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Abstract. We report on preliminary steps in the homogenisa-
tion of HadISD, a sub-daily, station-based data set covering
1973–2013. Using temperature, dew point temperature, sea-
level pressure and wind speeds, change points are detected
using the Pairwise Homogenisation Algorithm fromMenne
and Williams Jr(2009). Monthly-mean values and monthly-
mean diurnal ranges (temperature and dew point tempera-
ture) or monthly-maximum values (wind speeds) are pro-
cessed using the full network of 6103 stations in HadISD.
Where multiple change points are detected within 1 year,
they are combined and the average date is used. Under the
assumption that the underlying true population of inhomo-
geneity magnitudes is Gaussian, inhomogeneity magnitudes
as small as around 0.5◦C, 0.5 hPa or 0.5 m s−1 have been
successfully detected. The change point dates and inhomo-
geneity magnitudes for each of the calculation methods will
be provided alongside the data set to allow users to select sta-
tions which have different levels of homogeneity. We give an
example application of this change point information in cal-
culating global temperature values from HadISD and com-
paring these to CRUTEM4. Removing the most inhomoge-
neous stations results in a better match between HadISD and
CRUTEM4 when matched to the same coverage. However,
further removals of stations with smaller and fewer inhomo-
geneities worsen the match.

1 Introduction

To enable the use of a data set for the study of long-term
trends, the raw data have to be first quality-controlled to re-
move random erroneous data arising from instrumental or
observer error. After this process is complete, systematic
biases will still be present in the data resulting from doc-
umented and undocumented station moves, changes to the

instruments, incorrect station merges, changes in land use
(urbanisation around the station) or even changes in observ-
ing practices over time. The process of removing these non-
climatic signals from the data is known as homogenisation.

Two main approaches exist for determining the location
of change points and the inhomogeneity magnitudes. Abso-
lute methods apply statistical tests and, if available, metadata
to the target station alone. In relative methods, a reference
series can be created from the neighbouring stations, under
the assumption that the reference series is free from errors
or that they cancel out on averaging; or a pairwise search
can be undertaken, assessing each candidate–neighbour pair
individually. Relative, multiple-breakpoint detection meth-
ods are on the whole more robust and successful at find-
ing inhomogeneities than absolute (without reference series)
methods (Venema et al., 2012). Classical statistical tests (e.g.
the Standard Normal Homogeneity Test, SNHT;Alexander-
sson, 1986), regression models (e.g.Easterling and Peterson,
1995) or Bayesian approaches (e.g.Perreault et al., 2000a,
b) have been used to extract the change point locations and
magnitudes of the inhomogeneities. There now exist a num-
ber of different modern multiple-breakpoint detection pack-
ages which can be used to homogenise data sets, e.g. MASH
(Multiple Analysis of Series for Homogenisation;Szen-
timrey, 1999, 2007), ACMANT (adapted Caussinus–Mestre
algorithm for networks of temperature series;Domonkos,
2011), HOMER (HOMogenizaton softwarE in R;Mestre
et al., 2013) and PHA (pairwise homogenisation algorithm;
Menne et al., 2009). These all have different approaches to
the homogenisation and adjustment problem. MASH is a rel-
ative method for medium-sized networks (a few hundred sta-
tions) using multiple references which are not assumed to be
homogeneous. It uses an exhaustive approach, applying cor-
rections until no further change point is found. ACMANT
is based on the Caussinus–Mestre method from PRODIGE
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(Caussinus and Mestre, 2004) but uses a reference series
rather than a pairwise comparison along with some improve-
ments to the detection, correction and interpolation steps.
HOMER was constructed to include the best characteristics
of other state-of-the-art homogenisation methods after the
COST-HOME action, including PRODIGE (Caussinus and
Mestre, 2004), ACMANT, CLIMATOL ( Guijarro, 2011) and
cghseg(Picard et al., 2011). It is best suited to medium-
sized networks where manual input is possible to finalise
the change point locations. In contrast, PHA was specifically
constructed to function automatically with large networks,
and is described in detail in Sect.2.

Given the variety of options available for homogenising
data sets, the COST-HOME project (Venema et al., 2012;
www.homogenisation.org) assessed and benchmarked nine
different algorithms. Some algorithms had multiple submis-
sions, resulting in 25 contributions, which were assessed
using real, surrogate and synthetic data. By using bench-
mark data sets, the relative ability of each implementation of
each algorithm in detecting and adjusting for artificial change
points could be assessed. The results showed that automatic
algorithms can perform as well as manual ones, but that users
need training in the use of any of the algorithms to avoid de-
grading the homogeneity of the data. Following this assess-
mentMestre et al.(2011, 2013) have released the HOMER
(for monthly data) and SPLIDHOM (SPLine Daily HOMog-
enization; for daily data) homogenisation packages, which
take the recommendations of the COST-HOME assessment
into account. Given the general strong performance of PHA
(Williams et al., 2012) and its proved success in working on
large station networks in an automated fashion, we have used
it in our assessment of homogeneity in HadISD.

HadISD is a new, sub-daily, station-based data set from
the Met Office Hadley Centre. It is based on the National
Climatic Data Center (NCDC) Integrated Surface Database
(ISD), which contains over 30 000 non-unique station hold-
ings (Smith et al., 2011). After merging candidate stations
which were likely to be the same station,Dunn et al.(2012)
selected 6103 stations which had primarily hourly or 3-
hourly data over the period 1973–2011. Temperature, dew
point temperature, sea-level pressure (SLP), wind speed and
direction and cloud data were extracted and subject to a de-
tailed suite of quality control tests to identify and remove
erroneous observations. A full description of these tests is
given in Dunn et al.(2012). HadISD is updated on an an-
nual basis, with each new release being given a unique ver-
sion number to allow full traceability, with the current ver-
sion (v1.0.2.2013f) running to the end of 2013. HadISD is an
updated, quality-controlled data set, but it has not as yet been
homogenised, although it the basis of the monthly homoge-
neous specific humidity product (Willett et al., 2013). Initial
steps in releasing a homogenised HadISD are detailed in this
manuscript. We will use version 1.0.2.2013f of HadISD as
this is the most up-to-date version at the time of writing. This

homogeneity assessment will be carried out for all future ver-
sions of the data set.

The construction of HadISD and also the method em-
ployed herein can give rise to inhomogeneities beyond
those usually associated with observational data sets (sta-
tion moves, instrument changes, changes in the external en-
vironment). In order to increase the temporal coverage of
stations in HadISD, stations were merged which passed cer-
tain criteria of similarity (seeDunn et al., 2012, for full de-
tails), but it is possible that station records have changed
since this assessment was performed so that stations that
are currently merged are no longer suitable candidates, e.g.
station IDs being reassigned. Issues have also been found
with un-documented station moves, which means that, al-
though merging two station IDs is appropriate at one in-
stance in time, it is not at later times (e.g. undocumented
station moves). In this work we detect inhomogeneities on
a monthly basis (see Sect.3), and so the sub-daily data
are averaged to monthly quantities. If the station reporting
frequency changes, then this will have an impact on the
daily, and hence monthly, quantities. Also daylight savings
changes, which should have been accounted for when taking
the observations and also in conversion to Coordinated Uni-
versal Time (UTC) by the Integrated Surface Database (ISD)
may also have an effect where necessary steps could not be
implemented.

Although the data in HadISD have been subject to a de-
tailed suite of quality control tests, there will still be obser-
vations which are erroneous. In the case of dew point tem-
perature, for example, if the wet-bulb thermometer wick per-
sistently dries out for fractions of a day, then this will af-
fect the homogeneity of the record. Other data quality issues
which could cause inhomogeneities are conversion problems,
for example from station level pressure to mean sea-level
pressure or from knots to metres per second in wind speed,
where the relevant factors have been applied twice. More de-
tailed descriptions of homogeneity issues are discussed by
e.g.Thomas et al.(2008), Jakob(2010) andWan et al.(2010)
for wind speed; byVincent et al.(2007) for temperature and
dew point; and byJones et al.(1987), Young (1993) and
Slonosky et al.(1999) for SLP.

To date, homogenising on an hourly timescale, which en-
tails both detecting the change points and applying adjust-
ments, is not feasible for global station networks. Further
research and development are required to be able to auto-
matically detect the change point locations and, more impor-
tantly, their characteristics so that adjustments appropriate
for each hour of the day are applied. Progress is being made
on daily homogenisation for temperature, but so far only for
country-scale networks. In some cases change points are de-
tected and inhomogeneity magnitudes determined on longer
timescales (monthly or annual), and then the daily data are
adjusted (Vincent et al., 2002; Kuglitsch et al., 2009; Mestre
et al., 2011; Trewin, 2013). Others use detailed metadata
(Auchmann and Brönnimann, 2012) or statistical methods
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(Brandsma and Können, 2006; Della-Marta and Wanner,
2006; Yan and Jones, 2008; Toreti et al., 2010; Rienzner and
Gandolfi, 2013) to detect inhomogeneities and also apply the
adjustments on a daily basis. It is still uncertain how to ap-
ply these methods to daily data on a global scale. As with
any data quality process, we do not want to degrade the data,
and so we will identify change point locations on a monthly
scale for this global data set of 6103 stations only and, for
the moment, not apply any adjustments directly to the data.
Future developments will detect change points on shorter
timescales, and apply adjustments to the hourly HadISD data.

Following the widely accepted terminology, adopted in the
International Surface Temperature Initiative (ISTI;Thorne
et al., 2011), we term the locations of inhomogeneities as
change points. The values obtained from PHA which would
be used to adjust the data to make it homogeneous are termed
the adjustment values. As we do not apply adjustments in this
study, to avoid confusion we will use the term inhomogeneity
magnitudes. In this study, the inhomogeneities are all steps or
jumps, with no option for a gradual change or more compli-
cated inhomogeneities.

We outline our method of homogeneity assessment of
HadISD on monthly scales in Sect.2 and present our results
on temperature, dew point temperature, SLP and wind speed
in Sects.3 and4. We describe how we will make these data
available in Sect.6 and also outline an example of how these
detected change points can be used in a scientific application
in Sect.7. We summarise in Sect.8.

2 Homogenisation on monthly scales

We have identified the homogeneous sub-periods within the
record of each station so that users can select those stations
with few change points or small inhomogeneity magnitudes
when doing sensitive studies. For example, when looking at
extreme events (peaks over threshold) or small, restricted re-
gions, the homogeneity information will allow the most ho-
mogeneous stations to be selected for use. For other analyses,
those stations with many or large change points could also
be included, for example when performing continent or cli-
matic zone scale analyses. As there are 6103 stations in the
HadISD, an automated algorithm is required to perform the
homogenisation. It had been hoped to run a number of dif-
ferent homogenisation algorithms on HadISD to be able to
compare the change point locations and magnitudes. How-
ever, the requirement of an automated system which would
work reliably on all 6103 HadISD stations limited this study
to using PHA fromMenne et al.(2009) and Menne and
Williams Jr(2009).

PHA has been used on NCDC’s US Historical Climatol-
ogy Network (USHCN) monthly surface temperature record,
and subsequently applied to the Global Historical Climatol-
ogy Network (GHCN) (Lawrimore et al., 2011) and more
recently to surface humidity measurements (Willett et al.,

2013, 2014). PHA has been designed to run on large net-
works of stations in an automated fashion, and hence suits the
requirements of homogenising HadISD. In the benchmark-
ing analysis from the COST-HOME project where change
point locations and magnitudes were known to the coordi-
nators but not the testers,Venema et al.(2012) showed that
this algorithm had a low false-alarm rate; in other words
few erroneous change points were returned by PHA in lo-
cations where none were present. But conversely, it was
found to be more conservative in detecting true change points
than other algorithms.Venema et al.(2012) recommended
PHA for the homogenisation of large data sets. Using a pair-
wise approach, testing each candidate–neighbour pair is also
more robust than using a candidate station versus (compos-
ite) reference station approach, as the latter can easily miss
network-wide changes, or wrongly attribute them to a sin-
gle station. However if network-wide changes occur instanta-
neously, then relative methods cannot detect them. This may
be a problem for large countries where changes in instru-
mentation may be implemented over a short timescale as,
for many stations all neighbours will also be affected by the
changes, and hence they cannot be detected.

PHA has been subjected to an intensive benchmarking as-
sessment for the US network (Williams et al., 2012), which
showed that in all cases it reduced errors in the data without
over-adjustments. The COST-HOME assessment used small
networks (5–20 stations) which in some cases may have lim-
ited the performance of PHA, which has been designed with
large networks in mind. However, one of the submissions to
COST-HOME using PHA with a very small network (five
stations) performed extremely well (Venema et al., 2012). In
our application here, we are less concerned about the esti-
mated values of the inhomogeneity magnitudes, as for the
moment, these are not applied to the data. However the ro-
bustness of the change point locations is important, as is their
number. As with all change point detection algorithms, PHA
is unable to detect the smaller changes, resulting in a “miss-
ing middle” in the distribution of inhomogeneity magnitudes.
Hence the mean absolute value of the inhomogeneity magni-
tudes is overestimated.

We outline the steps used by PHA to find the change point
locations and adjustment values:

1. For each candidate station, neighbouring stations which
have the highest correlating monthly-mean time series
are selected (PHA requires at least seven neighbours to
run and uses the highest correlating 40 if available1).
Stations where insufficient neighbours were found are
not processed by PHA.

2. The SNHT (Alexandersson, 1986) is used iteratively on
the candidate–neighbour difference series to locate the
change points. These are noted in the candidate and
the neighbour stations. The SNHT was chosen when

1In some cases fewer neighbours are allowed by the algorithm.

www.clim-past.net/10/1501/2014/ Clim. Past, 10, 1501–1522, 2014



1504 R. J. H. Dunn et al.: Pairwise homogeneity assessment of HadISD

PHA was developed asDeGaetano(2006) andReeves
et al.(2007) showed it had superior accuracy in locating
change points under a wide range of scenarios (Menne
and Williams Jr, 2009).

3. The resulting large array of potential change points is
resolved iteratively to determine which station is com-
mon to most change points at a given date, and so is the
cause of the change point. The final date of the change
point is calculated from all of the neighbour pairs.

4. The change point is assessed to see if it is part of a lo-
cal trend or a step change. If it is a step change, and a
reliable magnitude can be determined, then this is ap-
plied to the monthly time series. Otherwise the data are
removed for the period by PHA when producing the ad-
justed monthly series2. No data are removed in HadISD
as the monthly adjusted data are not used.

The PHA code works on monthly data, and so the hourly
data from HadISD have been converted to monthly val-
ues (see Sect.3). The seasonal cycle is automatically re-
moved by PHA and the monthly actuals are converted to
anomalies. There are a number of different monthly quan-
tities which could be used when assessing the homogene-
ity of the data set. Apart from standard monthly-mean val-
ues, the mean diurnal range has been used for temperature
by Wijngaard et al.(2003), and in some cases change points
are clearer than in the mean temperatures. Annual and sea-
sonal mean maximum and minimum temperatures were used
by Trewin (2013) when homogenising the Australian Cli-
mate Observations Reference Network–Surface Air Temper-
ature (ACORN-SAT) data set, which also picked up changes
in the diurnal temperature range (DTR). PHA as yet can-
not homogenise using two variables at the same time, e.g.
monthly-mean temperature and monthly-mean diurnal tem-
perature range. Hence, to produce a final data set with inter-
nally consistent change point locations we combine change
points from different methods in a post-processing algorithm.
To incorporate the extra power of these additional monthly
values for temperature and dew point temperature outlined
above, we use monthly-mean diurnal ranges along with the
monthly means for the homogeneity assessment.

The variation in sea-level pressure is sufficiently small
that we will only use the monthly-mean values for this vari-
able. However, for wind speeds we shall use the monthly-
mean daily-maximum wind speed as well as the monthly-
mean wind speed. When two methods (monthly mean and
either monthly-mean diurnal range or monthly-mean max-
imum value) are used, we merge change points together if
they occur within 1 year of each other, and use the mean date
in the final products, rounded to the first day of the month.

2We do not use the adjusted monthly series output by PHA in
this work, but rather just the inhomogeneity magnitudes and their
dates.

3 Temperatures

To allow PHA to process the HadISD stations, the hourly
data were converted to monthly means. First, daily means
were created for all days which had more than four obser-
vations spread over at least a 12 h time span. If there were
at least 20 qualifying days within a month, then the monthly
mean was calculated. A diurnal temperature range is only
calculated for a day when it meets the same completeness
requirements. This is therefore not a true diurnal range, but
one estimated from the highest and lowest hourly tempera-
ture observation of that 24 h period. Again, at least 20 qual-
ifying days are required in a month to obtain the monthly
mean. We assess the effect of different completeness criteria
later in this section.

The number of change points found using each of these
two quantities is shown in Table1 along with the number per
station and other details about the homogenisation process.

In the COST-HOME analysis it was found that PHA is
conservative and identified fewer change points than other
algorithms. In cases where none were present, this results
in a low false-alarm rate, but it also means that the num-
ber of change points could be underestimated in other cir-
cumstances. We merge the dates for the change points found
using the monthly mean and monthly-mean diurnal range
if they are within 1 year of each other. PHA found 12973
change points in 4645 stations, a mean value of 2.79 change
points per station over the 41-year period. This is roughly 1
every 15 years, which is at the lower end of the range found
found byMenne et al.(2009) for the USHCN of 1 every 15–
20 years.

There are 252 temperature stations which could not be pro-
cessed by PHA, and a further 1206 have no change points
detected (Fig.1a). Stations which could not be processed by
PHA are ones with insufficient neighbours or those with very
short records3. The majority of stations (4645/6103) have at
least one change point, and so a homogeneity assessment is
an important part of any analysis to ensure that no spurious
results arise because of non-climatic changes. In Sect.7 we
show for one application that coverage is a greater issue than
station quality, but this will not always be the case. A rel-
atively large number of stations are found to be homoge-
neous compared to other studies (e.g.Menne et al., 2009).
Their number is likely to have been augmented by stations
with short records and/or few correlating neighbours, as im-
plied above. However, a similar fraction in a densely ob-
served country, the UK, were found to be homogeneous (see
Sect.5).

To assess the effect of the completeness requirements used
in this analysis, it was also performed using a more restrictive
completeness requirement which matches the “3/5 rule” (no
more than five missing days, of which no more than three can

3Short records on the monthly scale could arise from missing
data so that the completeness criteria are not satisfied.

Clim. Past, 10, 1501–1522, 2014 www.clim-past.net/10/1501/2014/



R. J. H. Dunn et al.: Pairwise homogeneity assessment of HadISD 1505

Table 1.Statistics of inhomogeneity detection fo HadISD stations.

Diagnostic Temperature Dew point SLP Wind speeds
Number of stations

Input station number 6103 6103 6103 6103
not processed by PHA: Mean 255 276 958 265

DR 262 273 – –
Maximum – – – 265

Not tested 252 273 958 265
Tested 5851 5830 5145 5837

No change points 1206 779 2364 341
With change points 4645 5051 2781 5496

Number of change points detected
Mean 6493 9904 5647 15912
DR 7735 8771 – –
Maximum – – – 15092

Total combined change points 12973 16785 5658 23781
Change points/station 2.79 3.32 2.03 4.33
Inhomogeneity magnitude∗ Mean 0.725 0.979 0.719 0.562

DR 0.805 0.690 – –
Maximum – – – 0.849

∗ Although no adjustments were made, the values were still extracted.

be consecutive) from the World Meteorological Organization
(WMO) for calculating monthly averages from daily values
(WMO, 1998). This results in 2457 stations which were not
processed by PHA, compared to the 252. In a further 2340
stations PHA does not find any change points, compared to
1206, and there are therefore only 1306 stations in which
PHA finds 2221 change points. Although the final monthly
averages are likely to be more homogeneous and robust by
using a more restrictive completeness requirement, omitting
40 % of the stations from the homogeneity assessment of
HadISD makes the assessment less useful for users.

There is no simple pattern to the stations which could not
be processed by PHA. This is because a lack of neighbours
can arise because of a low density of stations (e.g. Africa)
or because of complex topography which reduces the cor-
relations between neighbouring stations (e.g. South Amer-
ica). Furthermore, for stations which report sporadically in
HadISD (or have had large portions of data removed by the
quality control) the completeness requirements may result
in very few monthly values being calculated. The stations
with no change points are mainly found in Eurasia, with
concentrations in Germany, northern European Russia and
Ukraine. These concentrations can also be seen in Fig.1b,
which shows the number of change points found in the 5851
temperature stations which were processed by PHA. Clusters
of stations with particularly large numbers of breaks are seen
along the US coasts, Italy, and the Maritime Continent. In the
US, the areas correspond to the most populated parts of the
country, and so a greater-than-mean number of change points
may arise because of repeated station moves or more zeal-
ous improvements to station instruments. Europe, especially
the aforementioned regions from Fig.1a, has large regions

which have relatively few change points. Overall, the num-
ber of change points is not especially high in regions with
a high station density, where it might be expected that the
change points are easier to detect.

We also show the average root mean square (rms) differ-
ences for all neighbours of each target station in Fig.1c. This
shows clearly that in areas with high station density and rel-
atively simple topography the noise is low, whereas in com-
plex topography (e.g. the Rocky Mountains) or regions with
sparse station coverage (Arctic high latitudes) the noise in-
creases. The rms noise has been calculated from the differ-
ence series of each target–neighbour station pair. The noise
level gives an indication of the smallest inhomogeneity mag-
nitude that can be detected using PHA. The figure for the di-
urnal temperature range is given in the Appendix, and shows
a decrease in the noise for the Arctic high latitudes, showing
that this measure is more useful in these areas for detecting
change points.

Figure2 shows the distribution of the inhomogeneity mag-
nitudes for both of the two methods. Under the assumption
that the underlying distribution of the inhomogeneity mag-
nitudes is Gaussian, we do not detect those change points
where the inhomogeneity magnitudes are very small. This
“missing middle” is also seen when using other homogenisa-
tion processes. We fit a Gaussian to the distribution, ignoring
the smallest inhomogeneity magnitudes (those smaller than
the value corresponding to the peak on each side of the dis-
tribution), to estimate the population of change points that
have not been detected by PHA (Brohan et al., 2006). Fig-
ure 2 shows that change points with inhomogeneity magni-
tudes down to around 0.5◦C have been found. The means
of the distributions are very close to zero, but inhomogeneity
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Fig. 1. (a) Stations where temperatures could not be processed by
PHA (red) and those stations where no temperature change point
was found in the entire record (blue). (b) The number of change
points detected for each station. (c) The average RMS difference
for the neighbours from each station for the monthly average tem-
peratures.

have a change point every 15-20 years, and if this system-
atic bias is present for all stations, then this could sum to
∼ 0.2◦C over the period of the dataset. However, by compar-455

ing the Gaussian curve to the binned inhomogeneities, these
biases are likely to arise from the large positive (monthly
average) and negative (monthly DTR) tails around inhomo-
geneity magnitudes of 2 and −2◦C respectively, and so only
affect a subset of stations. As positive inhomogeneity val-460

ues indicate that the earlier period was warmer (had a larger
diurnal range), these tails would be consistent with stations
which reduced the effect of urbanization. Moving a station
from an urban(ized) to a rural site would reduce the monthly
average temperature and increase the monthly average DTR465

(Karl et al., 1988).
To further check on the possible origin for this bias, we

created the distribution separately for the stations which re-
port predominantly hourly versus those that report every
three hours (Fig. 18, Appendix). The bias is much stronger470

in the hourly stations than in the three-hourly ones, indicat-
ing that the underlying cause may be more common in au-
tomatic meteorological stations. This difference in the bias
magnitude is also seen when using the diurnal temperature
range. We also created distributions for different WMO re-475

gions for the monthly average temperature. The distribution
for the North America has the largest bias (0.198◦C) with
Asia having the smallest (0.043◦C). Biases in the inhomo-
geneity magnitudes relating to changes in instrumentation
have been reported for the USHCN by Menne et al. (2009)480

which could be another source.
The spreads of the two distributions are also very similar.

For the missing change points (the blue histograms in Fig.
2), the mean values are very close to zero, with a relatively
similar standard deviation for both methods. The largest in-485

homogeneity magnitudes constitute only a very small frac-
tion of the total population (below three and four per cent for
the mean and diurnal range respectively). The occurrence of
change points in time appears to be relatively constant over
the period of record, but with a possibly larger number oc-490

curring in the mid-to-late 1990s (Fig 3). Note that change
points cannot be detected within two years of the start or end
of a series.

Unsurprisingly few change points are found in stations
with very short records (Fig. 4). Many of the stations within495

HadISD have records which are 41 years long, and the most
common number of change points for these stations is two.
The overall distribution of the number of change points has
a relatively smooth decay from the 1333 stations which have
only one change point detected (excluding those on which500

PHA was not able to run) to the four which have 11 change
points (Station Numbers: 485650-99999 - Phuket Airport,
722265-13821 - Maxwell AFB, 723235-13896 - Northwest
Alabama Regional Apt and 725825-24121 - Elko Regional
Apt4). There is a concentration of stations which have 41505

4The stations in HadISD are numbered using a quasi WMO

Figure 1. (a) Stations where temperatures could not be processed
by PHA (red) and those stations where no temperature change point
was found in the entire record (blue).(b) The number of change
points detected for each station.(c) The average rms difference for
the neighbours from each station for the monthly-average tempera-
tures.

magnitudes based on the monthly mean have a slight positive
bias (0.12◦C) and for the diurnal range have a slight negative
bias (−0.10◦C). The biases of the Gaussian fits are smaller
than the raw inhomogeneity magnitudes, but are still non-
negligible (0.061 and−0.032◦C, respectively). Although
these biases are small relative to the typical break size, they
are important climatologically. As most stations on average
have a change point every 15–20 years, and if this system-
atic bias is present for all stations, then this could sum to
∼ 0.2◦C over the period of the data set. However, by compar-
ing the Gaussian curve to the binned inhomogeneities, these
biases are likely to arise from the large positive (monthly
average) and negative (monthly DTR) tails around inhomo-
geneity magnitudes of 2 and−2◦C, respectively, and so only
affect a subset of stations. As positive inhomogeneity val-
ues indicate that the earlier period was warmer (had a larger
diurnal range), these tails would be consistent with stations
which reduced the effect of urbanisation. Moving a station
from an urban(ised) to a rural site would reduce the monthly-
average temperature and increase the monthly-average DTR
(Karl et al., 1988).

To further check on the possible origin for this bias, we
created the distribution separately for the stations which re-
port predominantly hourly versus those that report every 3
hours (Fig. A1 Appendix). The bias is much stronger in
the hourly stations than in the 3-hourly ones, indicating that
the underlying cause may be more common in automatic
meteorological stations. This difference in the bias magni-
tude is also seen when using the diurnal temperature range.
We also created distributions for different WMO regions for
the monthly-average temperature. The distribution for North
America has the largest bias (0.198◦C), with Asia having the
smallest (0.043◦C). Biases in the inhomogeneity magnitudes
relating to changes in instrumentation have been reported for
the USHCN byMenne et al.(2009), which could be another
source.

The spreads of the two distributions are also very similar.
For the missing change points (the blue histograms in Fig.2),
the mean values are very close to zero, with a relatively simi-
lar standard deviation for both methods. The largest inhomo-
geneity magnitudes constitute only a very small fraction of
the total population (below 3 and 4 % for the mean and di-
urnal range, respectively). The occurrence of change points
in time appears to be relatively constant over the period of
record, but with a possibly larger number occurring in the
mid-to-late 1990s (Fig.3). Note that change points cannot be
detected within 2 years of the start or end of a series.

Unsurprisingly, few change points are found in stations
with very short records (Fig.4). Many of the stations within
HadISD have records which are 41 years long, and the most
common number of change points for these stations is two.
The overall distribution of the number of change points has
a relatively smooth decay from the 1333 stations which have
only one change point detected (excluding those on which
PHA was not able to run) to the four which have 11 change
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Fig. 2. The distribution of the inhomogeneity magnitudes for monthly mean (a) temperatures and (b) diurnal temperature range. The
distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue. A positive step
means that the earlier homogeneous period (before the break) is spuriously warmer or has a spuriously larger diurnal temperature range than
the later homogeneous period (after the break).

Fig. 3. The number of change points found in each year from both
the calculation methods (monthly mean temperature and monthly
mean diurnal temperature range).

years of record, and between zero and four change points,
which matches the average number quoted above. There are
no untoward patterns in the number of change points with
the station record length: the peaks in the main panel fol-
low the uneven distribution of the station record lengths and510

the maximum number of change points rises quasi-linearly
with record length until around 30 years, where it flattens
slightly. The maximum number of change points also oc-
curs at around five times the median number for that record
length.515

The distribution of homogeneous stations (no change

number for the first six digits and a WBAN for the final five. For
full details see Smith et al. (2011) and references therein.

Fig. 4. MAIN PANEL: The distribution of the stations with number
of change points and record length. Histograms show the distri-
bution of stations with record length (TOP) and with change point
number (RIGHT), which are the projections onto the x and y axes
of the main panel respectively. The colour bar (top right) is on a
logarithmic scale.

points detected) with record length follows that of the com-
plete population of stations. Therefore it is not the record
length which is restricting the ability of PHA to find change
points in these stations.520

The distribution of inhomogeneity magnitudes with lat-
itude and longitude show that the largest inhomogeneities
are mainly found in mid-latitude and Euro-American regions
with large numbers of stations (Fig. 5). This is because hav-
ing more stations in a zonal or meridional band increases the525

chances of finding a large inhomogeneity within that pop-

Figure 2. The distribution of the inhomogeneity magnitudes for monthly-mean(a) temperatures and(b) diurnal temperature range. The
distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue. A positive step
means that the earlier homogeneous period (before the break) is spuriously warmer or has a spuriously larger diurnal temperature range than
the later homogeneous period (after the break).

Figure 3. The number of change points found in each year
from both the calculation methods (monthly-mean temperature and
monthly-mean diurnal temperature range).

points (station numbers: 485650-99999 – Phuket Airport;
722265-13821 – Maxwell AFB; 723235-13896 – Northwest
Alabama Regional Apt; and 725825-24121 – Elko Regional
Apt4). There is a concentration of stations which have 41
years of record, and between zero and four change points,
which matches the average number quoted above. There are
no untoward patterns in the number of change points with

4The stations in HadISD are numbered using a quasi WMO
number for the first six digits and a WBAN (Weather Bureau, Air
Force and Navy) number for the final five. For full details seeSmith
et al.(2011) and references therein.

the station record length: the peaks in the main panel fol-
low the uneven distribution of the station record lengths and
the maximum number of change points rises quasi-linearly
with record length until around 30 years, where it flattens
slightly. The maximum number of change points also oc-
curs at around five times the median number for that record
length.

The distribution of homogeneous stations (no change
points detected) with record length follows that of the com-
plete population of stations. Therefore it is not the record
length which is restricting the ability of PHA to find change
points in these stations.

The distribution of inhomogeneity magnitudes with lat-
itude and longitude show that the largest inhomogeneities
are mainly found in mid-latitude and Euro-American regions
with large numbers of stations (Fig.5). This is because hav-
ing more stations in a zonal or meridional band increases the
chances of finding a large inhomogeneity within that pop-
ulation even though these regions also tend to have greater
spatial and temporal variability than the tropics. These dis-
tributions also show that PHA is more able to find change
points with small amplitudes in regions which have a high
station density. This may be due to the close proximity of a
large number of neighbouring stations, allowing for a wide
choice of highly correlating neighbours. This also implies
that under-detection of inhomogeneities occurs in regions
with low station densities. With longitude, there appears to be
a bias towards larger positive inhomogeneities in the Ameri-
cas. Of course, in areas with more stations there is a greater
chance of finding change points with very large or very small
inhomogeneity magnitudes merely because of the increased
number of stations. In Fig.2a there is a broader positive tail
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Figure 4. Main panel: the distribution of the stations with number
of change points and record length. Histograms show the distribu-
tion of stations with record length (top) and with change point num-
ber (right), which are the projections onto thex andy axes of the
main panel, respectively. The colour bar (top right) is on a logarith-
mic scale.

for the monthly-mean temperature calculation. In contrast, in
the mean diurnal range there is a negative bias, and this con-
trast is apparent when comparing the two panels in Fig.6. As
the largest inhomogeneities have the most intense colour, the
effect of these biases in the tails of the distribution stand out
in Fig. 6. Particularly large positive inhomogeneities are ob-
served in the US and the area around the Adriatic Sea when
using monthly-mean temperatures. Smaller inhomogeneities
are seen in western Europe and Asia. When using the diurnal
temperature range, clusters of negative inhomogeneities are
seen in western Europe, and the western half of the US has
larger inhomogeneity magnitudes than the eastern half. Simi-
lar small overall biases were found in the USHCN byMenne
et al.(2009, Fig. 6).

4 Dew point temperatures, sea-level pressure and
wind speeds

We also carry out an identical set of calculations for the dew
point temperatures, sea-level pressure and wind speed mea-
surements within HadISD, using the same completeness cri-
teria when calculating monthly averages. For SLP, we use
the deviations from 1000 hPa when calculating the monthly-
mean values. We find 16785 change points in 5051 stations
for dew point temperatures (3.32 per station), 5658 change
points in 2781 stations for SLP (2.03 per station) and 23781
change points in 5496 stations for wind speeds (4.32 per sta-
tion). Thus the wind speed records appear to be more inho-
mogeneous than the other variables, and the sea-level pres-
sure records more homogeneous.

The distributions of the inhomogeneity magnitudes for the
dew point temperatures and SLP are shown in Figs.7 and
8, respectively. As for the temperature results (Fig.2), the
means are close to zero but have a small positive bias, and
the diurnal range has a small negative bias. These biases in
the dew point inhomogeneity magnitudes are smaller for the
Gaussian curve, and in both cases smaller than for tempera-
ture. For the SLP, the raw data and the fitted curve have sim-
ilar small biases. As for the temperature measurements, the
hourly stations have larger biases than the 3-hourly stations.
The overall excess number of large inhomogeneity magni-
tudes seen in the dew point does not necessarily indicate that
the underlying distribution is non-Gaussian. Large final inho-
mogeneities may result from the combination of two or more
smaller changes close in time (in the same direction) dur-
ing the statistical homogenisation procedure. Therefore, un-
der the assumption that the distribution of inhomogeneities
is Gaussian, most of the change points have been detected
down to a limit of around 0.5◦C or 0.5 hPa. The distribution
of the inhomogeneities proposed for the monthly-mean dew
point temperatures is much broader than that for the monthly
diurnal range, whereas for the temperatures they were very
close (Fig.2). The means of the missing change points are
all close to zero.

The distribution of the number of change points per sta-
tion against the record length for the dew point tempera-
tures (Fig.9) is very similar to that from the temperatures
(Fig. 4). There is a concentration of stations with 41 years of
records and one to two change points, with a smooth decline
to greater numbers of change points, with station 442840-
99999 (Galuut, Mongolia) having 13 change points. The dis-
tribution for SLP is much flatter, as would be expected from
Table 1. Two stations, 483270-99999 (Chiang Mai, Thai-
land) and 577760-99999 (Nanyue, China), have eight change
points, and the decline is very steep from the 2364 stations
which have no detected change points.

The distributions for the wind speeds are shown in Fig.10.
The inhomogeneities have only a very small negative bias.
Although the hourly stations have a larger bias than the 3-
hourly ones for the monthly-average daily-maximum wind
speed, the biases are equal for the monthly-average wind
speed. The overall distribution of the inhomogeneities pro-
posed for the monthly-mean daily-maximum wind speeds
is broader than that of the monthly mean. It is reasonable
to deduce that most of the change points whose inhomo-
geneities are> 0.5 m s−1 have been detected. The distribu-
tions of the missing inhomogeneities also have no strong bi-
ases. It is clear from Fig.9 that relatively few stations with
long records are break-free. Most stations have around four
change points over their record, with 161340-99999 (Monte
Cimone, Italy) having 13 change points in total. Across all
variables, there are two regions in Figs.4 and9 which con-
tain most of the stations: firstly, those with 41 years of record
and having roughly the average number of change points for
that variable. The other cluster is between 10 and 25 years,
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Fig. 5. The distribution of inhomogeneity magnitudes with (a) Longitude and (b) Latitude using the monthly mean temperatures. Arrows
indicate values which fall outside of the plotted area.

Fig. 6. The distribution of the largest absolute inhomogeneity found for each station when using the (a) monthly mean temperature and (b)
the monthly mean diurnal temperature range. Only those stations which have at least one change point are shown, resulting in the different
numbers of stations for each panel. Note the non-linear colour scale.

no monthly means could be calculated at all. The number of
change points for dewpoints is relatively uniform across the635

globe, but large values are found for Italy, Korea and tip of
Argentina (Fig. 11). The largest number of change points
for SLP are found in the Maritime Continent and South East
Asia, whereas for wind speeds, large numbers are found in
China through to Indochina, in the eastern USA and in Ar-640

gentina. There do not appear to be any links with physical
features for any of the variables.

The RMS difference maps are given in the Appendix (Sec-
tion 8). The dewpoints have high noise in high or dry ar-
eas (the Rocky Mountains, Sahara Desert, central Australia)645

as well as high latitudes, whereas the sea-level pressure
picks out just the high latitudes with high RMS noise. The
windspeeds have a comparatively uniform noise distribution

across the globe, with some tendency to be higher on coasts
and islands, and with a lower level for the monthly averages650

than for the average maxima. The low noise has enabled the
detection of the most change points for one variable (see Ta-
ble 1 and Fig. 9)

Compared to the temperatures, the dewpoint temperatures
have a more even distribution of inhomogeneity magnitudes655

across the globe (Fig. 12). The magnitudes are on average
larger for the monthly mean dewpoint temperatures than for
the monthly mean dewpoint ranges. As with temperature,
the western half of the US appears to have larger magnitudes
than the eastern half, but the region around the Mediterranean660

and also Scandinavia also stand out.

There are fewer stations which have detected change
points in SLP, with a reduction in the station number being

Figure 5. The distribution of inhomogeneity magnitudes with(a) longitude and(b) latitude using the monthly-mean temperatures. Arrows
indicate values which fall outside of the plotted area.
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indicate values which fall outside of the plotted area.

Fig. 6. The distribution of the largest absolute inhomogeneity found for each station when using the (a) monthly mean temperature and (b)
the monthly mean diurnal temperature range. Only those stations which have at least one change point are shown, resulting in the different
numbers of stations for each panel. Note the non-linear colour scale.
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There are fewer stations which have detected change
points in SLP, with a reduction in the station number being

Figure 6. The distribution of the largest absolute inhomogeneity found for each station when using the(a) monthly-mean temperature
and(b) the monthly-mean diurnal temperature range. Only those stations which have at least one change point are shown, resulting in the
different numbers of stations for each panel. Note the non-linear colour scale.

in a band which extends from zero change points right up
to longer station records and more change points, which is
clearest in the wind speeds panel of Fig.9. This follows the
average increase in the number of change points within a sta-
tion record as the record length increases.

The stations which were not processed by PHA cluster in
southern and eastern Africa and western South America for
all three variables, and also western China for SLP (Fig.11).
For SLP, this is the result of very short records after conver-
sion to monthly averages in these areas. For many stations,
no monthly means could be calculated at all. The number of
change points for dew points is relatively uniform across the
globe, but large values are found for Italy, Korea and the tip

of Argentina (Fig.11). The largest number of change points
for SLP are found in the Maritime Continent and southeast
Asia; whereas for wind speeds, large numbers are found in
China through to Indochina, in the eastern US and in Ar-
gentina. There do not appear to be any links with physical
features for any of the variables.

The rms difference maps are given in the Appendix. The
dew points have high noise in high or dry areas (the Rocky
Mountains, the Sahara, central Australia) as well as high lat-
itudes, whereas the sea-level pressure picks out just the high
latitudes with high rms noise. The wind speeds have a com-
paratively uniform noise distribution across the globe, with
some tendency to be higher on coasts and islands, and with
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Fig. 7. The distribution of the inhomogeneity magnitudes for monthly mean (a) dewpoint temperatures and (b) diurnal dewpoint temperature
range. The distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue.

Fig. 8. The distribution of the inhomogeneity magnitudes for
monthly mean SLP. The distributions have been fitted with a Gaus-
sian (red), and the difference between the data and the Gaussian is
shown in blue.

clearest in Africa and western China (Fig. 13). Positive in-
homogeneities are seen in the eastern USA, parts of Europe,665

in Siberia and down through China into the Maritime Conti-
nent, with other smaller clusters in Europe. Negative inho-
mogeneities are seen in Central and South America.

The pattern of inhomogeneity magnitudes for the wind
speeds is not strong when using the monthly mean values670

(Fig. 14). There is a fairly uniform mix of positive and
negative inhomogeneities, but with clusters of more positive
values in the USA and more negative ones through Eura-
sia. When using the monthly mean daily maximum wind
speed, the inhomogeneities are larger. Adjustment of positive675

inhomogeneities would weaken apparent declines in wind
strength (McVicar and Roderick, 2010).

5 Validation

To validate whether the change point locations detected using
PHA correspond with documented breaks in the station meta-680

data, we look at the 153 UK stations in the HadISD database.
Of these 153 stations, 102 contain the 196 change points in
the temperature observations and no change points are de-
tected in the remaining 51 (10 of which were not processed
by PHA).685

Of these 153 stations, 18 have been merged during the cre-
ation of HadISD, and contain 31 of the 196 change points.
Although great care was taken when selecting stations to
merge, it is likely that in some cases this process has cre-
ated or left a discontinuity in the station record. The loca-690

tions of change points identified by PHA from the tempera-
ture records were compared to the dates where input station
identifiers changed in the HadISD netCDF headers5. In six
stations these dates were in close agreement, and accounted
for eight of the change points (Table 2).695

There have been changes in the station reporting accuracy
(usually between 0.1◦C and single degree precision) as sta-
tions were up- or downgraded over time. Of the 153 UK
HadISD stations, 34 had no change in reporting accuracy
during their record. A further 13 stations had changes in re-700

porting accuracy where the date corresponded to a change
point detected by PHA, and the remaining 106 stations had
changes in reporting accuracy during their record, but the
dates of these changes did not correspond to change points
detected by PHA.705

Using the station metadata is another way to validate the
detected change points. As station metadata are more com-
plete in later years, we initially focus on the UK stations

5When creating the HadISD netCDF files, the input station IDs
are retained as a field precisely for this purpose. For more details
see Dunn et al. (2012).

Figure 7. The distribution of the inhomogeneity magnitudes for monthly-mean(a) dew point temperatures and(b) diurnal dew point
temperature range. The distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown
in blue.

Figure 8. The distribution of the inhomogeneity magnitudes for
monthly-mean SLP. The distributions have been fitted with a Gaus-
sian (red), and the difference between the data and the Gaussian is
shown in blue.

a lower level for the monthly averages than for the average
maxima. The low noise has enabled the detection of the most
change points for one variable (see Table1 and Fig.9)

Compared to the temperatures, the dew point temperatures
have a more even distribution of inhomogeneity magnitudes
across the globe (Fig.12). The magnitudes are on average
larger for the monthly-mean dew point temperatures than for
the monthly-mean dew point ranges. As with temperature,
the western half of the US appears to have larger magnitudes
than the eastern half, but the region around the Mediterranean
and also Scandinavia also stand out.

There are fewer stations which have detected change
points in SLP, with a reduction in the station number being
clearest in Africa and western China (Fig.13). Positive in-
homogeneities are seen in the eastern US, parts of Europe,
in Siberia and down through China into the Maritime Con-
tinent, with other smaller clusters in Europe. Negative inho-
mogeneities are seen in Central and South America.

The pattern of inhomogeneity magnitudes for the wind
speeds is not strong when using the monthly-mean values
(Fig. 14). There is a fairly uniform mix of positive and nega-
tive inhomogeneities, but with clusters of more positive val-
ues in the US and more negative ones through Eurasia. When
using the monthly-mean daily-maximum wind speed, the in-
homogeneities are larger. Adjustment of positive inhomo-
geneities would weaken apparent declines in wind strength
(McVicar and Roderick, 2010).

5 Validation

To validate whether the change point locations detected using
PHA correspond with documented breaks in the station meta-
data, we look at the 153 UK stations in the HadISD database.
Of these 153 stations, 102 contain the 196 change points in
the temperature observations and no change points are de-
tected in the remaining 51 (10 of which were not processed
by PHA).

Of these 153 stations, 18 have been merged during the cre-
ation of HadISD and contain 31 of the 196 change points.
Although great care was taken when selecting stations to
merge, it is likely that in some cases this process has cre-
ated or left a discontinuity in the station record. The loca-
tions of change points identified by PHA from the tempera-
ture records were compared to the dates where input station
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Figure 9. The distribution of the number of change points within a station record against the number of years of data for(a) dew point
temperature,(b) sea-level pressure and(c) wind speeds. The histograms on the top and to the right of the grid plot show the projections onto
thex andy axes, respectively. The colour bar is on a logarithmic scale.

Figure 10. The distribution of the inhomogeneity magnitudes for(a) monthly-mean wind speeds and(b) monthly-mean daily-maximum
wind speed. The distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue.
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Figure 11. (a, c, e)The location of stations which could not be processed by PHA (red) and those stations where no change points were
found in the entire record (blue) for(a) dew points,(c) SLP and(e)wind speeds.(b, d, f) The number of breaks detected for each station.

identifiers changed in the HadISD Network Common Data
Form (NetCDF) headers5. In six stations these dates were in

5When creating the HadISD NetCDF files, the input station IDs
are retained as a field precisely for this purpose. For more details
seeDunn et al.(2012).

close agreement, and accounted for eight of the change points
(Table2).

There have been changes in the station reporting accuracy
(usually between 0.1◦C and single-degree precision) as sta-
tions were up- or downgraded over time. Of the 153 UK
HadISD stations, 34 had no change in reporting accuracy
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Table 2. Proposed change points from PHA which are close in date to changes in the station location or instrumentation as indicated in the
metadata.

Station ID Name Change point date Metadata date Type

Merged stations

035580-99999 Bedford Airport 1 Nov 1994 1 Apr 1994 Merger
037010-99999 Gawlish 1 Mar 1983 1 Jun 1994 Mergera

1 Aug 1984 1 Jun 1994 Mergera

1 Dec 1988 1 Mar 1989 Merger
037260-99999 Bristol Weather Centre 1 Sep 2001 16 Sep 2001 Merger
038140-99999 Lizard 1 Mar 1988 19 Jul 1988 Merger
038560-99999 Portland Bill 1 Oct 1991 1 Mar 1992 Merger
038840-99999 Herstmonceux 1 Aug 1992 30 Nov 1992 Merger

Change points post-2000

030080-99999 Fair Isle 1 Oct 2004 15 Sep 2004 Instrument change
032810-99999 Fylingdales 1 Mar 2009 11 Mar 2009 Instrument change
033180-99999 Blackpool 1 Mar 2010 12 Feb 2010 New screen and instruments
033340-99999 Manchester Ringway 1 Apr 2005 1 Nov 2004 Instrument & site change
033730-99999 Scampton 1 Jul 2001 31 Jan 2001 Instrument change
038390-99999 Exeter Airport 1 Dec 2009 3 Nov 2009 Station move
039170-99999 Belfast Aldergrove 1 Aug 2003 24 Jan 2003 Station move

≥ 3 change points

033180-99999 Blackpool 1 May 1991 1 Oct 1991 Instrument change
1 Jan 1994 1 Oct 1994 Instrument change

031110-99999 Machrihanish 1 Jan 1993 8 Aug 1992 Instrument change
036720-99999 Northolt 1 Oct 1994 12 Jan 1995 Instrument change
038270-99999 Plymouth Mount Batten 1 Feb 1991 17 Jul 1991 Instrument change

2 change points

032570-99999 Leeming 1 May 1995 30 Nov 1995 Instrument changeb

1 Jun 1996 30 Nov 1995 Instrument changeb

036040-99999 Milford Haven 1 May 1995 28 Apr 1995 Instrument change
037170-99999 Cardiff Weather Centre 1 Feb 1991 8 Nov 1991 Instrument changeb

1 Mar 1992 8 Nov 1991 Instrument changeb

037610-99999 Odiham 1 Apr 1993 2 Apr 1993 Instrument change
038530-99999 Yeovilton 1 Mar 1995 10 Nov 1994 Instrument change

a These two change points occur on either side of a gap before which one station stops and after which the other starts. The change points have not
been merged as they are too far apart.b For these stations the change points surround the date in the metadata, but have not been merged as they are
more than 12 months apart.

during their record. A further 13 stations had changes in re-
porting accuracy where the date corresponded to a change
point detected by PHA, and the remaining 106 stations had
changes in reporting accuracy during their record, but the
dates of these changes did not correspond to change points
detected by PHA.

Using the station metadata is another way to validate the
detected change points. As station metadata are more com-
plete in later years, we initially focus on the UK stations
where detected change points occurred after 2000. This was
a subset of 35 stations containing 45 change points. In all,
seven change points were close (within 12 months) in date to
notes in the metadata, detailed in Table2.

We also looked at the 25 UK stations which had three or
more change points (some of which overlapped with the 35
stations with change points post 2000) and account for 105
change points. Each of the five change points detailed in Ta-
ble2 are within 12 months of the change noted in the station
metadata, though the dates are never very close. Finally, the
29 UK stations which have two change points were also as-
sessed (see Table2), resulting in five stations where change
points could be linked to metadata information, accounting
for seven change points. However, metadata were not avail-
able for all stations, and in others did not appear to cover the
years in which change points were identified. In most cases
change point dates have no corresponding change noted in
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Fig. 12. As for Fig. 6 but for (a) monthly averages of dewpoint temperatures and (b) monthly average diurnal ranges of dewpoint tempera-
tures.

Fig. 13. As for Fig. 6(a) but for SLP.

where detected change points occurred after 2000. This was
a subset of 35 stations containing 45 change points. In all,710

seven change points were close (within 12 months) in date to
notes in the metadata, detailed in Table 2.

We also looked at the 25 UK stations which had three or
more change points (some of which overlapped with the 35
stations with change points post 2000) and account for 105715

change points. Each of the five change points detailed in Ta-
ble 2 are within 12 months of the change noted in the station
metadata, though the dates are never very close. Finally, the
29 UK stations which have two change points were also as-
sessed (see Table 2), resulting in five stations where change720

points could be linked to metadata information, accounting
for seven change points. However, metadata was not avail-
able for all stations, and in others did not appear to cover the
years in which change points were identified. In most cases
change point dates have no corresponding change noted in725

the station metadata, or the metadata itself are not sufficiently
complete.

Although this investigation - which has accounted for 40
(20 per cent) of the 196 change points - demonstrates that us-
ing the PHA to check for inhomogeneities does find change730

points which could correspond to documented changes in
some stations, there are still many undocumented change
points which have no explanation from the station metadata.
In fact most of the change points proposed by PHA do not
have any corresponding change documented in the station735

metadata. This is likely to be for a combination of reasons.
The metadata are known to be incomplete and in some cases
do not cover the entire station record. Also changes can occur
inside and outside of an observation enclosure that would not
be noted in the metadata (new paths in the enclosure, change740

in crop type, tree growth/felling, new buildings) but could
result in an inhomogeneity in the record.

6 Provision of the Change Points

The change point dates and values determined by this
study will be made available on the HadISD webpage745

(http://www.metoffice.gov.uk/hadobs/hadisd/) as text files in
the first instance. These are easily readable by computer
and human and so can be quickly implemented into analy-
sis schemes. This homogeneity assessment will become part
of the annual update of HadISD, so that change points are750

available for the most recent version of the dataset. In due
course the information will also be included in the netCDF
files created when HadISD is updated on an annual basis.
Diagnostic information and the relevant plots will also be in-
cluded on the website as well as the analysis scripts where755

possible.

Figure 12. As for Fig. 6 but for (a) monthly averages of dew point temperatures and(b) monthly-average diurnal ranges of dew point
temperatures.

Figure 13. As for Fig.6 (a) but for SLP.

the station metadata, or the metadata themselves are not suf-
ficiently complete.

Although this investigation – which has accounted for 40
(20 %) of the 196 change points – demonstrates that using
PHA to check for inhomogeneities does find change points
which could correspond to documented changes in some
stations, there are still many undocumented change points
which have no explanation from the station metadata. In fact
most of the change points proposed by PHA do not have any
corresponding change documented in the station metadata.
This is likely to be for a combination of reasons. The meta-
data are known to be incomplete and in some cases do not
cover the entire station record. Also changes can occur in-
side and outside of an observation enclosure that would not
be noted in the metadata (new paths in the enclosure, change
in crop type, tree growth/felling, new buildings) but could
result in an inhomogeneity in the record.

6 Provision of the change points

The change point dates and values determined by this study
will be made available on the HadISD webpage (http://www.
metoffice.gov.uk/hadobs/hadisd/) as text files in the first in-
stance. These are easily readable by computer and human
and so can be quickly implemented into analysis schemes.
This homogeneity assessment will become part of the annual
update of HadISD, so that change points are available for
the most recent version of the data set. In due course the in-
formation will also be included in the NetCDF files created
when HadISD is updated on an annual basis. Diagnostic in-
formation and the relevant plots will also be included on the
website as well as the analysis scripts where possible.

7 Example application: global temperatures

As the inhomogeneities calculated for each change point
have not been applied to the data during the course of this
work, there are a number of choices left up to the user as
how best to use this information. One option, outlined here,
is to progressively exclude poor stations, i.e. those with more
change points or larger inhomogeneity magnitudes, begin-
ning at the “worst”. Alternatively, the “best” stations can be
selected first, those where PHA did not find a change point,
then including progressively “worse stations”. This would al-
low the effect of inclusion of heterogeneous stations to be as-
sessed to see whether this has a significant effect on the final
results. For large-scale analyses, the coverage will change as
more stations are added in, and this will need to be taken into
account in the assessment.

What we will do here is inspired by the work ofCal-
lendar(1938, 1961), which recently celebrated its 75th an-
niversary (Hawkins and Jones, 2013). Callendar(1938) used
a relatively small number of stations (147) to estimate the
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Fig. 14. As for Fig. 6 but for (a) monthly average wind speeds and (b) monthly average daily maximum wind speeds.

Station ID Name Change Point Date Metadata Date Type

Merged Stations
035580-99999 Bedford Airport 1/11/1994 1/4/1994 Merger
037010-99999 Gawlish 1/3/1983 1/6/1984 Mergera

1/8/1984 1/6/1984 Mergera

1/12/1988 1/3/1989 Merger
037260-99999 Bristol Weather Centre 1/9/2001 16/9/2001 Merger
038140-99999 Lizard 1/3/1988 19/7/1988 Merger
038560-99999 Portland Bill 1/10/1991 1/3/1992 Merger
038840-99999 Herstmonceux 1/8/1992 30/11/1992 Merger

Change points post-2000
030080-99999 Fair Isle 1/10/2004 15/9/2004 Instrument Change
032810-99999 Fylingdales 1/3/2009 11/3/2009 Instrument Change
033180-99999 Blackpool 1/3/2010 12/2/2010 New screen and instruments
033340-99999 Manchester Ringway 1/4/2005 1/11/2004 Instrument & Site Change
033730-99999 Scampton 1/7/2001 31/1/2001 Instrument Change
038390-99999 Exeter Airport 1/12/2009 3/11/2009 Station Move
039170-99999 Belfast Aldergrove 1/8/2003 24/1/2003 Station Move

≥3 Change points
033180-99999 Blackpool 1/5/1991 1/10/1991 Instrument Change

1/1/1994 1/10/1994 Instrument Change
031110-99999 Machrihanish 1/1/1993 8/8/1992 Instrument Change
036720-99999 Northolt 1/10/1994 12/1/1995 Instrument Change
038270-99999 Plymouth Mountbatten 1/2/1991 17/7/1991 Instrument Change

2 Change points
032570-99999 Leeming 1/5/1995 30/11/1995 Instrument Changeb

1/6/1996 30/11/1995 Instrument Changeb

036040-99999 Milford Haven 1/5/1995 28/4/1995 Instrument Change
037170-99999 Cardiff Weather Centre 1/2/1991 8/11/1991 Instrument Changeb

1/3/1992 8/11/1991 Instrument Changeb

037610-99999 Odiham 1/4/1993 2/4/1993 Instrument Change
038530-99999 Yeovilton 1/3/1995 10/11/1994 Instrument Change

Table 2. Proposed Change points from PHA which are close in date to changes in the station location or instrumentation as indicated in the
metadata. a These two change points occur either side of a gap before which one station stops and after which the other starts. The change
points have not been merged as they are too far apart. b For these stations the change points surround the date in the metadata, but have not
been merged as they are more than 12 months apart.

Figure 14. As for Fig.6 but for (a) monthly-average wind speeds and(b) monthly-average daily-maximum wind speeds.

global land-surface air-temperature record in the early twen-
tieth century, and his results agree very well with the latest
global land-surface air-temperature data sets (Hawkins and
Jones, 2013). So, if our stations with the largest inhomo-
geneity magnitudes are excluded, then the global mean tem-
perature should be at least as accurate, because Callendar’s
work suggests that the spatial sampling error is insensitive
to the loss of a few stations when there are� 150 (widely
distributed) stations. We calculate the gridded global tem-
perature series from a number of subsets of the full HadISD
station listing and compare this to CRUTEM4 (Jones et al.,
2012).

To calculate the global temperature series from HadISD,
firstly, daily mean temperatures are obtained, requiring that
there are at least four observations in a day, spread over
at least 12 h. Monthly-mean temperatures are calculated if
there are at least 20 qualifying days within a month. A cli-
matology is calculated over the period 1975–1994, requir-
ing at least 16 years to be present, and this is used to calcu-
late monthly anomalies. All stations’ anomalies within each
5×5◦ grid box are averaged on a monthly basis, producing a
set of gridded monthly-anomaly fields. If there are more than
eight valid months present, then annual-mean anomalies are
calculated and, finally, a cosine-weighted global mean tem-
perature series is calculated. As no adjustments have been
applied to HadISD during this homogeneity assessment, the
global averages are of the unadjusted HadISD data. The grid-
ded monthly CRUTEM4 anomaly fields are also converted
to annual global anomalies relative to the period 1975–1994,
matching the coverage of the gridded HadISD data in each
year.

We firstly show the results of the full 6103 stations, and
compare this to versions where we have taken on those
HadISD stations which have maximum inhomogeneity mag-
nitudes (in either of the two calculation methods – mean or
diurnal range) of less than 2, 1 and 0.5◦C. We initially place

no restrictions on the number of change points within any
station series. In the upper panels of Fig.15 we show the
global trend from HadISD in black, the coverage-matched
CRUTEM4 in blue, and the full CRUTEM4 in red, along
with the range determined from the uncertainty information
given in CRUTEM4. The lower panels show the differences
between HadISD and the matched CRUTEM in blue, and
HadISD and the full CRUTEM in red.

There are two competing changes occurring in the four
panels in Fig.15. Stations with inhomogeneities above a cer-
tain magnitude are progressively excluded, reducing the av-
erage magnitude of the inhomogeneities left in the remain-
ing stations; but with this, there is a reduction in the number
of stations available, and hence the global coverage. By us-
ing CRUTEM as a comparison, it is possible to show how
close the HadISD version is to a widely used global air-
temperature data set. There are two comparisons to be made,
one to the full coverage of CRUTEM, shown in red, and one
to CRUTEM where the coverage has been matched to that of
the HadISD sample, shown in blue.

Focusing firstly on the difference between HadISD and the
matched CRUTEM, by restricting the stations to those with
smaller and smaller inhomogeneities, this difference reduces,
especially from 1996 onwards. But when only stations with
inhomogeneity magnitudes< 0.5◦C are retained, the differ-
ences start to increase again. We also fit linear trends using
the median of pairwise trends method ofSen(1968). These
are shown in the top left of each panel of Fig.15. The lin-
ear trends also become closer as the stations are restricted,
but the uncertainty in the linear trends increases as the num-
ber of stations reduces. Using the rms difference as a mea-
sure of the difference of the global mean between HadISD
and the two versions of CRUTEM shows this more clearly.
When comparing to a matched CRUTEM, theerms reduces to
a minimum when inhomogeneity magnitudes are restricted
just to<1◦C but then increases again. Despite matching the
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Figure 15. The CRUTEM4 global temperature series (red) compared with a CRUTEM4 series matched to the HadISD coverage (blue)
and the global series as calculated from HadISD (black). The shading surrounding the matched CRUTEM4 (blue) shows the combined
station, grid-box sampling and bias uncertainties. The dark shading for the full CRUTEM (red) shows the combined station and grid-box
sampling uncertainties, with the light shading including the bias and coverage uncertainties as well.(a) No restrictions on the magnitudes
of the inhomogeneities (all stations);(b) magnitudes<2◦C, (c) < 1◦C and(d) < 0.5◦C. The trends for each of the three curves are given
in the top left of each panel, with the 5th- and 95th-percentile values shown in the sub- and superscripts, respectively, as calculated using
the median of pairwise slopes algorithm. The bottom panels show the differences between HadISD and CRUTEM4 matched to the HadISD
sample (blue) and HadISD and the full CRUTEM4 (÷ 10, red) along with the rms differences. In this plot there is no restriction on the
number of change points allowed in a station record.

coverage of CRUTEM to that of the gridded HadISD, the
differences increase, indicating that there are changes to in-
dividual grid-box values which become more important as
the station number reduces. The difference between the full
CRUTEM and HadISD remains steady when restricting to
< 2◦C, but then increases thereafter. This shows that, when
trying to obtain a global quantity, the coverage is an impor-
tant factor, and that station quality does not have as much
of an impact. In fact, when taking only the 1458 stations in
which no change points were, or could be, detected, the lin-
ear trends still agree within the uncertainties, but theerms are
large, especially in the last decade of data (Fig.16).

In the set of four versions shown in Fig.17, we keep the
maximum value of inhomogeneity allowed fixed at< 1◦C,

as this has the lowesterms between HadISD and the matched
CRUTEM from the analysis above. However, we place re-
strictions on the number of change points that occur within
the record of the station, from five to one. In this case, de-
spite the increase in average station quality as the number of
change points are restricted, theerms between HadISD and
both versions of CRUTEM increase, with the clearest devi-
ations relative to the matched CRUTEM being visible in the
post-2005 period.

What is clear from all eight versions shown in Figs.15
and17is that the linear trends all agree, within the uncertain-
ties obtained from the median pairwise algorithm. Although
by excluding more and more inhomogeneous stations will
improve the fidelity of the remaining stations, the reduction
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Figure 16. As for Fig.15but for the 1458 stations with no detected change points.

Figure 17. As for Fig. 15 but for stations with inhomogeneity magnitudes< 1◦C. (a) No more than five,(b) three,(c) two and(d) one
inhomogeneity allowed in the full record of the station.

www.clim-past.net/10/1501/2014/ Clim. Past, 10, 1501–1522, 2014



1518 R. J. H. Dunn et al.: Pairwise homogeneity assessment of HadISD

in coverage will eventually cause larger deviations from the
true underlying value. The exact point where these two com-
peting effects balance will depend on the observed variable,
and also the study being performed. Also, as the number of
valid grid boxes reduces, differences in individual grid boxes
become more prominent, leading to the increase in the scat-
ter between the matched HadISD and CRUTEM4 versions.
Therefore, as including the stations which have many change
points or large inhomogeneity magnitudes does not have a
large effect on large-scale analyses, it may be best to use all
the data available rather than worry too much about station
quality, depending on the application.

8 Summary

In this work we have started the process of homogenising
HadISD, a sub-daily, multivariate, station-based data set cov-
ering 1973–2013. Using the PHA homogenisation code of
Menne and Williams Jr(2009) we have determined the loca-
tions of change points on a monthly scale using the monthly-
mean values and diurnal ranges or maximum values for the
temperature, dew point temperature, sea-level pressure and
wind speed. Change point locations have been combined
when they occur within a year of each other. The final num-
ber of stations which could be processed by PHA along with
the average change point properties are given in Table1.
There are some geographical patterns in the stations which
could not be homogenised, or in which no breaks were found.
The main concern regarding the former is the lack of suffi-
cient target-station and neighbour-station data.

We use the change point locations and inhomogeneity mag-
nitudes to guide alternative estimates of global temperature
from HadISD stations, and compare these to CRUTEM4. Re-
moving the most inhomogeneous stations results in an im-
provement in the scatter between global mean land-surface
air-temperature from HadISD and CRUTEM4 with matched
coverage. However, further removals of stations with smaller
and fewer inhomogeneities increase the scatter because the
coverage is degraded.

Future work will focus on detecting change points on a
daily level, with then the application of adjustments onto the
hourly data. Daily homogenisation of maximum and min-
imum temperatures has already been successfully accom-
plished (e.g.Vincent et al., 2002; Della-Marta and Wan-
ner, 2006; Trewin, 2013; Rienzner and Gandolfi, 2013) on
country-scale networks. However, the issue of automated
scaling of inhomogeneity magnitudes across all hours of the
day has not yet been solved.
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Appendix A

We show the distributions of the inhomogeneity magnitudes
for stations which report hourly and those which report 3-
hourly (Fig.A1).R. J. H. Dunn et al.: Pairwise Homogeneity Assessment of HadISD 21

Fig. 18. The distribution of the inhomogeneity magnitudes for monthly mean temperatures for stations which report (a) hourly and (b)
three-hourly. The distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue.

Fig. 19. The average RMS difference for the neighbours from each
station for the monthly average diurnal temperature range.

Fig. 20. The average RMS difference for the neighbours from each
station for (a) the monthly average dewpoint and (b) the monthly
average diurnal dewpoint range.

Figure A1. The distribution of the inhomogeneity magnitudes for monthly-mean temperatures for stations which report(a) hourly and(b)
3-hourly. The distributions have been fitted with a Gaussian (red), and the difference between the data and the Gaussian is shown in blue.

Figure A2. The average rms difference for the neighbours from each station for the monthly-average diurnal temperature range.

We show the maps of the average rms noise for each
station calculated from the target–neighbour difference se-
ries for each variable and monthly averaging method
(Figs.A2–A5).
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Figure A3. The average rms difference for the neighbours from
each station for(a) the monthly-average dew point and(b) the
monthly-average diurnal dew point range.

Figure A4. The average rms difference for the neighbours from
each station for the monthly-average sea-level pressure.

Figure A5. The average rms difference for the neighbours from
each station for(a) the monthly-average wind speed and(b) the
monthly-average maximum wind speed.
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