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Abstract. We investigate both the European Project for Ice
Coring in Antarctica Dronning Maud Land (EDML) and
North Greenland Ice-Core Project (NGRIP) data sets to study
both the time evolution of the so-called Dansgaard–Oeschger
events and the dynamics at longer timescales during the
last glacial period. Empirical mode decomposition (EMD)
is used to extract the proper modes of both the data sets.
It is shown that the time behavior at the typical timescales
of Dansgaard–Oeschger events is captured through signal
reconstructions obtained by summing five EMD modes for
NGRIP and four EMD modes for EDML. The reconstruc-
tions obtained by summing the successive modes can be used
to describe the climate evolution at longer timescales, char-
acterized by intervals in which Dansgaard–Oeschger events
happen and intervals when these are not observed. Using
EMD signal reconstructions and a simple model based on
the one-dimensional Langevin equation, it is argued that the
occurrence of a Dansgaard–Oeschger event can be described
as an excitation of the climate system within the same state,
while the longer timescale behavior appears to be due to tran-
sitions between different climate states. Finally, on the ba-
sis of a cross-correlation analysis performed on EMD recon-
structions, evidence that the Antarctic climate changes lead
those of Greenland by a lag of≈ 3.05 kyr is presented.

1 Introduction

Some time ago, it was suggested that the climate of the
Holocene period is much more variable than believed, be-
ing perhaps part of a millennial-scale pattern (Denton and
Karlén, 1973; O’Brien et al., 1995; Bond et al., 1997). Oxy-
gen isotopeδ18O data from Greenland ice cores (North
Greenland Ice Core Project members, 2004) reveal that the
sub-Milankovitch climate variability presents abrupt temper-
ature fluctuations which dominated the climate in Green-
land between 11 and 74 thousand years before present
(kyr BP). These fluctuations, known as Dansgaard–Oeschger
(DO) events, are characterized by fast warmings, lasting few
decades, with temperature increasing up to 15◦C compared
to glacial values, followed by plateau phases and slow cool-
ings of several centuries.

The origin of DO events is usually attributed to mech-
anisms involving the coupling between the Atlantic Ocean
thermohaline circulation (THC), changes in atmospheric cir-
culation and sea-ice cover (e.g.,Rahmstorf, 2002). THC
bistability (Broecker et al., 1985), internal oscillations in the
THC volume transport (Broecker et al., 1990), and latitude
shifts of oceanic convection (Rahmstorf, 1994) are some of
the most popular ideas developed in this context. Another
type of abrupt climate change found in paleoclimatic records
is represented by the so-called Heinrich events (Heinrich,
1988). These are cooling events which are recorded in North
Atlantic Ocean sediments and are characterized by vari-
able spacings of several thousand years. Heinrich events are
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associated with massive iceberg releases from the Lauren-
tide ice sheet into the North Atlantic (e.g.,Bond et al., 1992;
Broecker, 1994). Some relations between DO and Heinrich
events have been highlighted in previous works (e.g.,Bond
et al., 1992; Rahmstorf, 2002).

Recurrent events known as Antarctic Isotope Maxima
(AIM), less pronounced than DO, have been recognized
also in Antarctic records, even if they are characterized by
much more gradual warming and cooling with respect to DO
(EPICA-members, 2004). Evidence has been presented, in
previous works, in support of both synchronous evolution
between north and south (e.g.,Bender et al., 1994) and the
existence of systematic lags between Antarctica and Green-
land warming trends, with the first leading the second by 1–
2.5 kyr (Blunier et al., 1998). This findings have been dis-
cussed in several works in the framework of the interhemi-
spheric coupling. According to the classical bipolar seesaw
hypothesis (Broecker, 1998; Stocker, 1998), an antiphase re-
lation should exist between north and south. However, it was
shown more recently that thermal bipolar seesaw models, ob-
tained by introducing the effect of a thermal reservoir, are
able to reproduce much of the variability observed in ice core
records (Stocker et al., 2003; Barker et al., 2011).

The claimed roughly periodic, non-sinusoidal character of
DO events, with a basic period of aboutT ' 1450–1500 yr,
has been questioned on the basis of the fact that a null ran-
dom hypothesis for these events cannot be fully rejected
(Ditlevsen et al., 2007; Schulz, 2002; Peavoy and Franzke,
2010). This is obviously due to the fact that the criteria used
for a definition of DO events cannot be firmly established.
The usual numbered DO events were firstly determined visu-
ally (Dansgaard et al., 1993), but when different definitions
are used, some events are excluded from the list or addi-
tional events are included, thus changing the basic periodicity
(Ditlevsen et al., 2007; Schulz, 2002; Rahmstorf, 2003; Al-
ley et al., 2001; Ditlevsen et al., 2005; Bond et al., 1999). For
example,Schulz(2002) showed that the basic cycle is deter-
mined solely by DO events 5, 6, and 7, even if a fundamental
period of about 1470 years seems to control the timing of the
onset of the events. On the other hand, different periodicities
in the range 1–2 kyr have been found from deep-sea sediment
cores in the sub-polar North Atlantic (Bond et al., 1999). Of
course, the main problem comes from the non-stationarity of
the oxygen isotope data sets (Ditlevsen et al., 2007; Schulz,
2002), and advanced signal processing tools turned out to be
useful to characterize the observed climatic variability (e.g.,
Solé et al., 2007b).

In this paper, we present a study of climate variability
in Antarctica and Greenland, based on the analysis of two
data sets coming from the European Project for Ice Cor-
ing in Antarctica (EPICA) and North Greenland Ice-Core
Project (NGRIP). The empirical mode decomposition tech-
nique (EMD) is used to recognize the dominant variability
patterns and characterize the climate transitions which can
be associated with DO events and longer timescale changes.

A cross-correlation analysis is also performed on EMD re-
constructions with the aim of identifying the existence of
correlation lags at different timescales between the two sig-
nals. The paper is organized as follows. Section2 is devoted
to the description of the data sets, the EMD technique and
the results of its application on the time series under con-
sideration. The potential analysis and the characterization
of climate transitions are illustrated in Sect.3. The cross-
correlation analysis and the results about north–south asyn-
chrony are described in Sect.4. Discussion and conclusions
are given in Sect.5.

2 Data sets and empirical mode decomposition analysis

2.1 Data sets

The EPICA data set provides a record of the oxygen iso-
topeδ18O from the EPICA Dronning Maud Land (EDML)
Ice Core (75.00◦ S, 0.07◦ E; 2892 m a.s.l.) covering the pe-
riod 0–150 kyr BP (EPICA-members, 2006, 2010). Data for
the Northern Hemisphere come from the NGRIP project
(75.10◦ N, 42.32◦ W; 2917 m elevation) and extend back to
123 kyr BP (North Greenland Ice Core Project members,
2004). We consider here the interval 20–120 kyr BP for both
the data sets, since this is the interval in which significant
temperature changes, which are the focus of the present
work, are observed (see Fig.1). Both the data sets are syn-
chronized using the AICC2012 age scale (Veres et al., 2013;
Bazin et al., 2013).

2.2 Empirical mode decomposition

To identify the main periodicities and their amplitudes, we
applied the empirical mode decomposition (EMD), a tech-
nique designed to investigate non-stationary data (Huang
et al., 1998). The EMD has been extensively and success-
fully used in different fields (Cummings et al., 2004; Ter-
radas et al., 2004; Franzke, 2009; Vecchio et al., 2010a, b,
2012; Capparelli et al., 2011). In the context of paleoclimatic
studies, the EMD was used bySolé et al.(2007a) to investi-
gate the oscillation patterns in GRIP, Vostok and EPICA time
series of temperature proxies.

In the present work, the EDML and NGRIPδ18O time
series are decomposed, by means of the EMD, into a finite
numberm of oscillating intrinsic mode functions (IMFs) as

δ18O =

m−1∑
j=0

Cj (t) + rm(t) . (1)

The functional form of the IMFs,Cj (t), is not given a priori,
but obtained from the data through the algorithm developed
by Huang et al.(1998). As a first step, the local extrema,
minima and maxima, are identified in the raw dataδ18O. The
local extrema are interpolated by means of cubic splines to
obtain the envelopes of the maxima and minima. Then the
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Fig. 1. δ18O data for the EDML (upper panel) and NGRIP (lower
panel) datasets in the period 20− 120 kyr BP

at any point, it represents an IMF. If the conditions above are
not fulfilled, the described procedure is repeated on the h1(t)
time series, and h11(t) = h1(t)−m11(t), where m11(t) is the
mean of the new envelopes, is calculated. This process is iter-
ated until, after s times, h1s(t) fulfils the IMF properties. To165

avoid a loss of information about amplitude and frequency
modulations, a criterion to stop the above described proce-
dure has been proposed (Huang et al., 1998) by defining

σ =

N∑
t=0

[
|h1(s−1)(t)−h1s(t)|2

h2
1(s−1)(t)

]
, (2)

calculated between two consecutive iterations. The itera-170

tions are stopped when σ is smaller than a threshold σth,
which is typically fixed at ' 0.3 (Huang et al., 1998). When
the first IMF C1(t) is obtained, the “first residue” r1(t) =
δ18O−C1(t) is calculated and processed in the same way as
previously explained. A new IMF C2(t) and a second residue175

r2(t) are then obtained. This procedure is carried on until
Cs or rs are almost constant or when the residue rs(t) is
monotonic. As a result of this method, the original signal is
decomposed into m empirical modes, ordered in increasing
characteristic time scale, and a residue rm(t) which provides180

the mean trend, if any exists, in the dataset. Each Cj(t) rep-
resents a zero mean oscillation Cj(t) =A(t)sinφ(t) (being
φ(t) the instantaneous phase) experiencing modulation both
in amplitude and frequency. Performing the Hilbert trans-
form of each IMF185

C∗
j (t) =

1

π
P

∞∫
−∞

Cj(t
′)

t− t′
dt′ , (3)

where P denotes the Cauchy principal value and C∗
j (t) is

the complex conjugate of Cj(t), the instantaneous phase
can be calculated as φ(t) = arctan[C∗

j (t)/Cj(t)] and the in-
stantaneous frequency ωj(t) and period Tj(t) are given by190

ωj(t) = 2π/Tj(t) = dφj/dt. The characteristic period Tj of
each IMF can be estimated as the time average of Tj(t).

Since the decomposition is local, complete, and orthogo-
nal, the EMD can be used as a filter by reconstructing the
signal through partial sums in Eq. (1) (Huang et al., 1998;195

Cummings et al., 2004; Vecchio et al., 2010a).
The use of empirical EMD functions, characterized by

time-dependent amplitude and phase, allows to overcome
some limitations of Fourier analysis. The latter requires lin-
ear systems and periodic or stationary data, and its appli-200

cation to non-linear, non-stationary data can produce mis-
leading results for the following reasons. (1) The Fourier
uniform harmonic components do not carry local informa-
tion: many components are needed to build up a solution
that corresponds to non-stationary data thus resulting in a205

energy spreading over a wide frequency range. As a conse-
quence the energy-frequency distribution of non-linear and
non-stationary data is not accurate. (2) Fourier spectral anal-
ysis uses linear superposition of sinusoidal functions, thus
several components are mixed together in order to reproduce210

deformed waveforms, local variations, or the fictitious peri-
odic boundary conditions imposed by the analysis. (3) Si-
nusoidal functions are usually far from being eigenfunctions
of the phenomenon under study for non-linear/non-stationary
data. In these situations, when the data are far to be peri-215

odic, linear and stationary, an empirical decomposition such
as the EMD provides a better description of the analysed phe-
nomenon.

The statistical significance of the IMFs with respect to a
white noise can be verified through the test developed by220

Wu and Huang (2004) that is based on the constancy of the
product between the mean square amplitude of each IMF and
the corresponding average period when the EMD is applied
to a white noise series. This allows to derive, for each IMF,
the analytical mean square amplitude spread function for dif-225

ferent confidence levels. Therefore, by comparing the mean
square amplitude of the EMD modes obtained from the data
under analysis to the theoretical spread function, the IMFs
containing information at a given confidence level can be dis-
cerned from purely noisy IMFs.230

Figure 1.δ18O data for the EDML (upper panel) and NGRIP (lower
panel) data sets in the period 20–120 kyr BP

differenceh1(t) betweenδ18O andm1(t), the latter being the
mean between the envelopes of the maxima and minima, is
computed. If this quantity satisfies two conditions – (i) the
number of extrema and zero crossings does not differ by
more than 1 and (ii) the mean value of the envelopes obtained
from the local maxima and minima is zero at any point – it
represents an IMF. If the conditions above are not fulfilled,
the described procedure is repeated on theh1(t) time series,
andh11(t) = h1(t)−m11(t), wherem11(t) is the mean of the
new envelopes, is calculated. This process is iterated until,
after s times,h1s(t) fulfils the IMF properties. To avoid a
loss of information about amplitude and frequency modula-
tions, a criterion to stop the above described procedure has
been proposed (Huang et al., 1998) by defining

σ =

N∑
t=0

[
|h1(s−1)(t) − h1s(t)|

2

h2
1(s−1)(t)

]
, (2)

calculated between two consecutive iterations. The iterations
are stopped whenσ is smaller than a thresholdσth, which
is typically fixed at' 0.3 (Huang et al., 1998). When the
first IMF C1(t) is obtained, the “first residue”r1(t) = δ18O –

C1(t) is calculated and processed in the same way as previ-
ously explained. A new IMFC2(t) and a second residuer2(t)

are then obtained. This procedure is carried on untilCs or rs
is almost constant or when the residuers(t) is monotonic.
As a result of this method, the original signal is decomposed
into m empirical modes, ordered in increasing characteris-
tic timescale, and a residuerm(t) which provides the mean
trend, if any exists, in the data set. EachCj (t) represents a
zero mean oscillationCj (t) = A(t)sinφ(t) (beingφ(t) the
instantaneous phase) experiencing modulation both in am-
plitude and frequency. Performing the Hilbert transform of
each IMF

C∗

j (t) =
1

π
P

∞∫
−∞

Cj (t
′)

t − t ′
dt ′ , (3)

whereP denotes the Cauchy principal value andC∗

j (t) is
the complex conjugate ofCj (t), the instantaneous phase
can be calculated asφ(t) = arctan[C∗

j (t)/Cj (t)], and the in-
stantaneous frequencyωj (t) and periodTj (t) are given by
ωj (t) = 2π/Tj (t) = dφj/dt . The characteristic periodTj of
each IMF can be estimated as the time average ofTj (t).

Since the decomposition is local, complete, and orthogo-
nal, the EMD can be used as a filter by reconstructing the
signal through partial sums in Eq. (1) (Huang et al., 1998;
Cummings et al., 2004; Vecchio et al., 2010a).

The use of empirical EMD functions, characterized by
time-dependent amplitude and phase, allows overcoming
some limitations of Fourier analysis. The latter requires lin-
ear systems and periodic or stationary data, and its applica-
tion to nonlinear, non-stationary data can produce mislead-
ing results for the following reasons. (1) The Fourier uni-
form harmonic components do not carry local information:
many components are needed to build up a solution that
corresponds to non-stationary data – thus resulting in en-
ergy spreading over a wide frequency range. As a conse-
quence the energy–frequency distribution of nonlinear and
non-stationary data is not accurate. (2) Fourier spectral anal-
ysis uses linear superposition of sinusoidal functions; thus
several components are mixed together in order to reproduce
deformed waveforms, local variations, or the fictitious peri-
odic boundary conditions imposed by the analysis. (3) Si-
nusoidal functions are usually far from being eigenfunctions
of the phenomenon under study for nonlinear/non-stationary
data. In these situations, when the data are far to be peri-
odic, linear and stationary, an empirical decomposition such
as the EMD provides a better description of the analyzed phe-
nomenon.

The statistical significance of the IMFs with respect to
white noise can be verified through the test developed by
Wu and Huang(2004) that is based on the constancy of the
product between the mean square amplitude of each IMF and
the corresponding average period when the EMD is applied
to a white noise series. This allows the derivation, for each
IMF, of the analytical mean square amplitude spread function
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Table 1.Characteristic periods of the significant IMFs obtained for
the EDML and NGRIP data sets through the EMD. Errors are esti-
mated as standard deviations of the instantaneous periods. The pe-
riod T16 calculated for thej = 16 NGRIP mode is not reported as
it is not sufficiently shorter than the time series length, although the
mode is significant.

j th EMD mode Tj (yr) EDML Tj (yr) NGRIP

4 330± 100
5 770± 290 490± 150
6 1300± 460 720± 260
7 1840± 510 1100± 410
8 2700± 630 1570± 640
9 4700± 1500 2400± 1100
10 7400± 2600 3300± 1400
11 10300± 2500 4200± 1700
12 15000± 3300 6000± 2300
13 16400± 4000 7900± 1900
14 30700± 7800 13600± 7900
15 29000± 11000

for different confidence levels. Therefore, by comparing the
mean square amplitude of the EMD modes obtained from
the data under analysis to the theoretical spread function, the
IMFs containing information at a given confidence level can
be discerned from purely noisy IMFs.

2.3 Empirical mode decomposition results

Applying the EMD procedure to the EDML and NGRIP data,
we obtain a set ofm = 15 IMFs for EDML (see Fig.2),
which we denote asC(S)

j (t), and m = 17 IMFs, named

C
(N)
j (t), for NGRIP (see Fig.3). Some IMFs for both data

sets, e.g.,C(S)
5 , C

(S)
6 (t), C

(S)
10 (t), C

(N)
8 (t), C

(N)
9 (t), C

(N)
10 (t),

C
(N)
11 (t), show a “mode mixing” behavior consisting of sig-

nals containing different frequencies or a signal of a simi-
lar timescale residing in different IMFs (Huang et al., 1998).
Mode mixing, a consequence of signal intermittency, is trou-
blesome in signal processing where the main purpose is the
signal cleanliness. However, this effect is not crucial in our
analysis since in the following we will discuss signals ob-
tained through partial sums by adding IMFs ranging in a wide
range of timescales.

The results of the significance test are shown in Fig.4.
In performing the test, it was assumed that the energy of

the IMFsj = 0 comes only from noise, and it is thus assigned
to the 99 % line (Wu and Huang, 2004). The modes which are
above the spread line can be considered significant at 99th
percentile. The significant modes arej = 5–14 andj = 4–
16 for the EDML and NGRIP data respectively.

The characteristic periodsTj are reported in Table1.
The dynamics of the DO events is reconstructed by the

sum of thej = 6–10 NGRIP IMFs (which have characteris-
tic periods between 0.7 kyr and 3.3 kyr). For EDML, using

the same characteristic period range as NGRIP (0.7–3.3 kyr),
the modesj = 5–8 are selected. Therefore the two “short”
timescale reconstructionsNH (t) andSH (t), for NGRIP and
EDML respectively, are defined as

NH (t) =

10∑
j=6

C
(N)
j (t) , (4)

SH (t) =

8∑
j=5

C
(S)
j (t) . (5)

In order to investigate the variability at longer timescales
with respect to those involved in DO events, the modes
j = 11–16 andj = 9–14 are used for NGRIP and EDML
respectively. The corresponding two “long” timescale recon-
structionsNL(t) andSL(t) are thus given by

NL(t) =

16∑
j=11

C
(N)
j (t) , (6)

SL(t) =

14∑
j=9

C
(S)
j (t) . (7)

In Fig. 5 the δ18O original data (black lines), the short
timescale (red lines) and the long timescale (blue lines) re-
constructions are shown for the EDML (upper panel) and
NGRIP (lower panel) data sets.

The results of the EMD decomposition suggest that the
evolution of cooling–warming cycles over the investigated
period can be described in terms of two dynamical processes
occurring on different timescales. A simple model of such a
phenomenology is considered in the next section.

3 Potential analysis

Glacial–interglacial cycles are commonly modeled as tran-
sitions between different climate states (see, e.g.,Paillard,
2001). The same approach has been extended to DO events
that are commonly modeled as a two-state, cold/stadial and
warm/interstadial, system. In the following we apply the
method developed byLivina et al. (2010) to identify the
number of climate states present in both NGRIP and EDML
records. To this purpose, the climate system is described in
terms of a nonlinear system with many dynamical states, and
we assume that transitions among states are triggered by a
stochastic forcing. A very simple model for this is the one-
dimensional Langevin equation (Livina et al., 2010):

dz = −U(z)dt + σdW, (8)

wherez represents, in our case, the oxygen isotopeδ18O,
U(z) is the potential,σ is the noise level andW is a Wiener
process. A stationary solution of Eq. (8) is found whenU(z)

is a polynomial of even order and positive leading coefficient.
The order of the polynomial fixes the number of available
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Fig. 2. IMFs C(S)
j (t) and residue r

(S)
m (t) for the EDML dataset.

states can be evaluated from the data by performing a poly-
nomial fit of the probability density function (pdf) calculated
as

p(z)∼ exp[−2U(z)/σ2] (9)305

representing a stationary solution of the Fokker-Planck equa-
tion

∂p(z, t)

∂t
=

[U(z)p(z, t)]

∂z
+

1

2
σ2 ∂

2p(z, t)

∂z2
. (10)

Equation (9) establishes a one to one correspondence be-
tween the potential and the the pdf of the system so that310

U(z) =−σ2

2
lnpemp(z) , (11)

where pemp(z) is the empirical pdf extracted from data. To
estimate pemp(z) we used the well known Kernel Density
Estimator method (Silverman, 1998; Hall, 1992), described
in Appendix A. This procedure allows to calculate U(z) and315

the corresponding uncertainty from Equation (11).
In order to investigate the time evolution of the DO events,

potentials have been calculated for NH(t), SH(t), NL(t),
SL(t), and reported in Fig. 6. The potentials associated with
NH(t), SH(t) and the corresponding best fits are shown in320

panels a and b respectively. The best fit polynomials are
of 2nd order, thus corresponding to a single well potential.
Therefore, the occurrence of a DO event could not be due to
a transition of the system to a different dynamical state but

Figure 2. IMFs C
(S)
j

(t) and residuer(S)
m (t) for the EDML data set.

states: for example, a second-order polynomial corresponds
to a system with single-well potential and one state, while a
fourth-order polynomial, corresponding to a double-well po-
tential, identifies a system with two states. The number of
states can be evaluated from the data by performing a poly-
nomial fit of the probability density function (pdf) calculated
as

p(z) ∼ exp[−2U(z)/σ 2
] (9)

representing a stationary solution of the Fokker–Planck equa-
tion

∂p(z, t)

∂t
=

∂[U(z)p(z, t)]

∂z
+

1

2
σ 2∂2p(z, t)

∂z2
. (10)

Equation (9) establishes a one-to-one correspondence be-
tween the potential and the the pdf of the system so that

U(z) = −
σ 2

2
lnpemp(z) , (11)

wherepemp(z) is the empirical pdf extracted from data. To
estimatepemp(z) we used the well-known kernel density es-
timator method (Silverman, 1998; Hall, 1992), described in
AppendixA. This procedure allows the calculation ofU(z)

and the corresponding uncertainty from Eq. (11).
In order to investigate the time evolution of the DO events,

potentials have been calculated forNH (t), SH (t), NL(t), and
SL(t), and reported in Fig.6. The potentials associated with
NH (t), SH (t) and the corresponding best fits are shown in
panels a and b respectively. The best fit polynomials are of
second order, thus corresponding to a single-well potential.
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Fig. 3. IMFs C(N)
j (t) and residue r

(N)
m (t) for the NGRIP dataset.

to an excitation of the system within the same state. On the325

other hand, the U(z) calculated for NL(t), SL(t) are well fit-
ted by 4th order polynomials, indicating the occurrence of a
double-well potential, thus suggesting that the high activity,
when the DO events are observed, and low activity periods
correspond to different states of the climatic system.330

It is worth to briefly discuss the differences of our ap-
proach with respect to Livina et al. (2010). We perform the
potential analysis on the EMD reconstructions of the EDML
and NGRIP data-sets, using the time range 20–120 kyr BP.
Livina et al. (2010) used only Greenland data-sets, in par-335

ticular they considered the GRIP and NGRIP δ18O series in
the interval 0–60 kyr BP. Moreover we calculate the potential

shape from the full time range of the EMD reconstructions,
while they used sliding windows of varying length through
each data-set to detect the number of climate states as a func-340

tion of time.

4 The North-South asyncrony

An important aspect of the polar climate dynamics is the un-
derstanding of how Earth’s hemispheres have been coupled
during past climate changes. Bender et al. (1994) explored345

the possible connections between Greenland and Antarctica
climate, suggesting that partial deglaciation and changes in
ocean circulation are the main mechanisms which transfer

Figure 3. IMFs C
(N)
j

(t) and residuer(N)
m (t) for the NGRIP data set.

Therefore, the occurrence of a DO event could not be due
to a transition of the system to a different dynamical state
but to an excitation of the system within the same state. On
the other hand, theU(z) calculated forNL(t) andSL(t) is
well fitted by fourth-order polynomials, indicating the occur-
rence of a double-well potential, thus suggesting that the high
activity, when the DO events are observed, and low activity
periods correspond to different states of the climatic system.

It is worth briefly discussing the differences of our ap-
proach with respect toLivina et al. (2010). We perform the
potential analysis on the EMD reconstructions of the EDML
and NGRIP data sets, using the time range 20–120 kyr BP.
Livina et al. (2010) used only Greenland data sets; in par-

ticular they considered the GRIP and NGRIPδ18O series in
the interval 0–60 kyr BP. Moreover we calculate the potential
shape from the full time range of the EMD reconstructions,
while they used sliding windows of varying length through
each data set to detect the number of climate states as a func-
tion of time.

4 The north–south asynchrony

An important aspect of the polar climate dynamics is the un-
derstanding of how earth’s hemispheres have been coupled
during past climate changes.Bender et al.(1994) explored
the possible connections between Greenland and Antarctica
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Fig. 4. Normalized IMF square amplitude Ej vs. the period Tj for
the EMD significance test applied to the EDML (upper panel) and
NGRIP (lower panel) IMFs. The dashed lines represent the 99th
percentile (see the text for details).

warmings in Northern Hemisphere climate to Antarctica.
Different analyses showed that southern changes are not a350

direct response to abrupt changes in North Atlantic thermo-
haline circulation, as is assumed in the conventional picture
of a hemispheric temperature seesaw (Morgan et al., 2002).
The study of the global concentration of methane recorded in
ice cores allowed to infer that Antarctic climate changes lead355

that of Greenland by 1− 2.5 kyr over the period 47-23 kyr
before present (Blunier et al., 1998). More recently, Barker
et al. (2011) observed a a near zero-phase anticorrelation be-
tween the Greenland temperature anomaly and the rate of
change of Antarctic temperature. Based on their correlation360

analysis and on the thermal bipolar seesaw model (Stocker
et al., 2003), the same authors constructed, using the Antarc-
tic record, an 800 kyr synthetic record of Greenland climate
which reproduces much of the variability fo the last 100 kyr.

In order to investigate this issue, we study the cross-365

correlation between the EDML and NGRIP reconstructions
obtained from the EMD as illustrated in Sect. 2.3. The cross-
correlation coefficient Pyz(∆) between two time samples

Fig. 5. δ18O data (black lines), short time scale reconstructions
NH(t) and SH(t) (red lines), and long time scale reconstructions
NL(t) and SL(t) (blue lines) for the EDML (upper panel) and
NGRIP (lower panel) datasets. An offset corresponding to the tem-
poral mean of the δ18O original data was applied to the EMD re-
constructions in order to allow visualization in the same plot.

y(tk) and z((tk) is defined as

Pyz(∆) =

∑
[y(tk +∆)−〈y〉][z(tk)−〈z〉]√∑
[y(tk)−〈y〉]2

∑
[z(tk)−〈z〉]2

(12)370

where brackets denote time averages and ∆ the time lag.
We calculated the cross-correlation coefficient both for the
short time-scale reconstructions (Eqs. (4) and (5)) and for the
long time-scale ones (Eqs. (6) and (7)). The two coefficients
PNHSH (∆) and PNLSL(∆) are shown in Fig. 7. PNHSH (∆)375

displays oscillations with many peaks of similar amplitude
at both negative and positive lags. This behaviour is typically
obtained when oscillating signals having nearly the same fre-
quency are compared. In this case, it is not possible to iden-
tify the leading and the following process. On the other hand,380

a shape characterized by a single significant peak, with a
maximum value of ≈ 0.73 and ∆= 3.05±0.19 kyr, is found
in PNLSL(∆). The uncertainty on the correlation peak posi-
tion was estimated by means of the following procedure. The
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for the EMD significance test applied to the EDML (upper panel)
and NGRIP (lower panel) IMFs. The dashed lines represent the 99th
percentile (see the text for details).

climate, suggesting that partial deglaciation and changes in
ocean circulation are the main mechanisms which transfer
warmings in Northern Hemisphere climate to Antarctica.
Different analyses showed that southern changes are not a
direct response to abrupt changes in North Atlantic thermo-
haline circulation, as is assumed in the conventional picture
of a hemispheric temperature seesaw (Morgan et al., 2002).
The study of the global concentration of methane recorded in
ice cores allowedBlunier et al.(1998) to infer that Antarctic
climate changes lead those of Greenland by 1–2.5 kyr over
the period 47–23 kyr before present. More recently,Barker
et al. (2011) observed a near-zero-phase anticorrelation be-
tween the Greenland temperature anomaly and the rate of
change of Antarctic temperature. Based on their correlation
analysis and on the thermal bipolar seesaw model (Stocker
et al., 2003), the same authors constructed, using the Antarc-
tic record, an 800 kyr synthetic record of Greenland climate
which reproduces much of the variability for the last 100 kyr.

In order to investigate this issue, we study the cross-
correlation between the EDML and NGRIP reconstructions
obtained from the EMD as illustrated in Sect.2.3. The cross-
correlation coefficientPyz(1) between two time samples
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in PNLSL(∆). The uncertainty on the correlation peak posi-
tion was estimated by means of the following procedure. The

Figure 5. δ18O data (black lines), short timescale reconstructions
NH (t) and SH (t) (red lines), and long timescale reconstructions
NL(t) and SL(t) (blue lines) for the EDML (upper panel) and
NGRIP (lower panel) data sets. An offset corresponding to the tem-
poral mean of theδ18O original data was applied to the EMD re-
constructions in order to allow visualization in the same plot.

y(tk) andz((tk) is defined as

Pyz(1) =

∑
[y(tk + 1) − 〈y〉][z(tk) − 〈z〉]√∑
[y(tk) − 〈y〉]2

∑
[z(tk) − 〈z〉]2

, (12)

where brackets denote time averages and1 the time lag.
We calculated the cross-correlation coefficient both for the
short timescale reconstructions (Eqs.4 and 5) and for the
long timescale ones (Eqs.6 and 7). The two coefficients
PNH SH

(1) andPNLSL
(1) are shown in Fig.7. PNH SH

(1)

displays oscillations with many peaks of similar amplitude
at both negative and positive lags. This behavior is typically
obtained when oscillating signals having nearly the same fre-
quency are compared. In this case, it is not possible to iden-
tify the leading and the following process. On the other hand,
a shape characterized by a single significant peak, with a
maximum value of≈ 0.73 and1 = 3.05± 0.19 kyr, is found
in PNLSL

(1). The uncertainty in the correlation peak posi-
tion was estimated by means of the following procedure. The
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Fig. 6. Potentials U(z) calculated from the data (black curves and error bars) using Eq. (11) and polynomial best fits (red dashed curves) for
NGRIP reconstructions NH(t) (panel a), NL(t) (panel c), and EDML reconstructions SH(t) (panel b), SL(t) (panel d).

errors on the age scale available in the EDML and NGRIP385

data were used in a Montecarlo algorithm to estimate the time
errors on NL(t) and SL(t). More specifically, we calculated
103 realizations of the long time-scale reconstructions vary-
ing randomly the age scale position of each data point within
the error windows. Then, we calculated the corresponding390

103 cross-correlations between the EDML and NGRIP long
time-scale reconstructions and the peak positions for each of
them. Following this procedure we obtained the above men-
tioned estimate of 0.19 kyr for the error on the position of the
long time-scale cross correlation peak.395

The result obtained through the cross-correlation analysis
supports the view according to which the Antarctic climate
changes actually lead that of Greenland, but on a longer time-
scale than previously reported.

5 Conclusions and discussion400

In the present paper we study both the EDML and NGRIP
datasets, in order to investigate their periodicities and the
possible existence of synchronization of abrupt climate
changes observed in the North and South hemispheres. Our
results can be summarized as follows.405

1. Proper EMD modes, significant with respect to a ran-
dom null hypothesis, are present in both datasets, thus
confirming that natural cycles of abrupt climate changes
during the last glacial period exist and their occurrence
cannot be due to random fluctuations in time.410

2. Due to the non-stationarity of the process, the variabil-
ity at the typical time scales of DO events is reproduced
through signal reconstructions obtained by summing
more than one EMD mode, more precisely j = 6− 10

Figure 6. PotentialsU(z) calculated from the data (black curves and error bars) using Eq. (11) and polynomial best fits (red dashed curves)
for NGRIP reconstructionsNH (t) (a), NL(t) (c), and EDML reconstructionsSH (t) (b), SL(t) (d).

errors on the age scale available in the EDML and NGRIP
data were used in a Monte Carlo algorithm to estimate the
time errors onNL(t) andSL(t). More specifically, we cal-
culated 103 realizations of the long timescale reconstruc-
tions varying randomly the age-scale position of each data
point within the error windows. Then, we calculated the cor-
responding 103 cross-correlations between the EDML and
NGRIP long timescale reconstructions and the peak positions
for each of them. Following this procedure we obtained the
above-mentioned estimate of 0.19 kyr for the error on the po-
sition of the long timescale cross-correlation peak.

The result obtained through the cross-correlation analysis
supports the view according to which the Antarctic climate
changes actually lead those of Greenland, but on a longer
timescale than previously reported.

5 Conclusions and discussion

In the present paper we study both the EDML and NGRIP
data sets, in order to investigate their periodicities and
the possible existence of synchronization of abrupt climate
changes observed in the Northern and Southern hemispheres.
Our results can be summarized as follows.

1. Proper EMD modes, significant with respect to a ran-
dom null hypothesis, are present in both data sets, thus
confirming that natural cycles of abrupt climate changes
during the last glacial period exist and their occurrence
cannot be due to random fluctuations in time.

2. Due to the non-stationarity of the process, the vari-
ability at the typical timescales of DO events is repro-
duced through signal reconstructions obtained by sum-
ming more than one EMD mode, more preciselyj = 6–
10 for NGRIP andj = 5–8 for EDML. On the other
hand, the reconstructions obtained summing the succes-
sive modes can be used to describe the climate evolution
at longer timescales, characterized by intervals in which
DO events happen and intervals when these are not ob-
served.

3. By comparing the EMD signal reconstructions to the re-
sults of a simple model based on the one-dimensional
Langevin equation, evidence is found that the occur-
rences of DO events can be described as excitations
of the system within the same climate state, rather
than transitions between different states. Conversely, the
longer timescale dynamics appear to be due to transi-
tions between different climate states.
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Fig. 7. Cross correlation coefficients between EDML and NGRIP
short time-scale (PNHSH (∆), top panel) and long time-scale
(PNLSL(∆), bottom panel) EMD reconstructions as functions of
the time lag ∆.

for NGRIP and j = 5−8 for EDML. On the other hand,415

the reconstructions obtained summing the successive
modes can be used to describe the climate evolution at
longer time scales, characterized by intervals in which
DO events happen and intervals when these are not ob-
served.420

3. By comparing the EMD signal reconstructions to the
results of a simple model based on the one-dimensional
Langevin equations, evidence is found that the occur-
rence of DO events can be described as excitations
of the system within the same climate state, rather425

than transitions between different states. Conversely, the
longer time scale dynamics appear to be due to transi-
tions between different climate states.

4. On the base of a cross correlation analysis between the
NGRIP and EDML EMD reconstructions, performed to430

investigate the North-South asynchrony, it is found that
the clearest correlation occurs between the long-scale
reconstructions at a lag ∆= 3.05± 0− 19 kyr, which
supports the view according to which the Antarctic cli-
mate changes lead that of Greenland, but on a longer435

time-scale than previously reported.

The methodological novelty of the present work is repre-
sented by the fact that we use EMD reconstructions to in-
vestigate the climate dynamics at different time scales and
to highlight, through a potential analysis of the EMD re-440

constructions, some characteristics of the climate transitions.
The main new results are: 1) the presence of two different
climate transitions occurring at different time scales; 2) the
finding of a significant correlation between long time scale
Antarctic and Greenland signals, with the first leading the445

second, at a lag of ≈ 3 kyr which was not found in past stud-
ies of paleoclimatic records.

The EMD filtering procedure applied on EDML and
NGRIP datasets and the correlation analysis based on it are
able to identify time scale dependent dynamical features of450

the climate evolution which have not been underlined in
previous works. How the interhemispheric coupling mech-
anisms, such as the THC, can be involved in the behavior
highlighted by our study is a question which needs to be
investigated in future works. We suggest that the results of455

our correlation analysis results, and in particular the correla-
tion found in association with the long time scale dynamics,
could be explained in the framework of seesaw models. But,
since the correlation lag (≈ 3 kyr) obtained from our anal-
ysis is quite different from the characteristic thermal time460

scale (about 1 – 1.5 kyr) of previous bipolar seesaw models
(Stocker et al., 2003; Barker et al., 2011), it would be nec-
essary to build up a thermal seesaw model starting from our
EMD filtered long time scale series to properly deal with this
problem.465

We also plan to extend the study presented in this paper to
other paleoclimate records, in order to investigate the role of
other physical processes, such ocean-atmosphere interaction
and solar irradiance variations, in the climate system evo-
lution. Moreover, the results presented in this paper could470

be useful for the theoretical modelling of the climate evolu-
tion in polar regions, in order to characterise the processes
involved at different time scales and the coupling between
northern and southern hemispheres.

Appendix A475

Kernel Density Estimator

The empirical pdf pemp(z) in Equation (11) is estimated
through the Kernel Density Estimator technique (Silverman,
1998; Hall, 1992). The Kernel Density Estimator is defined

Figure 7. Cross-correlation coefficients between EDML and
NGRIP short timescale (PNH SH

(1), top panel) and long timescale
(PNLSL

(1), bottom panel) EMD reconstructions as functions of the
time lag1.

4. On the basis of a cross-correlation analysis between the
NGRIP and EDML EMD reconstructions, performed to
investigate the north–south asynchrony, it is found that
the clearest correlation occurs between the long-scale
reconstructions at a lag1 = 3.05± 0.19 kyr, which sup-
ports the view according to which the Antarctic cli-
mate changes lead those of Greenland, but on a longer
timescale than previously reported.

The methodological novelty of the present work is repre-
sented by the fact that we use EMD reconstructions to in-
vestigate the climate dynamics at different timescales and
to highlight, through a potential analysis of the EMD re-
constructions, some characteristics of the climate transitions.
The main new results are (1) the presence of two differ-
ent climate transitions occurring at different timescales as
well as (2) the finding of a significant correlation between
long timescale Antarctic and Greenland signals, with the first
leading the second, at a lag of≈ 3 kyr, which was not found
in past studies of paleoclimatic records.

The EMD filtering procedure applied on EDML and
NGRIP data sets and the correlation analysis based on it
are able to identify timescale-dependent dynamical features
of the climate evolution which have not been underlined in
previous works. How the interhemispheric coupling mech-
anisms, such as the THC, can be involved in the behavior
highlighted by our study is a question which needs to be
investigated in future works. We suggest that the results of
our correlation analysis results, and in particular the correla-
tion found in association with the long timescale dynamics,
could be explained in the framework of seesaw models. But,
since the correlation lag (≈ 3 kyr) obtained from our analy-
sis is quite different from the characteristic thermal timescale
(about 1–1.5 kyr) of previous bipolar seesaw models (Stocker
et al., 2003; Barker et al., 2011), it would be necessary to
build up a thermal seesaw model starting from our EMD fil-
tered long timescale series to properly deal with this problem.

We also plan to extend the study presented in this paper
to other paleoclimate records, in order to investigate the role
of other physical processes, such as ocean–atmosphere inter-
action and solar irradiance variations, in the climate system
evolution. Moreover, the results presented in this paper could
be useful for the theoretical modeling of the climate evolu-
tion in polar regions, in order to characterize the processes
involved at different timescales and the coupling between the
Northern and Southern hemispheres.
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Appendix A: Kernel density estimator

The empirical pdfpemp(z) in Eq. (11) is estimated through
the kernel density estimator technique (Silverman, 1998;
Hall, 1992). Given a set of data pointszi (i = 1, ...,n), the
kernel density estimator of the pdf is defined as

f̂ (z) =
1

nh

n∑
i=1

K

(
z − zi

h

)
, (A1)

whereK is the kernel, a symmetric function that integrates
to one, andh > 0 is a smoothing parameter denoted as band-
width. The corresponding variance is

σ̂ (z) =
1

nh

[
1

nh

n∑
i=1

K

(
z − zi

h

)2

− hf̂ (z)2

]
. (A2)

For our application we use the Epanechnikov kernel,
which is optimal in a minimum variance sense, and we chose
h = 0.9 · s/n0.2, where s is the standard deviation of the
data set. The confidence interval off̂ (z) has been evaluated
through a bootstrap. Being

f̂ ∗(z) =
1

nh∗

n∑
i=1

K

(
z − z∗

i

h∗

)
(A3)

the bootstrap estimator of̂f (z),

σ̂ ∗(z) =
1

nh∗

[
1

nh∗

n∑
i=1

K

(
z − z∗

i

h∗

)2

− h∗f̂ (z)2

]
(A4)

the variance off̂ ∗(z) and

t̂∗(z) =
f̂ ∗(z) − f̂ (z)

σ̂ ∗(z)
(A5)

the bootstrapt statistic (Hall, 1992), the symmetric confi-
dence interval with coverage probability 1− α is [f̂ (z) −

σ̂ (z)u∗

1−α/2, f̂ (z) − σ̂ (z)u∗

α/2], whereu∗

α/2 is the bootstrap

estimate of the quantile defined byP(t̂∗(z) ≤ u∗

α/2) = α/2
and u∗

1−α/2 is the bootstrap estimate of the quantile de-

fined by P(t̂∗(z) ≤ u∗

1−α/2) = 1− α/2 (Hall, 1992). In or-
der to remove asymptotic biases which are not correctly
taken into account by the bootstrap procedure, we perform
an under-smoothing by choosing a smaller bandwidthh∗

=

0.9∗ s/n0.25 < h (Hall, 1992).
This procedure allows the calculation ofpemp(z), U(z)

from Eq. (11) and the corresponding uncertainty by perform-
ing error propagation in the same equation.
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