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1 Methods

Assume a linear relationship exists between temperature 7" and proxy P:
T =BP +¢, (1)

where ¢ denotes the error term, following a standard multivariate normal distribution.
Let P. be a truncated version of P restricted to the calibration interval. One can show
that when P.'P, is non-singular, i.e. P, is full rank, the estimate of B is given by the
ordinary least square estimates:

B = (P./'P.)"'PT (2)

In paleoclimate reconstructions, however, it is often the case P.‘P, is rank-deficient, mak-
ing traditional regression methods no longer applicable. Four CFR techniques are used
herein to solve the problem.

1.1 RegEM-TTLS (Schneider, 2001)

Reconstructions with RegEM-TTLS were performed using the standard algorithm de-
scribed in Schneider (2001). In particular, the implementation of TTLS follows the de-
scription in Fierro et al. (1997). First, SVD is calculated on the augmented data matrix
A = (Tcalib, Pealib), in which small singular values are treated as zeros, and Tcaiib, Pealib
refer to T, P over the calibration period. Regularization is achieved by retaining only the
first k large eigenvalues of the SVD of A. The choice of k determines to what extent the
SVD of A is regularized, and can be user-specified or chosen adaptively by an algorithm.
In this study, k£ was selected by detecting the first break in the log eigenvalue spectrum of
A (Mann et al., 2009, SOM) prior to executing the RegEM algorithm. On average, a value
of 5 was selected in most SNR cases?.

1.2 M09 implementation of RegEM-TTLS (Mann et al., 2009)

The M09 implementation of TTLS uses a hybrid version of RegEM-TTLS that treats
low-frequency and high-frequency signals separately (a 20-year frequency split). The re-
construction is then performed in a forward “stepwise” approach century by century. For
each century, only the first M leading modes of surface temperature are retained, de-
termined by the number of degrees of freedom in the proxy network. M09 also uses a
semi-adaptive choice for both low-frequency and high-frequency truncation parameters, k;
and kj, respectively. The method selects: 1) k; to retain 33% of the low-frequency multi-
variate data variance, and 2) kj, by detecting the first break in the log eigenvalue spectrum
of high-frequency multivariate data variance, which are also calculated for each century of
reconstruction.

'In rare cases, depending on the specific noise realization, k = 6.



1.3 CCA (Smerdon et al., 2010)

Canonical correlation analysis (CCA) is applied as described by Smerdon et al. (2010). The
primary goal of CCA is to perform dimensional reductions on T, P and B in Eq 1. CCA
first decomposes T and P through singular value decomposition (SVD), using only the first
few leading modes (d,, d;) to estimate the covariance matrix 5, and then further truncates
the eigen decomposition of 9 (via the selection of d..,) to estimate B. The truncation
parameters are selected based on "leave-half-out" cross-validation (CV), as described by
Smerdon et al. (2010). See Fig. S2 for an illustration of the implementation of CCA. Since
the set of optimal (d,, d¢, decq) is chosen through CV, model parameters for CCA are not
set a priori, making the method fully data-adaptive.

Below are some technical notes on speeding up CCA and employing the method in a
temporally variant network. Originally, in the study by Smerdon et al. (2010), CCA is
applied on a temporally invariant network, which means that (d,, d;, d..,) only needs to be
chosen once over the entire reconstruction period. In reality (and so in our study), proxy
availability declines back in time, so the truncation parameters should also be chosen adap-
tively. In this study, we define patterns of missing values and group proxies with the same
pattern together. Here we provide a simple example to illustrate the process. Assume we
know that 35 proxies are available until A.D. 1000, when estimating the set of truncation
parameters, all temperatures and only these 35 proxies over the calibration period will be
used. For this particular MO8 proxy dataset, there are 282, 121 and 281 distinct patterns
of missing values in the ideal SNR, local SNR and max SNR networks, respectively. The
corresponding set of optimal truncation parameters (d,, d;, d.., ) is different for each pat-
tern, and also depends on the specific noise ensemble, i.e. SNR level and noise term in the
pseudoproxies. The set of (d,, dt, d.c,) changes with input dataset and the large number of
chosen truncation parameters are therefore not provided herein.

To speed up the computation, we also modified the original code (predccabp.m) pro-
vided in the supplementary info of Smerdon et al. (2010). Instead of calculating SVD for
T and P every time when performing a CCA reconstruction in the CV process, we apply
SVD only once before using CV to choose the optimal set of parameters.

The code will be available online at https://code.google.com/p/common-climate/.

1.4 GraphEM (Guillot et al., submitted)

The GraphEM algorithm benefits from recent advances in high-dimensional statistics by
using a Gaussian graphical model (GGM, a.k.a. Markov random field, Whittaker, 1990;
Lauritzen, 1996) to estimate the covariance structure ¥ — a critical ingredient of all CFR
methods. GGMs provide a natural and flexible framework for modeling the inherent spatial
heterogeneities of high-dimensional spatial fields, which would in general be more difficult
with standard parametric covariance models. At the same time, they provide the necessary
parameter reduction for obtaining precise and well-conditioned estimates of ¥, even when
the sample size is much smaller than the number of variables (as is typically the case in
paleoclimate applications).

In the case of multivariate normal data, two variables are conditionally independent
given the rest of the variables if and only if the corresponding element of the inverse covari-



ance matrix ;; = (X7!);; is equal to zero. Thus, when many variables are conditionally
independent (as is typically the case in climate fields), the inverse covariance matrix €2 is
sparse, and the number of parameters to estimate is greatly reduced.

In GraphEM, the conditional independence structure of the climate field is first esti-
mated using an ¢;-penalized maximum likelihood method (the “graphical lasso”, described
in Friedman et al., 2008). Once the conditional independence structure is known, the co-
variance matrix X can be estimated in accordance with these conditional independence
relations within the EM algorithm (see Fig S1 for an illustration of the GraphEM algo-
rithm).

As described in Guillot et al. (submitted), when estimating the graphical structure of
the field, three parameters need to be specified to determine the target sparsity of the graph
for the temperature-temperature part (T'T), proxy-proxy part (PP), and the temperature-
proxy part (TP). For all three parameters, a value that is large enough has to be specified
so that the true graph is contained in the estimated one. On the other hand, the sparsity
has to be small enough for the covariance matrix to be well-conditioned. For this study,
the parameters have been set to (TT,PP,TP) = (5%, 5%, 5%), following the choices in
(Guillot et al., submitted). Future studies will explore data-adaptive criteria for choosing
these parameters.

2 Results

2.1 Spatial metrics

Figures S3 - S12 below plot the spatiotemporal variations of CE. The figures show the
ensemble median, using the flat network.

Overall, CE scores are higher over more regions during the AD 1059-1149, 11501249,
1750-1849 intervals than during the other periods. Figures. S13-S14 show the MSE decom-
posed into bias and variance, which helps interpret the patterns of CE variations shown in
Figs. 7 and 8. We find that both bias and variance have similar types of variations to CE:
that is, during the aforementioned periods, both bias and variance are smaller than the
rest periods, leading to a smaller MSE (i.e. a higher CE). Additionally, we note that, in the
local SNR case (Figs. S13), the relative contribution of bias to MSE is, on average, higher
than 60% across different periods. Therefore the patterns of MSE in Fig. S13 are largely
driven by the patterns of bias. The relative contributions of bias and variance to MSE
are comparable in the max SNR case (Fig. S14); their patterns of temporal variations are
also similar to each other, therefore leading to a similar pattern in the total MSE. Various
causes might be responsible for such patterns of bias, MSE and CE. In this study, we con-
jecture that the type and amplitude of climate variations may contribute to reconstruction
skill. Figs. 7 and 8, and Figs. S13 - S14 here are compared with Fig. 1 in Ammann et al.
(2007). The timing of high CE scores (low MSE and bias) is found to be coincident with
the timing of high amplitude volcanic events and periods of anomalous solar irradiance. It
remains to be seen whether this synchrony is found with other GCM targets, or in nature.



2.2 Global average

Table S1 and S2 summarize the weighted global mean (/1) verification statistics (CE, RE,
R?) for each century, with the estimated standard deviation (&) displayed in parentheses.

By definition, CE is the most stringent diagnostic. In Table S2 and S1, it is also evident
that reconstruction skill based on CE indicates the worst results. The RE statistic, which
is less stringent than CE, indicates that reconstructions are better than predictions of
climatology (if RE > 0) for periods after 1300 AD in the local SNR case, and remain above
zero during the entire reconstruction interval for all methods in the max SNR network. R?
is the least strict statistic because it only accounts for similarity between two time series by
trend. As in Table S2, R? > 0 for all methods in all cases. With R? as the judging criterion,
CCA stands out in the max SNR network, which is consistent with the mechanisms of the
CCA algorithm, i.e. maximize the cross-correlation between proxies and temperature time
series.

2.3 Additional diagnostics

We also examined the relationship between:
1. CE vs. number of proxies per grid box (Figs. S15 and S16);
2. CE vs. average SNR per grid box (Figs. S17 and S18);
3. CE vs. sum of SNR per grid box (Figs. S19 and S20).

The results indicate that there are no simple apparent relationships between these variables
of interest.

2.4 Error cancellation in index reconstructions

Following the approach of Guillot et al. (submitted), we consider the positive and negative
contributions to the error in the reconstructed global mean temperature index (Figs. S21
and S22). For every spatial point s in a given year ¢, we compute the deviation from the
true field T'(t,s) — T(t, s), where T is the reconstructed temperature and 7' is the target
(here the GCM-simulated temperature). Such deviations are then partitioned into positive
and negative contributions, and the area-weighted average of each is computed to form the
timeseries displayed in Figs. S21 and S22.

This allows decomposition of the sum of reconstruction errors (black curves) into con-
tributions stemming from regions of warm or cool biases. In an ideal reconstruction, the
deviations should be small everywhere. In practice, however, reconstructions are often
biased warm (T'(t, s) > T(t,s)), but in some locations are biased cold (T'(t,s) < T(t, s)).
As long as the positive values are comparable with negative values, the value of the global
mean deviation <T (t,s) —T(t, s)>, which is a simple linear combination of the positive and
negative values, will be small, and so will the RMSE obtained from it.

As shown on Figs. S21 and S22, similar positive errors arise from all methods, but
negative errors arising from RegEM-TTLS and M09 are much higher than those from CCA
and GraphEM. Because the absolute values of RegEM-TTLS and M09’s negative deviations
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are comparable with their positive deviations, their overall sum is smaller than those arising
from CCA and GraphEM. Thus we have the counterintuitive circumstance that larger
spatial deviations result in smaller overall errors when composite indices (e.g. global or
hemispheric means) are computed. This finding has important implications for interpreting
CFR results, showing in particular that the global mean temperature reconstruction is a
poor indicator of spatial skill.

3 Alternative designs of pseudoproxy networks

No proxy is ever solely indicative of local climatic conditions. However, even a proxy that
is not (purely) temperature-sensitive can be useful in recording long-range temperature
information through teleconnections. For instance, Fig. S23 depicts correlations between a
given proxy (a moisture-sensitive tree-ring record from southwestern North America, black
triangle) and all available instrumental temperatures. An ENSO-like pattern is evident in
all four panels of this figure, suggesting that the records are indicative of ENSO teleconnec-
tions, as is well known (Cook et al., 2004, 2007). This indicates that proxies without high
correlations to local temperature, but with high correlation with a more remote gridpoint,
might still have value for reconstructing far-field temperature information, and motivated
us to design two end-member networks: the local SNR network, which is reflective of lo-
cal, temperature-only relations, and the maz SNR network, modeling each proxy’s highest
potential to capture information about a climate field. Neither choice is realistic, but each
is a useful end-member of real-world conditions.

To more realistically model real-world conditions, we consider an intermediate design,
which balances the search for optimal correlations with a constraint of localization. We

d;;
do so by maximizing a distance-weighted correlation |p;;| x e_dTi, in which p;; is the linear
correlation between a given pair of (P, Tj), d;; is the corresponding P-T distance, and dg
is a constant. The question then translates to finding the temperature gridpoint that gives
the maximum absolute value in the vicinity of the proxy record. A potential problem is that
no theoretical criterion exists to distinguish real teleconnections from spurious correlations.
Here we set dy = Re (one Earth radius). Other values (0.5R, 1.5Re, 2Re, 4R.) were also
tried, and results were found to be insensitive to this choice (Fig. 523 and 525).

In the intermediate SNR network, the number of significant? proxies reduces to 854 (out
of 1138). Although the average SNR (0.40) is lower than that in the max SNR network
(0.45), the histogram remains very similar (Fig. S24). Looking at the joint distribution
of P-T distance and |p| (Fig. S25), we find that most of the significant correlations are
regional, i.e. within 4000 km, which is more physically interpretable than the pattern
shown in Fig. 2 (main text). Nevertheless, results based on the intermediate SNR network
turn out to be very similar to those derived from the max SNR network.

For simplicity, we illustrate this point using only M09-TTLS and GraphEM. In Fig. S26,
we plot the spatial patterns of CE, and compare results from the intermediate SNR network
and the max SNR network. Comparisons are based on results of 20 noise realizations, thus
the ensemble spread might be narrower compared with results based on the 100-realization

2The significance test is based on Ebisuzaki (1997), taking into account of the effect of multiple hy-
pothesis test via calculating false discovery rate (Ventura et al., 2004).



ensemble in the original manuscript. For both methods, the spatial patterns between the
intermediate and max SNR networks are very similar: the pattern correlation between CE
patterns of the two SNR networks is 0.87 for M09-TTLS and 0.84 for GraphEM over A.D.
850 — 949, 0.98 for M0O9-TTLS and 0.76 for GraphEM over A.D. 1750 — 1849. Conclusions
based on the global mean time series are also consistent (Fig. S27): both the ensemble
medians and spreads are very similar to one another. Nevertheless, we emphasize that
all these designs employ synthetic data, while real-world proxies have much more complex
relationships to temperatures. Results based on pseudoproxies are not, by nature, directly
comparable to real-world reconstructions, but we have provided reasonable end-member
experiments demonstrating the dependence of these different assumptions about proxy
performance.

4 Properties of the NCAR CSM1.4 simulation

As shown in Figs. 7 and 8, CE skill varies non-monotonically even when proxy availability
is uniform (flat network). This suggests that data availability is not the only driving cause
of temporal fluctuations in reconstruction skill. Here we show that intrinsic properties of
the simulated climate are important as well.

We use the M09-TTLS reconstructions with the max SNR flat network to illustrate
the point. In Fig. S28, we compare the temporal variations of globally averaged CE skill
with temperature variability in the CSM1.4 model simulations. Temperature variability is
quantified by the running standard deviation of the global mean temperature time series,
averaged over sliding 100-year windows. As in Fig. S28, the global mean temperature
displays pronounced variability during 1150AD - 1350 AD, which is broadly consistent with
the period of high CE scores. Those turn out to be highly correlated with the running
standard deviation (R = 0.74, p < 0.05). Linearly regressing the century-averaged CE
onto the century-averaged running standard deviation yields a slope of 1.16 (Fig. S29),
with a 95% confidence interval [0.30,2.03] that excludes zero.

This analysis demonstrates that, in this model at least, reconstruction skill is higher
when global mean temperature variability is higher — episodes of vigorous climate variabil-
ity emerge more clearly from the noise in the pseudoproxies. This happens at the local
level, and is then reflected in the global mean. Climate variability in CSM1.4, as in the
climate system itself, is the result of both external drivers and internal climate oscillations.
The NCAR CSM1.4, as acknowledged in Ammann et al. (2007), has relatively coarse res-
olution and therefore weak internal variability. In the simulation, the most pronounced
cooling episodes are found to coincide with the timings of strong volcanically-forced events
(e.g. 1258AD, 1453AD, 1815AD, see Ammann et al., 2007, their Fig. 1). This is partly
because the response to hemispheric-scale volcanic events shows large spatial coherency
(not shown), though our analysis cannot disentangle this effect from that associated with
the higher amplitude of climate fluctuations at such times. Nevertheless, it does open the
possibility that reconstruction skill may be partly dependent on the amplitude and spatial
scales of temperature fluctuations. In nature, the ratio of internal to external variability
is likely higher than in this coarse GCM, so the extent to which this effect matters for
real-world reconstructions remains to be ascertained.
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Figure S15: Relationship between CE and

staircase network with local SNR.
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Figure S16: Relationship between CE and
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Figure S17: Relationship between CE and average SNR per grid box, using the staircase
network with local SNR.
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Figure S21: Error cancellation analysis, using the staircase network with local SNR.
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Figure S22: Error cancellation analysis, using the staircase network with max SNR.
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W, nm033

Figure S23: An example of maps of correlations for a given proxy. On each map, the black
triangle represents the given proxy record. For instance, the top left map shows proxy
No.669 in the Mann et al. (2008) network, known as the “nm033" tree ring width record.
Colors represent the pairwise proxy-temperature correlations, with positive correlations
represented by yellowish and reddish dots, negative correlations represented by blueish
dots. Grey inverse triangles pinpoint the temperature grid points corresponding to the
maximum distance-weighted correlations (absolute values).
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Figure S24: Histograms of different designs of realistic SNR networks. Top: local SNR
network, middle: intermediate SNR network, bottom: max SNR network



O 0.5Re
* Re
A 2Re

Figure S25: Maximum absolute correlation coefficient |p| between M08 proxies and the
HadCRUT3v grid point temperatures vs. the corresponding distance between the proxy
location and the grid point, with a distance contraint of Re (one Earth radius). On the y-
axis is the histogram of the maximum distance-weighted |p|; on the x-axis is the histogram
of distance between each proxy P; and the corresponding temperature grid T; that gives
the highest distance-weighted |p|.
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850 - 949 1750 - 1849

M09 global mean = -0.74 global mean = +0.33

Figure S26: Spatial Pattern of CE, a comparison between the intermediate and max SNR
flat network. 850 - 949 AD and 1750-1849 AD represent periods with the minimum and
maximum global mean CE over the entire reconstruction interval, respectively. Compar-
isons are based on the median of a 20-realization ensemble.
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Global mean temperature (20-year lowpass), staircase network
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Figure S27: Area-weighted global mean time series comparison of M09-TTLS and
GraphEM, with the staircase intermediate and max network. Only the low-frequency
(20-year lowpass) component is plotted. Black line: target temperature from the CSM1.4
model output; colored lines: reconstructed temperature from median of the reconstruction
ensembles; shaded areas: [2.5%,97.5%| quantiles derived from the reconstruction ensem-
bles. Comparisons are based on results of 20 realizations.
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Figure S28: Temperature variability and CE skill comparison. Temperature variability
is quantified as the running standard deviation using sliding 100-year windows for the
simulated global mean temperature in NCAR CSM1.4, shown as the blue thick curve; the
blue thin curve corresponds to the thick one’s 100-year average. The CE scores here are
the same as values in the M09-TTLS case in Fig. 8 using the flat network, shown as the
green curve. The time series (blue thin curve vs. green curve) have a correlation of 0.74

(p<0.05).
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Figure S29: Regression fitting of globally averaged CE onto temperature variability of the

global mean time series. Blue dots: (temperature variability, CE) pairs for each 100-year
time slice; black curve: linear regression fit via OLS.
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