regard to the interpretation of δ18O changes in

climate reconstructions and the relevance of local tempera-

ture, changes in seasonality and synoptic atmospheric circu-

lation changes.

5.3 Evolution of δ18Olw−corr and deglaciation history

since 21 000 cal BP

Between 21 000 and 19 500 cal BP, δ18Olw−corr decreased

from the main glacial level of about −6 ‰ towards a level

of around−7.5 ‰ that was probably held until 17 600 cal BP

(Fig. 9e). This depletion by ca. 1.5 ‰ is large concerning the

total amplitude of 3.5 ‰ for the entire record. Despite the

discontinuous record for this time interval, the δ18Olw−corr of

around −7.5 ‰ recorded around 19 000 and at 17 600 cal BP

implies less evaporative enrichment or more 18O-depleted

surface inflow from ice or snow melt during this period. This

is in line with the occurrence of exposed lacustrine sediments

testifying an overflow situation for Laguna Potrok Aike at

around 17 ka by OSL dating (Kliem et al., 2013a). The long-

term SST cooling trend from ∼ 25 000 to 19 000 yr BP from

a marine site (MD07-3128, 53◦ S) close to the Patagonian

Ice Sheet has been interpreted as a locally enhanced SST

cooling induced by the supply of large amounts of meltwa-

ter (Caniupán et al., 2011; Fig. 9f). The timing of a large

SST cooling at around 21 kyr BP (Fig. 9f) is consistent with

the beginning of the distinct depletion of δ18Olw−corr in La-

guna Potrok Aike. About two millennia prior to the onset

of the last deglaciation, the Intertropical Convergence Zone

(ITCZ) also began to shift southward, as indicated by intensi-

fied South America summer monsoon precipitation in south-

ern Brazil and diminished rain falls in the drain regions of

the Cariaco Basin (Wang et al., 2007; Deplazes et al., 2013;

Fig. 9g and h).

A marked and sustained two-step increase of δ18Olw−corr

started from 17 600 cal BP onwards (Fig. 9e) and lasted un-

til 12 800 cal BP with a millennial recession phase begin-

ning at around 15 600 cal BP. The first increase lasted until

15 600 cal BP and signifies the onset of the last deglaciation

in the Patagonian steppe. This increase in δ18Olw−corr was

not included in an earlier data set (Mayr et al., 2013), but

is clearly shown in our new data set, which has also an im-

proved temporal resolution and lower analytical uncertainty.

The initial rise of δ18Olw−corr from around 17 600 cal BP oc-

curred simultaneously with a rapid increase of lacustrine pri-

mary productivity in Laguna Potrok Aike reported by Hahn

et al. (2013) and Zhu et al. (2013). This development at La-

guna Potrok Aike is concurrent with increasing Antarctic

temperatures (Fig. 9a and b), rising atmospheric CO2 con-

centrations (Fig. 9c), an increased upwelling in the South-

ern Ocean (Fig. 9d), warming off the coast of southern Chile

(Fig. 9f) and a large southward displacement of the ITCZ

(Fig. 9g and h). Moreover, glacier fluctuations in southern

Patagonia also suggest rapid and widespread glacier retreat

in the Andes around 18 300–17 500 cal BP (e.g. McCulloch

et al., 2005; Sagredo et al., 2011), coinciding with deglacial

warming.

Climatic warming alone has several effects on the iso-

topic water balance of Laguna Potrok Aike that altogether

would certainly induce a cumulative rise in δ18Olw during

the initial phase of the last deglaciation. Firstly, increasing

air temperature will cause an equivalent change in the iso-

topic composition of meteoric water towards more enriched

isotopic values independent of its origin from the Pacific

or Atlantic. For precipitation moisture from the Pacific, this

effect could be reinforced by a diminishing isotopic rain-

shadow effect due to the receding Patagonian Ice Sheet. Sec-

ondly, rising air temperatures would result in a local moisture

deficit and strengthen temperature-driven evaporation lead-

ing to enhanced 18O enrichment of lake water. Thirdly, thaw-

ing permafrost would facilitate higher groundwater recharge

from regional precipitation. The δ18O of groundwater then

would be closely coupled with δ18Op and affected by cli-

mate warming on the long-term scale. Considering the con-

cept of E / I, the lake is in a non-steady-state condition dur-

ing this phase induced by massive palaeogeographic and

palaeoenvironmental changes, where, according to all con-

siderations, increasing surface air temperature must be an im-

portant driver. It might thus be argued that the first deglacial

rise in δ18Olw−corr lasting two millennia was mainly caused

by rapid deglacial warming in southern Patagonia and the

southern high latitudes (Pendall et al., 2001; Caniupán et al.,

2011; Fig. 9a, b and f). Moreover, more 18O-enriched mois-

ture from the Atlantic could be brought into southern Patag-

onia due to sea-surface warming and a poleward-retreating

sea-ice front in the South Atlantic (Gersonde et al., 2005;

Allen et al, 2011), as the westerly winds were probably

weak. By contrast, according to Toggweiler et al. (2006)

and Denton et al. (2010), the SHW shifted rapidly poleward

at the onset of the last deglaciation. Such a rapid onset of

strong westerly winds would induce a change in the mois-

ture source area and strong evaporation from the lake wa-

ter surface with strong evaporative isotopic enrichment that

would explain the rising δ18Olw−corr as well. However, pre-

vious studies have related the massive abundance of pollen

from the aquatic taxon Myriophyllum (Wille et al., 2007) and

high lacustrine primary productivity (Hahn et al., 2013; Zhu

et al., 2013) during the initial phase of the last deglaciation

to relatively calm wind conditions favouring the flowering

of Myriophyllum and algal blooms in warmer surface waters

and seasonal stratification.

At around 15 600 cal BP, the overall increase in

δ18Olw−corr is reversed during a phase lasting ca. 1000 years
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with declining values. To some extent this period resem-

bles the Antarctic Cold Reversal (ACR), with reduced opal

flux in the Southern Ocean and a halt in the increase of at-

mospheric CO2 concentrations (Fig. 9c and d), but occurs

about 1000 years earlier. Since the independent tephra time

marker Reclús R1 occurring at the end of this phase strongly

supports the reliability of the current age–depth model, the

decrease in δ18Olw−corr began at least before 15 000 cal BP

and cannot be synchronized with the ACR. The decreas-

ing δ18Olw−corr during this phase could probably be ex-

plained by increasing groundwater inflow into Laguna Potrok

Aike or by decreasing evaporation together with a change

in the moisture source area from the Atlantic to the Pacific.

Groundwater through-flow fostered by thawing permafrost

and then supplied with 18O-depleted ice meltwater from the

Andes could have been increased, since 80 % of the ice vol-

ume of the Patagonia Ice Sheet was suggested to be lost dur-

ing the early phase of the last deglaciation (Hulton et al.,

2002; Hubbard et al., 2005). Furthermore, large ice-dammed

proglacial lakes existed about 100 km west of Laguna Potrok

Aike during this phase (e.g. Sagredo et al., 2011; Solari et

al., 2012) and probably provided an additional 18O-depleted

water source. Alternatively, this period might also represent

a change in the dominant driver of the 18O enrichment of

lake water. Around that time the rapid climate warming dur-

ing the initial phase of the last deglaciation is completed

and the further rise in SST is much slower (Fig. 9f). As-

suming that from now on the SHW progressively increased

their influence on the hydrological balance of Laguna Potrok

Aike, a decline in the 18O enrichment of lake water could

have occurred, as the increasing influence of the SHW dur-

ing this period could not yet compensate for the lessening of

temperature-driven evaporation and concomitant changes in

the moisture source value. Only until the SHW exerted their

full influence strengthened wind-driven evaporation would

result in large evaporative 18O enrichment of lake water and

increased δ18Olw−corr values. Thus, it might be argued that

progressively enriched δ18Olw−corr of Laguna Potrok Aike

from about 14 600 cal BP (Fig. 9e) onward is mainly ascribed

to intensified westerly winds and only to a lesser extent to

the further slow temperature rise. This is consistent with a

progressive increase in the intensity of the SHW over the pe-

riod from the ACR until about 13 000 cal BP and a maximum

SHW strength at 52◦ S during the following millennia indi-

cated by Mayr et al. (2013) for the period between 13 400

and 11 300 cal BP. For the period of the early Holocene,

δ18Olw−corr values reconstructed from residue fraction are
18O-enriched by up to 1 ‰ compared to those inferred from

aquatic moss shoots. This 18O enrichment can possibly be at-

tributed to a contamination with terrestrial plant tissues of the

residue fraction. Nevertheless, increasing δ18Olw−corr since

the onset of the early Holocene suggests an elevated E / I ra-

tio, coinciding with the timing of the lake level lowering that

reached a depth of −33 m below the modern one shortly be-

fore 6790 cal BP (Haberzettl et al., 2008; Anselmetti et al.,

2009; Zolitschka et al. 2013).

Like the patterns of changes in the SHW during the LGM,

also the reconstructed development of the SHW during the

last deglaciation and the early Holocene based on sites in

southern Patagonia remains controversial (see Kilian and

Lamy, 2012; Moreno et al., 2012; Villa-Martínez et al.,

2012).

6 Conclusions

This study presents a high-resolution δ18Olw−corr reconstruc-

tion for Laguna Potrok Aike located in semi-arid southern

Patagonia throughout the last glacial–interglacial transition

by using purified bulk OM and extracted cellulose of subfos-

sil submerged aquatic mosses. These data provide a unique

continental proxy record of the environmental development

in the high southern latitudes during this period of fundamen-

tal climatic shifts. The temporal evolution of δ18Olw−corr of

Laguna Potrok Aike is largely controlled by changes in δ18O

of the lake’s source water, surface air temperature and evap-

orative 18O enrichment.

Considering two competing hypotheses, the δ18Olw−corr

record between 26 000 and 21 000 cal BP is currently best

explained by a scenario of weakened glacial SHW compared

to the present. With moisture mainly from easterly directions

and the occurrence of permafrost during the glacial, the in-

flow into the lake would not be as depleted as under a strong

SHW scenario. Reduced interchange between in- and out-

flows and generally decreased inflows would have prolonged

the lake water residence time. Under these circumstances,

higher than expected δ18Olw−corr during this period could be

achieved despite weakened evaporation under glacial condi-

tions. This interpretation is consistent with hypotheses for an

equatorward shift of the SHW during the last glacial.

Between 21 000 and 17 600 cal BP, coinciding with the

timing of a reconstructed lake level overflow of Laguna

Potrok Aike, a large depletion in δ18Olw−corr is observed.

Low δ18Olw−corr together with the overflow situation could

be linked to an increased proportion of 18O-depleted ice or

snow meltwater reaching Laguna Potrok Aike via groundwa-

ter and surface inflows. Such an early meltwater flow could

be caused by an initial amelioration phase preceding the gen-

uine deglaciation.

During the early phase of the last deglaciation from 17 600

to 15 600 cal BP, the δ18Olw−corr record shows a distinct in-

crease. Considering the potential influence of strongly in-

creased air temperature, this development of δ18Olw−corr

can be interpreted as rapid climatic warming resulting in

enhanced temperature-driven evaporation and cumulatively
18O-enriched meteoric water. Thus, an early strengthening

of the SHW is not a necessary prerequisite to explain this

pattern. Nevertheless, our data would also be in line with a

rapid poleward shift of the SHW (Toggweiler et al., 2006)
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immediately after the onset of the last deglaciation, given

wind-driven evaporation as the sole driver of increasing

δ18Olw−corr in Laguna Potrok Aike.

The subsequent period from 15 600 to 14 600 cal BP is

characterized by declining δ18Olw−corr of the Patagonian

steppe lake. This period is not equivalent to the ACR, be-

cause its onset preceded the ACR by at least 500 years ac-

cording to the independent tephra time marker. It seems plau-

sible to interpret this decline as the transition from a mainly

temperature-driven towards a wind-driven evaporative en-

richment of δ18Olw−corr. With the end of the strong temper-

ature rise during the first two millennia and the onset of in-

tensified SHW, δ18Olw−corr would be initially reduced due to

the increased heat export from the continent and the import

of depleted moisture from the Pacific.

After 14 600 cal BP, the δ18Olw−corr record resumed its

strong increase, indicating that from this point on, at the

latest, the intensifying SHW exerted their dominant control

on the lake water balance of Laguna Potrok Aike through

strengthened wind-driven evaporation. The SHW must have

been established at the latitude of Laguna Potrok Aike

(52◦ S) and increased in strength towards the early Holocene

when the maximum was reached.

The overall development of the δ18Olw−corr record during

the last glacial–interglacial transition is consistent with lake

level reconstructions describing an overflow situation prior to

17 000 cal BP and a lowering of the lake level during the early

Holocene, suggesting the development of a strongly evapo-

rative steppe climate in the Laguna Potrok Aike region since

the last deglaciation.

Our interpretation of the δ18Olw−corr record of Laguna

Potrok Aike provides a new view to the highly controversial

topic regarding the patterns of changes in the SHW through-

out the last glacial–interglacial transition. This demonstrates

that the understanding of SHW evolution in the high south-

ern latitudes during this dynamic period is still far away from

a consensus.
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